

Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

Mark Schmidt (UBC), Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC), Aaron Defazio (Ambiata), Ann Clifton (SFU), and Anoop Sarkar (SFU)

Motivation and Overview of Contribution

- ► Conditional random fields (CRFs) are a ubiquitous tool for structured prediction:
- ► Allow the use of a high-dimensional feature set.
- ► Formulated as convex optimization problem.
- ► But very slow to train.
- Stochastic average gradient (SAG) methods are a new strategy for convex optimization:
- Only look at a single training example on each iteration, like stochastic gradient methods.
- ► Linear convergence rate similar to methods that process the entire dataset on every iteration.
- ► Our contribution is applying SAG with non-uniform sampling (NUS) to CRFs:
- ► We show how to reduce the memory requirements using structure in the gradients.
- ► We propose a practical NUS scheme that substantially improves empirical performance.
- ► We analyze the rate of convergence of the SAGA variant under non-uniform sampling.
- ► SAG with NUS often outperforms existing methods for training CRFs.

Conditional Random Fields (CRFs)

SAG with Practical Non-Uniform Sampling (NUS) Strategy

• Assume each gradient has its own Lipschitz constant L_i , a value such that

 $\|\nabla f_i(w) - \nabla f_i(v)\| \leq L_i \|w - v\|, \forall w, v,$

- bounding how fast gradient *i* can change.
- Key idea behind NUS: bias sampling probability p_i towards Lipschitz constant L_i :
- Gradients that can change more quickly get updated more often.
- Convergence rate depends on $\overline{L} = \text{mean}(L_i)$ instead of $L = \text{max}(L_i)$.
- Practical 'partially-based' strategy:
- With probability 1/2 choose *i* uniformly.
- With probability 1/2 sample *i* with probability $L_i / \sum_j L_j$.
- Use a larger step-size of $\alpha = \frac{1}{2}(1/L + 1/\overline{L})$.
- Initialize with $L_i = \overline{L}$ the first time an example is chosen.
- ► Each time *i* is chosen, set $L_i = 0.9L_i$ then double it while (1) holds.
- ▶ If (1) holds ξ times (without backtracking), do not change L_i for $2^{\xi-1}$ next times *i* is sampled.
- Code: http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html.

Convergence Analysis for SAGA with Non-Uniform Sampling

• CRFs model probability of output $y \in \mathcal{Y}$ given input $x \in \mathcal{X}$ and features F(x, y) using

 $p(y|x,w) = \frac{\exp(w^T F(x,y))}{\sum_{y'} \exp(w^T F(x,y'))}.$

• Given training examples $\{x_i, y_i\}$, standard approach is minimizing ℓ_2 -regularized NLL:

$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} -\log p(y_i | x_i, w) + \frac{\lambda}{2} \|w\|^2.$$

• Evaluating each log $p(y_i|x_i, w)$ is expensive due to sum over y'.

Related Work on Deterministic, Stochastic, and Hybrid Methods

- Deterministic gradient methods like L-BFGS [Wallach 2002, Sha & Pereira, 2003]:
 Require O(log(1/e) iterations but n gradient evaluations per iteration.
- Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]:
- Require $O(1/\epsilon)$ iterations but only 1 gradient evaluation per iteration.

We analyze a NUS extension of SAGA, which has similar performance but easier analysis.
 Let the sequences {w^t} and {s_i^t} be defined by

$$w^{t+1} = w^t - \alpha \left[\frac{1}{np_{j_t}} (\nabla f_{j_t}(w^t) - s_{j_t}^t) + \frac{1}{n} \sum_{i=1}^n s_i^t \right]$$
$$s_j^{t+1} = \begin{cases} \nabla f_{r_t}(w^t) & \text{if } j = r_t, \\ s_j^t & \text{otherwise.} \end{cases}$$

where j_t is chosen with probability p_j . (a) If r_t is set to j_t , then with $\alpha = \frac{np_{\min}}{4L+n\mu}$ we have $\mathbb{E}[\|w^t - w^*\|^2] \le (1 - \mu\alpha)^t [\|x^0 - x^*\| + C_a],$

where $p_{\min} = \min_i \{p_i\}$ and

$$C_a = rac{2p_{\min}}{(4L+n\mu)^2} \sum_{i=1}^n rac{1}{p_i} \|
abla f_i(x^0) -
abla f_i(x^*) \|^2.$$

• (b) If $p_j = \frac{L_j}{\sum_{i=1}^n L_i}$ and r_t is chosen uniformly at random, then with $\alpha = \frac{1}{4\overline{L}}$ we have $\mathbb{E}[\|w^t - w^*\|^2] \le \left(1 - \min\left\{\frac{1}{3n}, \frac{\mu}{8\overline{L}}\right\}\right)^t \left[\|x^0 - x^*\| + C_b\right],$

where:

$$C_b = \frac{n}{2\bar{L}} \left[f(x^0) - f(x^*) \right]$$

(a) SAGA has a linear convergence rate whenever p_i > 0 for all i.
 (b) SAGA has a faster rate with p_i proportional to L_i and generating a uniform sample.

- ► Online exponentiated gradient [Collins et al., 2008]:
- ▶ Requires $O(\log(1/\epsilon))$ iterations in terms of dual and 1 dual gradient evaluation per iteration.
- ► Hybrid deterministic-stochastic [Friedlander & Schmidt, 2012]:
- Requires $O(\log(1/\epsilon))$ iterations and growing number of gradient evaluations per iteration.

Stochastic Average Gradient (SAG) for CRFs

- ► Stochastic average gradient [LeRoux, et al. 2012]:
- ▶ Requires $O(\log(1/\epsilon))$ iterations and 1 gradient evaluation per iteration.
- ► SAG uses the iteration

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \frac{\alpha}{n} \sum_{i=1}^n \mathbf{s}_i^t,$$

where we set $s_i^t = -\nabla \log p(y_i | x_i, w^t) + \lambda w^t$ for one randomly-chosen training example. • Challenge is the memory required for storing the s_i^t :

- $\nabla \log p(y_i | x_i, w^t)$ often sparse but depends on number of features
- λw^t is typically dense.
- Implementation issues for CRFs:
- Sparse trick 1: to avoid storing λw^t use the exact gradient of the regularizer,

$$\mathbf{w}^{t+1} = (1 - \alpha \lambda)\mathbf{w}^t - \frac{\alpha}{n} \sum_{i=1}^n \mathbf{g}_i^t,$$

where we set $g_i^t = -\nabla \log p(y_i | x_i, w^t)$ for one randomly-chosen example. Sparse trick 2: use the representation $w^t = \beta^t v^t$ and 'lazy updates' to avoid dense vector operations. Step size: we set $\alpha = 1/L$ with $L = L_g + \lambda$, and double approximation L_g when

$$f_i(w - (1/L)g_i) > f_i(w) - \frac{1}{2L_g} \|g_i\|^2,$$
 (1)

Experiment Results

Figure: Training objective sub-optimality against effective number of passes for OCR, CONLL-2000, POS.

Figure: Test error against effective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are stochastic method with sub-optimal step-size.

Discussion

▶ If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].

but we multiply L_g by $2^{-1/n}$ after each iteration to slowly increase step size. • Convergence: we can stop if $\|\lambda w^t + \frac{1}{n} \sum_{i=1}^n g_i^t\|$ is sufficiently small. • Reducing the memory: for 'part-based' features, $F_j(x, y) = F(x)\mathbb{I}[y_k = s]$, the gradient has the form

 $\nabla_j \log p(y|x,w) = F(x)(\mathbb{I}[y_k = s] - p(y_k = s|x,w)).$

and SAG update depends on differences in gradients,

 $\nabla_j \log p(y|x, w) - \nabla_j \log p(y|x, w_{old}) = F(x)(p(y_k = s|x, w_{old}) - p(y_k = s|x, w)),$ so we only need to store marginals $p(y_k = s|x, w)$, that are shared across features that depend on $y_k = s$. • Could use ℓ_1 -regularization with proximal versions [Defazio et al., 2014].

Algorithms applies to any graph structure and approximate inference could be used.

Could use multi-core computation and distributed parallel implementations.