
Non-Uniform Stochastic Average Gradient Method for

Training Conditional Random Fields

Mark Schmidt (UBC), Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC),
Aaron Defazio (Ambiata), Ann Clifton (SFU), and Anoop Sarkar (SFU)

Motivation and Overview of Contribution

I Conditional random fields (CRFs) are a ubiquitous tool for structured prediction:
I Allow the use of a high-dimensional feature set.
I Formulated as convex optimization problem.
I But very slow to train.

I Stochastic average gradient (SAG) methods are a new strategy for convex optimization:
I Only look at a single training example on each iteration, like stochastic gradient methods.
I Linear convergence rate similar to methods that process the entire dataset on every iteration.

IOur contribution is applying SAG with non-uniform sampling (NUS) to CRFs:
I We show how to reduce the memory requirements using structure in the gradients.
I We propose a practical NUS scheme that substantially improves empirical performance.
I We analyze the rate of convergence of the SAGA variant under non-uniform sampling.

I SAG with NUS often outperforms existing methods for training CRFs.

Conditional Random Fields (CRFs)

X1 X2 X3 X4

Y1 Y2 Y3 Y4

w w w w

I CRFs model probability of output y 2 Y given input x 2 X and features F (x , y) using

p(y |x ,w) = exp(wTF (x , y))P
y 0 exp(w

TF (x , y 0))
.

IGiven training examples {xi , yi}, standard approach is minimizing `2-regularized NLL:

min
w

f (w) =
1

n

nX

i=1

� log p(yi |xi ,w) +
�

2
kwk2.

I Evaluating each log p(yi |xi ,w) is expensive due to sum over y 0.

Related Work on Deterministic, Stochastic, and Hybrid Methods

IDeterministic gradient methods like L-BFGS [Wallach 2002, Sha & Pereira, 2003]:
I Require O(log(1/✏) iterations but n gradient evaluations per iteration.

I Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]:
I Require O(1/✏) iterations but only 1 gradient evaluation per iteration.

IOnline exponentiated gradient [Collins et al., 2008]:
I Requires O(log(1/✏)) iterations in terms of dual and 1 dual gradient evaluation per iteration.

IHybrid deterministic-stochastic [Friedlander & Schmidt, 2012]:
I Requires O(log(1/✏)) iterations and growing number of gradient evaluations per iteration.

Stochastic Average Gradient (SAG) for CRFs

I Stochastic average gradient [LeRoux, et al. 2012]:
I Requires O(log(1/✏)) iterations and 1 gradient evaluation per iteration.

I SAG uses the iteration

wt+1 = wt � ↵

n

nX

i=1

sti ,

where we set sti = �r log p(yi |xi ,wt) + �wt for one randomly-chosen training example.
I Challenge is the memory required for storing the sti :

I r log p(yi |xi ,wt) often sparse but depends on number of features
I �wt is typically dense.

I Implementation issues for CRFs:
I Sparse trick 1: to avoid storing �wt use the exact gradient of the regularizer,

wt+1 = (1� ↵�)wt � ↵

n

nX

i=1

gt
i ,

where we set gt
i = �r log p(yi |xi ,wt) for one randomly-chosen example.

I Sparse trick 2: use the representation wt = �tv t and ‘lazy updates’ to avoid dense vector operations.
I Step size: we set ↵ = 1/L with L = Lg + �, and double approximation Lg when

fi(w � (1/L)gi) > fi(w)�
1

2Lg
kgik2, (1)

but we multiply Lg by 2�1/n after each iteration to slowly increase step size.
I Convergence: we can stop if k�wt + 1

n

Pn
i=1 g

t
i k is su�ciently small.

I Reducing the memory: for ‘part-based’ features, Fj(x , y) = F (x)I[yk = s], the gradient has the form

rj log p(y |x ,w) = F (x)(I[yk = s]� p(yk = s|x ,w)).
and SAG update depends on di↵erences in gradients,

rj log p(y |x ,w)�rj log p(y |x ,wold) = F (x)(p(yk = s|x ,wold)� p(yk = s|x ,w)),
so we only need to store marginals p(yk = s|x ,w), that are shared across features that depend on yk = s.

SAG with Practical Non-Uniform Sampling (NUS) Strategy

IAssume each gradient has its own Lipschitz constant Li , a value such that

krfi(w)�rfi(v)k  Likw � vk, 8w , v ,
bounding how fast gradient i can change.

IKey idea behind NUS: bias sampling probability pi towards Lipschitz constant Li :
I Gradients that can change more quickly get updated more often.
I Convergence rate depends on L̄ =mean(Li) instead of L =max(Li).

I Practical ‘partially-based’ strategy:
I With probability 1/2 choose i uniformly.
I With probability 1/2 sample i with probability Li/

P
j Lj .

I Use a larger step-size of ↵ = 1
2(1/L + 1/L̄).

I Initialize with Li = L̄ the first time an example is chosen.
I Each time i is chosen, set Li = 0.9Li then double it while (1) holds.
I If (1) holds ⇠ times (without backtracking), do not change Li for 2⇠�1 next times i is sampled.
I Code: http://www.cs.ubc.ca/

~

schmidtm/Software/SAG4CRF.html.

Convergence Analysis for SAGA with Non-Uniform Sampling

IWe analyze a NUS extension of SAGA, which has similar performance but easier analysis.
I Let the sequences {wt} and {stj } be defined by

wt+1 = wt � ↵

"
1

npjt
(rfjt(w

t)� stjt) +
1

n

nX

i=1

sti

#
,

st+1j =

(
rfrt(w

t) if j = rt,

stj otherwise.

where jt is chosen with probability pj .
I (a) If rt is set to jt, then with ↵ = npmin

4L+nµ we have

E[kwt � w ⇤k2]  (1� µ↵)t
⇥
kx0 � x⇤k + Ca

⇤
,

where pmin = mini{pi} and

Ca =
2pmin

(4L + nµ)2

nX

i=1

1

pi
krfi(x

0)�rfi(x
⇤)k2.

I (b) If pj =
LjPn
i=1 Li

and rt is chosen uniformly at random, then with ↵ = 1
4L̄

we have

E[kwt � w ⇤k2] 
✓
1�min

⇢
1

3n
,
µ

8L̄

�◆t ⇥
kx0 � x⇤k + Cb

⇤
,

where:
Cb =

n

2L̄

⇥
f (x0)� f (x⇤)

⇤

I (a) SAGA has a linear convergence rate whenever pi > 0 for all i .
I (b) SAGA has a faster rate with pi proportional to Li and generating a uniform sample.

Experiment Results

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l L−BFGS

Pegasos

SGAdaGradASG

Hybrid

SAG

SAG−NUS

SAG−NUS* OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS Pegasos

SG
AdaGrad ASG

Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

Figure: Training objective sub-optimality against e↵ective number of passes for OCR, CONLL-2000, POS.

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

Figure: Test error against e↵ective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are
stochastic method with sub-optimal step-size.

Discussion

I If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].
I Could use `1-regularization with proximal versions [Defazio et al., 2014].
IAlgorithms applies to any graph structure and approximate inference could be used.
I Could use multi-core computation and distributed parallel implementations.

http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html

