Converging on the Ultimate Algorithm

for Minimizing Convex Sums

Mark Schmidt

University of British Columbia

Minimizing Convex Sums

@ We consider the problem of minimizing a finite sum,

of smooth and convex functions f;.

@ Classic problem frequently arising in machine learning (ML):
e Basic models like Least squares, logistic regression:

fil@) = 5(as—b), file) = log(1 + exp(~bialz),

and more advanced models like conditional random fields:

fi(x) = —w" (zi, yi) +log Y _ exp(w” ¢(wi,y)).

Y

@ Stochastic gradient methods are traditional approach for large n.

Modern Stochastic Gradient Methods

@ Classic stochastic gradient have a sublinear convergence rate.
@ Since 2012: new stochastic gradient method with linear rates.
e Many papers on this topic (see our tutorial tomorrow).

@ Algorithms from papers often work great in practice.

e Sometimes better than existing highly-tuned libraries.
o Now used in standard ML packages and commercial products

@ But they could potential work much better in practice.

e Worst-case analyses don’t account for all structure in the data.
@ There are still a important practical tricks to be discovered.

This Talk: Tricks for Speeding Up SAG and SVRG

@ This talk: tricks that could make SAG or SVRG much faster.

e Same tricks could likely speed up other methods.
e I'm mostly going to stay away from parallel/distributed issues.

@ My goal: build the best “black box” implementation possible.

@ What | want from you:
e If you like to prove, some of these are good challenges.
e If you like to implement, these could help.
o If 'm missing tricks, let me know!

Stochastic Average Gradient (SAG) Algorithm

@ The stochastic average gradient (SAG) algorithm has the form
t+1 _ ot Y - 1(it
g =t - ;f ("),

a gradient descent step but with old gradient estimates.
@ Each iteration evaluates f/(z") for a random .

o We set iy = ¢ for this example and i; = i:— for the others.

@ Number of gradients to reach accuracy e: O((n +)).

o Gradient method requires O(nk).
o Classic stochastic methods require O(1/e).

Stochastic Average Gradient (SAG) Algorithm

@ Comparing algorithm from theorem to best implementations:

10 4 10° L 10° 1
-2 L~)|

£ 107 5SS Fe e 0
z g E
E E E
3 ° a
80 ro o 10
2 g L2
€ € £
210" N —% % 107
3 2 2 3
Q 9) a 9
[[§ Fo

10 1 F 0

0"’ T T T T 0° T T T T 0° T T T T

0 10 20 50 0 10 30 0 50 0 10 0 50
Effective Passes Effective Passes Effective Passes

@ Sometimes it does better but often it does worse...

Bigger Step Sizes for SAG

@ Assumptions in the analysis:
e Function f is strongly-convex.
o Gradients f; are L-Lipschitz continuous.
e Step-size a; is setto 1/16L.

@ Algorithm works better in practice with o, = 1/L.

10° L

L8FGs

S
!
T

s
4"3(14)

S,

Objective minus Optimum
/§
Q)
2
5
2
Objective minus Opfimum
T
Objective minus Optimum

_ - .
10 T T T T 10 T T T T 10 T T T T

Effective Passes Effective Passes Effective Passes

Even-Bigger Step Sizes for SAG

@ In general SAG does not work with oy = 10/L (or even 1/L).
e But for some problems it works way better with this choice.
@ Why???

@ For some problems: local L is much smaller than global L.

Larger L values out here

/6 Region with small L

Even-Bigger Step Sizes for SAG

@ Using global L vs. trying to estimate local L:

10 10° 4 L 10°
L8
FGs 107
§ 5
£ 107 HE 10
8 I}
2 SAG 2
2 (I/IGL/ 210
£ £
B o
2 'S4, 2
T A0 G D0
510" @ g
38 8
'S,
<
107"
0 T T T T X o T T T T 0° T T T T
0 10 20 30 0 50 0 10 20 30 20 50 0 10 20 30 0 50
Effective Passes Effective Passes Effective Passes

@ See Section 4 of Le Roux et al. [2012] and also Vainsencher et al. [2015].

Algorithms Depending on

@ What about step-sizes depending on p?

_2 9
L4+np ™"

e Should we use a; =
@ Watch out for local 1 vs. global .

o SDCA uses global 1 so sometimes does really bad:

100 4 I I I

T
Objective minus Optimum
T

Objective minus Optimum

20 30
Effective Passes Effective Passes

Better Step-Sizes?

@ What about just trying to figure out step-size that works the best?

@ Mairal [2013] gives a simple line-search method:
e Search for the best performance on a subset of the data (Bottou trick).

@ Is there a better method to be discovered?

SAG vs. SVRG

@ Disadvantage of SAG is that it has a huge memory requirement.

@ For many problems, gradient structure allows us to reduce this.
o Least squares, logistic regression, conditional random fields.

@ For general problems, we can instead use SVRG.

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm:

@ Start with zq

@ fors=0,1,2... (outer loop)
o dy= LN fl(xs) (full gradient calculation)
"] ZEO = Ts
o fort=1,2,...m (inner loop)
@ Randomly pick i; € {1,2,...,N}
o zf =~ —ay(f] (a*1) = f] (x5) + ds) (two gradients per iteration)
@ Loy =a' (initialize next outer loop)

@ Only need to store x; and d;.
@ Choices that seem to work well are o, = 1/L and m = n.

@ Full gradient calculations are wasteful when far from the solution.

Stochastic Variance-Reduced Gradient (SVRG)

Practical SVRG algorithm:

@ Start with zg

@ fors=0,1,2... (outer loop)
o ds = ﬁ >ien, fi(xs) (batch gradient calculation)
o ¥ ==z,
o fort=1,2,...m (inner loop)
@ Randomly pick i € {1,2,...,N}
ozt =t —ay(f] (z'71) = f], (xs) + ds) (two gradients per iteration)
@z, =a (initialize next outer loop)

@ Control variate d, can be based on a subset of the examples.
@ Preserve rate if B, grows fast enough.

@ For example, B = min{2°,n}.

Practical SVRG

@ SVRG with full-gradient d* compared to growing batch:

10°

Obj ective ninus Optinmum

10°® T T
0 5 10 15
Effective Passes

@ |s there a better way to grow d* or choose B;?

@ Recent work shows that maybe we should be updating d° [Ngyuen et al., 2017].

Non-Uniform Sampling

@ Can we improve performance by non-uniform sampling?

@ Consider case where each f/ has Lipschitz constant L;:

e Improve the rate theoretically by sampling biasing towards L;.
[Xiao & Zhang, 2014]

@ Justification: frequently sample gradients that change quickly.

@ In practice, a huge difference between local L; and global L;.

Non-Uniform Sampling

@ Uniform vs. non-uniform (global L;) vs. non-uniform (local L;).
10° o] L L L L 10° 4 L L L L o)

a\
.
T
T

n

Objective minus Optimum
3,

10
0 0

T
2 0 0 50 s} 10 20 30 40 50
Effective Passes Effective Passes Effective Passes

@ |s this sampling proportional to L; optimal across iterations?

@ Work on stratified sampling and clustering examples.
[Zhao & Zhang, 2014, Hoffman et al., 2015, Allen-Zhu et al., 2016]

|dentifying Support Vectors

@ A related idea: identifying support vectors.

@ Consider a smoothed SVM problem [Rosset & Zhu, 2006]:

0 if T>1+e¢,
1 n
in — bal'z), = _ i _
felllé}ln;f(a;), f(7) 1—7 2 ifr<1—¢,
Are=m)” i1 — 7| <e.

4e

@ The solution is sparse in the f/ (has support vectors).

|dentifying Support Vectors

@ Keep track of number z of consecutive times f/(z') was zero.

o Ifit's zero at least twice (z > 2), skip the next 27~2 evaluations.

e May only evaluate non-support examples a logarithmic number of times.

[Babanezhad et al., 2015]
%Fun
G ow
SV(Full)
SV(G ow)
V=]

10°° r

10°

Obj ective minus Optinmum

1010 T T T

0 5 10 15
Effective Passes

Choosing the Batch

@ We can often evaluate several gradients in parallel.
@ Logical way to pick the batch size: number of parallel gradients.

@ Two possibilities ways to sample the batch:

e Sample from a fixed set of data “blocks”.
e Sample the original variables.

@ For the original variables, Lipschitz sampling again helps.
@ For constructing “blocks”, there may be better strategies.

e Try to make the blocks have small or varied Lipschitz constants.

Acceleration

@ Can we accelerate these methods as with gradient methods?
e Is O(n + k) the best we can do?

@ We can't reduce runtime to O(n + /).

@ But several authors give algorithms achieving O(n + /nk).

Acceleration

@ Most common strategy: inexact proximal point methods use
B . Ak 9
Tig1 = argmin f (@) + 5 lle — @l

and solve this up to accuracy ¢, using stochastic method.
[Shalev-Schwartz & Zhang, 2014]

@ But needs sequence of parameters and termination criteria.

e Although some nice tricks in Lin et al. [2015].

@ Recent alternatives don’t need the inner/outer setup.

[Lan & Zhou, 2015, Allen-Zhu, 2016, Defazio, 2016]

Newton-Like Methods

@ Can we make Newton-like versions of these methods?
@ If we use a matrix H and apply the update
o n
1t —tH 1(it
A ; fi@"),
then we get the convergence for minimzing f(H'/?z) instead of f(x).

@ Can be much faster, but doesn’t give superlinear for any H.
e Superlinear not possible for random, but possible for cyclic [Rodomanov & Kropotov, 2016]
@ Not clear how to choose a sequence of H; matrices.

e But many recent works on this topic.

@ Non-diagonal H, substantial increase runtime for sparse datasets.

@ Methods are great in theory, but practical details need to be worked out too.
@ How do we use/identify bigger step-sizes?

@ |s sampling based on Lipschitz constants optimal?
e Particularly for accelerated and Newton-like methods.

@ Can we cleverly choose the batch or batch size?
@ Can we make accelerated methods adaptive to u?

@ Can we design robust/efficient Newton-like method?

