Non-Uniform Stochastic Average Gradient Method for

Training Conditional Random Fields

Mark Schmidt (UBC), Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC),
Aaron Defazio (Ambiata), Ann Clifton (SFU), and Anoop Sarkar (SFU)

Motivation and Overview of Contribution SAG with Practical Non-Uniform Sampling (NUS) Strategy

» Conditional random fields (CRFs) are a ubiquitous tool for structured prediction:
» Allow the use of a high-dimensional feature set.
» Formulated as convex optimization problem. HVf,( ) — Vf,(v)H < LiHW _ VH»VWa v,
» But very slow to train.

» Stochastic average gradient (SAG) methods are a new strategy for convex optimization:
» Only look at a single training example on each iteration, like stochastic gradient methods.
» Linear convergence rate similar to methods that process the entire dataset on every iteration.

» Our contribution is applying SAG with non-uniform sampling (NUS) to CRFs: » Practical ‘partially-based’ strategy:
» We show how to reduce the memory requirements using structure in the gradients. » With probability 1/2 choose i uniformly.

» We propose a practical NUS scheme that substantially improves empirical performance. » With probability 1/2 sample i with probability L;/ S L;
» We analyze the rate of convergence of the SAGA variant under non-uniform sampling. e

» Assume each gradient has its own Lipschitz constant L;, a value such that

bounding how fast gradient / can change.
» Key idea behind NUS: bias sampling probability p; towards Lipschitz constant L;:

> Gradients that can change more quickly get updated more often.
» Convergence rate depends on L =mean(L;) instead of L =max(L;).

| s h » Use a larger step-size of o = %(1/L +1/1).
» SAG with NUS often outperforms existing methods for training CRFs. » Initialize with L; = L the first time an example is chosen.

» Each time 7 is chosen, set L; = 0.9L; then double it while (1) holds.

.. : > If (1) holds ¢ times (without backtracking), do not change L; for 257! next times i is sampled.
Conditional Random Fields (CRFS) » Code: http://www.cs.ubc.ca/~schmidtm/Software/SAGACRF.html.

@ Convergence Analysis for SAGA with Non-Uniform Sampling

» We analyze a NUS extension of SAGA, which has similar performance but easier analysis.
> Let the sequences {w'} and {s;} be defined by

O O 1w | L -+ L

) Jt
npjt n<

sttl Vfrt(Wt) if j = r,
/ sf otherwise.

where j; is chosen with probability p;.

NPmin
4L+np

.
exp(w F(x,y)) Eflw = wl] < (1 - pa) [Ix = x| + G
y' eXP(WTF(Xa y/)) where pmin = min;{p;} and
» Given training examples {x;, y;}, standard approach is minimizing ¢,-regularized NLL: 20 e 1 )
: Co= s S [ VA = V()
- 1 | A (4L + np)* <= pi

= — — i1 Xi, W) + = : |

min f(w) =~ >~ log p(yx. w) + 5wl L

w
=1

» Evaluating each log p(y;|x;, w) is expensive due to sum over y’.

» CRFs model probability of output y € ) given input x € X and features F(x, y) using

> (a) If r; is set to j;, then with a = we have

p(y\x, W) — Z

> (b) If pj = <+ and r; is chosen uniformly at random, then with a = ﬁ we have

B[t~ wlf] < (1 min{ 3

Related Work on Deterministic, Stochastic, and Hybrid Methods G,

n

Y F(x7) = F(x)]
» Deterministic gradient methods like L-BFGS [Wallach 2002, Sha & Pereira, 2003]: » (a) SAGA has a linear convergence rate whenever p; > 0 for all i.

> Require O(log(1/¢) iterations but n gradient evaluations per iteration. » (b) SAGA has a faster rate with p; proportional to L; and generating a uniform sample.
» Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]:

» Require O(1/¢) iterations but only 1 gradient evaluation per iteration. :
» Online exponentiated gradient [Collins et al., 2008]: Experiment Results

» Requires O(log(1/¢)) iterations in terms of dual and 1 dual gradient evaluation per iteration.

» Hybrid deterministic-stochastic [Friedlander & Schmidt, 2012]: N\ SO Pegasos

» Requires O(log(1/¢)) iterations and growing number of gradient evaluations per iteration.

~—fa-
Stochastic Average Gradient (SAG) for CRFs s

Objective minus Optimall
Objective minus Optimall

» Stochastic average gradient [LeRoux, et al. 2012]:
» Requires O(log(1/¢)) iterations and 1 gradient evaluation per iteration.

» SAG uses the iteration

n

Y
Wt+1:Wt——§:S,-t | |
n T ) L T A I

. Y= | -BFGS === | -BFGS
=== | -BFGS
/ 1 -A- SG -A- SG A G

t . . f t . . ‘ AdaGrad AdaGrad AdaGrad
where we set s* = —V log p(y;|x;, w*) + Aw’ for one randomly-chosen training example. ‘ :g::jgﬁd :E:gggﬂd _ :E:ﬁiéiid
SAG-NUS* ' SAG-NUS*

» Challenge is the memory required for storing the s': k| : *x . * L %SAG-NUS*

OEG

o

w

(@]
|

©
o
w
e
1

Test error
Test error

» V log p(y;|x;, w") often sparse but depends on number of features
» Aw' is typically dense.

» Implementation issues for CRFs:
» Sparse trick 1: to avoid storing Aw’ use the exact gradient of the regularizer,

0.13

0.125

0.12 7

0.115

T T T T T T T T T | T
0 80

o n
with = (1 — a\)w' — - Zg,-t, Figure: Test error against effective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are
i=1

stochastic method with sub-optimal step-size.
where we set g' = —V log p(y;|x;, w') for one randomly-chosen example.

» Sparse trick 2: use the representation w! = S'v' and ‘lazy updates’ to avoid dense vector operations.
» Step size: we set « = 1/L with L = L, + A, and double approximation L, when Discussion

1
fi(w—(1/L)gi) > fi(w) — IH&'HZ, (1) » If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].
g

but we multiply L, by 271/1 after each iteration to slowly increase step size. _ _ _ _
» Convergence: we can stop if |[Aw® + 1 37 gf|| is sufficiently small. » Algorithms applies to any graph structure and approximate inference could be used.

» Reducing the memory: for ‘part-based’ features, F;(x,y) = F(x)I[yx = s|, the gradient has the form » Could use multi-core computation and distributed parallel implementations.
Vilog p(y|x, w) = F(x)(Ilyx = s] — p(yx = s|x, w)).
and SAG update depends on differences in gradients,

» Could use /;-regularization with proximal versions [Defazio et al., 2014].

Vilog p(y|x, w) — V;log p(y|x, woid) = F(x)(p(yk = s|x, woid) — p(yk = s|x, w)),

so we only need to store marginals p(yx = s|x, w), that are shared across features that depend on y; = s.



http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html

