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Motivation and Overview of Contribution

I Conditional random fields (CRFs) are a ubiquitous tool for structured prediction:
I Allow the use of a high-dimensional feature set.
I Formulated as convex optimization problem.
I But very slow to train.

I Stochastic average gradient (SAG) methods are a new strategy for convex optimization:
I Only look at a single training example on each iteration, like stochastic gradient methods.
I Linear convergence rate similar to methods that process the entire dataset on every iteration.

IOur contribution is applying SAG with non-uniform sampling (NUS) to CRFs:
I We show how to reduce the memory requirements using structure in the gradients.
I We propose a practical NUS scheme that substantially improves empirical performance.
I We analyze the rate of convergence of the SAGA variant under non-uniform sampling.

I SAG with NUS often outperforms existing methods for training CRFs.

Conditional Random Fields (CRFs)
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I CRFs model probability of output y 2 Y given input x 2 X and features F (x , y) using

p(y |x ,w) = exp(wTF (x , y))P
y 0 exp(w

TF (x , y 0))
.

IGiven training examples {xi , yi}, standard approach is minimizing `2-regularized NLL:

min
w

f (w) =
1

n

nX

i=1

� log p(yi |xi ,w) +
�

2
kwk2.

I Evaluating each log p(yi |xi ,w) is expensive due to sum over y 0.

Related Work on Deterministic, Stochastic, and Hybrid Methods

IDeterministic gradient methods like L-BFGS [Wallach 2002, Sha & Pereira, 2003]:
I Require O(log(1/✏) iterations but n gradient evaluations per iteration.

I Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]:
I Require O(1/✏) iterations but only 1 gradient evaluation per iteration.

IOnline exponentiated gradient [Collins et al., 2008]:
I Requires O(log(1/✏)) iterations in terms of dual and 1 dual gradient evaluation per iteration.

IHybrid deterministic-stochastic [Friedlander & Schmidt, 2012]:
I Requires O(log(1/✏)) iterations and growing number of gradient evaluations per iteration.

Stochastic Average Gradient (SAG) for CRFs

I Stochastic average gradient [LeRoux, et al. 2012]:
I Requires O(log(1/✏)) iterations and 1 gradient evaluation per iteration.

I SAG uses the iteration

wt+1 = wt � ↵

n

nX

i=1

sti ,

where we set sti = �r log p(yi |xi ,wt) + �wt for one randomly-chosen training example.
I Challenge is the memory required for storing the sti :

I r log p(yi |xi ,wt) often sparse but depends on number of features
I �wt is typically dense.

I Implementation issues for CRFs:
I Sparse trick 1: to avoid storing �wt use the exact gradient of the regularizer,

wt+1 = (1� ↵�)wt � ↵

n

nX

i=1

gt
i ,

where we set gt
i = �r log p(yi |xi ,wt) for one randomly-chosen example.

I Sparse trick 2: use the representation wt = �tv t and ‘lazy updates’ to avoid dense vector operations.
I Step size: we set ↵ = 1/L with L = Lg + �, and double approximation Lg when

fi(w � (1/L)gi) > fi(w)�
1

2Lg
kgik2, (1)

but we multiply Lg by 2�1/n after each iteration to slowly increase step size.
I Convergence: we can stop if k�wt + 1

n

Pn
i=1 g

t
i k is su�ciently small.

I Reducing the memory: for ‘part-based’ features, Fj(x , y) = F (x)I[yk = s], the gradient has the form

rj log p(y |x ,w) = F (x)(I[yk = s]� p(yk = s|x ,w)).
and SAG update depends on di↵erences in gradients,

rj log p(y |x ,w)�rj log p(y |x ,wold) = F (x)(p(yk = s|x ,wold)� p(yk = s|x ,w)),
so we only need to store marginals p(yk = s|x ,w), that are shared across features that depend on yk = s.

SAG with Practical Non-Uniform Sampling (NUS) Strategy

IAssume each gradient has its own Lipschitz constant Li , a value such that

krfi(w)�rfi(v)k  Likw � vk, 8w , v ,
bounding how fast gradient i can change.

IKey idea behind NUS: bias sampling probability pi towards Lipschitz constant Li :
I Gradients that can change more quickly get updated more often.
I Convergence rate depends on L̄ =mean(Li) instead of L =max(Li).

I Practical ‘partially-based’ strategy:
I With probability 1/2 choose i uniformly.
I With probability 1/2 sample i with probability Li/

P
j Lj .

I Use a larger step-size of ↵ = 1
2(1/L + 1/L̄).

I Initialize with Li = L̄ the first time an example is chosen.
I Each time i is chosen, set Li = 0.9Li then double it while (1) holds.
I If (1) holds ⇠ times (without backtracking), do not change Li for 2⇠�1 next times i is sampled.
I Code: http://www.cs.ubc.ca/

~

schmidtm/Software/SAG4CRF.html.

Convergence Analysis for SAGA with Non-Uniform Sampling

IWe analyze a NUS extension of SAGA, which has similar performance but easier analysis.
I Let the sequences {wt} and {stj } be defined by

wt+1 = wt � ↵

"
1

npjt
(rfjt(w

t)� stjt) +
1

n

nX

i=1

sti

#
,

st+1j =

(
rfrt(w

t) if j = rt,

stj otherwise.

where jt is chosen with probability pj .
I (a) If rt is set to jt, then with ↵ = npmin

4L+nµ we have

E[kwt � w ⇤k2]  (1� µ↵)t
⇥
kx0 � x⇤k + Ca

⇤
,

where pmin = mini{pi} and

Ca =
2pmin

(4L + nµ)2

nX

i=1

1

pi
krfi(x

0)�rfi(x
⇤)k2.

I (b) If pj =
LjPn
i=1 Li

and rt is chosen uniformly at random, then with ↵ = 1
4L̄

we have

E[kwt � w ⇤k2] 
✓
1�min

⇢
1

3n
,
µ

8L̄

�◆t ⇥
kx0 � x⇤k + Cb

⇤
,

where:
Cb =

n

2L̄

⇥
f (x0)� f (x⇤)

⇤

I (a) SAGA has a linear convergence rate whenever pi > 0 for all i .
I (b) SAGA has a faster rate with pi proportional to Li and generating a uniform sample.

Experiment Results
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Figure: Training objective sub-optimality against e↵ective number of passes for OCR, CONLL-2000, POS.
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Figure: Test error against e↵ective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are
stochastic method with sub-optimal step-size.

Discussion

I If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].
I Could use `1-regularization with proximal versions [Defazio et al., 2014].
IAlgorithms applies to any graph structure and approximate inference could be used.
I Could use multi-core computation and distributed parallel implementations.

http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html

