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Motivation and Overview of Contribution SAG with Practical Non-Uniform Sampling (NUS) Strategy

» Conditional random fields (CRFs) are a ubiquitous tool for structured prediction:
» Allow the use of a high-dimensional feature set.
» Formulated as convex optimization problem. HVf,( ) — Vf,(v)H < LiHW _ VH»VWa v,
» But very slow to train.

» Stochastic average gradient (SAG) methods are a new strategy for convex optimization:
» Only look at a single training example on each iteration, like stochastic gradient methods.
» Linear convergence rate similar to methods that process the entire dataset on every iteration.

» Our contribution is applying SAG with non-uniform sampling (NUS) to CRFs: » Practical ‘partially-based’ strategy:
» We show how to reduce the memory requirements using structure in the gradients. » With probability 1/2 choose i uniformly.

» We propose a practical NUS scheme that substantially improves empirical performance. » With probability 1/2 sample i with probability L;/ S L;
» We analyze the rate of convergence of the SAGA variant under non-uniform sampling. e

» Assume each gradient has its own Lipschitz constant L;, a value such that

bounding how fast gradient / can change.
» Key idea behind NUS: bias sampling probability p; towards Lipschitz constant L;:

> Gradients that can change more quickly get updated more often.
» Convergence rate depends on L =mean(L;) instead of L =max(L;).

| s h » Use a larger step-size of o = %(1/L +1/1).
» SAG with NUS often outperforms existing methods for training CRFs. » Initialize with L; = L the first time an example is chosen.

» Each time 7 is chosen, set L; = 0.9L; then double it while (1) holds.

.. : > If (1) holds ¢ times (without backtracking), do not change L; for 257! next times i is sampled.
Conditional Random Fields (CRFS) » Code: http://www.cs.ubc.ca/~schmidtm/Software/SAGACRF.html.

@ Convergence Analysis for SAGA with Non-Uniform Sampling

» We analyze a NUS extension of SAGA, which has similar performance but easier analysis.
> Let the sequences {w'} and {s;} be defined by
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where j; is chosen with probability p;.
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» Evaluating each log p(y;|x;, w) is expensive due to sum over y’.

» CRFs model probability of output y € ) given input x € X and features F(x, y) using

> (a) If r; is set to j;, then with a = we have

p(y\x, W) — Z

> (b) If pj = <+ and r; is chosen uniformly at random, then with a = ﬁ we have

B[t~ wlf] < (1 min{ 3

Related Work on Deterministic, Stochastic, and Hybrid Methods G,

n

Y F(x7) = F(x)]
» Deterministic gradient methods like L-BFGS [Wallach 2002, Sha & Pereira, 2003]: » (a) SAGA has a linear convergence rate whenever p; > 0 for all i.

> Require O(log(1/¢) iterations but n gradient evaluations per iteration. » (b) SAGA has a faster rate with p; proportional to L; and generating a uniform sample.
» Stochastic gradient methods [Vishwanathan et al., 2006, Finkel et al., 2008]:

» Require O(1/¢) iterations but only 1 gradient evaluation per iteration. :
» Online exponentiated gradient [Collins et al., 2008]: Experiment Results

» Requires O(log(1/¢)) iterations in terms of dual and 1 dual gradient evaluation per iteration.

» Hybrid deterministic-stochastic [Friedlander & Schmidt, 2012]: N\ SO Pegasos

» Requires O(log(1/¢)) iterations and growing number of gradient evaluations per iteration.
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Stochastic Average Gradient (SAG) for CRFs s

Objective minus Optimall
Objective minus Optimall

» Stochastic average gradient [LeRoux, et al. 2012]:
» Requires O(log(1/¢)) iterations and 1 gradient evaluation per iteration.

» SAG uses the iteration
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where we set s* = —V log p(y;|x;, w*) + Aw’ for one randomly-chosen training example. ‘ :g::jgﬁd :E:gggﬂd _ :E:ﬁiéiid
SAG-NUS* ' SAG-NUS*

» Challenge is the memory required for storing the s': k| : *x . * L %SAG-NUS*
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Test error
Test error

» V log p(y;|x;, w") often sparse but depends on number of features
» Aw' is typically dense.

» Implementation issues for CRFs:
» Sparse trick 1: to avoid storing Aw’ use the exact gradient of the regularizer,

0.13

0.125

0.12 7

0.115

T T T T T T T T T | T
0 80

o n
with = (1 — a\)w' — - Zg,-t, Figure: Test error against effective number of passes, for OCR, CONLL-2000, POS. (Dashed lines are
i=1

stochastic method with sub-optimal step-size.
where we set g' = —V log p(y;|x;, w') for one randomly-chosen example.

» Sparse trick 2: use the representation w! = S'v' and ‘lazy updates’ to avoid dense vector operations.
» Step size: we set « = 1/L with L = L, + A, and double approximation L, when Discussion

1
fi(w—(1/L)gi) > fi(w) — IH&'HZ, (1) » If memory requirements prohibitive, use mini-batches or SVRG [Johnson & Zhang, 2013].
g

but we multiply L, by 271/1 after each iteration to slowly increase step size. _ _ _ _
» Convergence: we can stop if |[Aw® + 1 37 gf|| is sufficiently small. » Algorithms applies to any graph structure and approximate inference could be used.

» Reducing the memory: for ‘part-based’ features, F;(x,y) = F(x)I[yx = s|, the gradient has the form » Could use multi-core computation and distributed parallel implementations.
Vilog p(y|x, w) = F(x)(Ilyx = s] — p(yx = s|x, w)).
and SAG update depends on differences in gradients,

» Could use /;-regularization with proximal versions [Defazio et al., 2014].

Vilog p(y|x, w) — V;log p(y|x, woid) = F(x)(p(yk = s|x, woid) — p(yk = s|x, w)),

so we only need to store marginals p(yx = s|x, w), that are shared across features that depend on y; = s.



http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html

