
Non-Uniform SAG for Training CRFs

Mark Schmidt, Reza Babanezhad, Mohamed Ahmed
Ann Clifton, Anoop Sarkar, Aaron Defazio

University of British Columbia, Simon Fraser University

NIPS Structured Learning Workshop, 2016



Motivation: Structured Prediction

Classical supervised learning:

Structured prediction:

Other structure prediction tasks:

Labelling all people/places in Wikiepdia, finding coding regions in
DNA sequences, labelling all voxels in an MRI as normal or
tumor, predicting protein structure from sequence, weather
forecasting, translating from French to English, etc.



Motivation: Structured Prediction

Classical supervised learning:

Structured prediction:

Other structure prediction tasks:

Labelling all people/places in Wikiepdia, finding coding regions in
DNA sequences, labelling all voxels in an MRI as normal or
tumor, predicting protein structure from sequence, weather
forecasting, translating from French to English, etc.



Motivation: Structured Prediction

Classical supervised learning:

Structured prediction:

Other structure prediction tasks:

Labelling all people/places in Wikiepdia, finding coding regions in
DNA sequences, labelling all voxels in an MRI as normal or
tumor, predicting protein structure from sequence, weather
forecasting, translating from French to English, etc.



Motivation: Structured Prediction

Naive approaches to predicting letters y given images x :

Multinomial logistic regression to predict word:

p(y |x ,w) =
exp(wT

y F (x))∑
y ′ exp(wT

y ′F (x))
.

This requires parameter vector wk for all possible words k .

Multinomial logistic regression to predict each letter:

p(yj |xj ,w) =
exp(wT

yj
F (xj))∑

y ′
j

exp(wT
y ′

j
F (xj))

.

This works if you are really good at predicting individual letters.
But this ignores dependencies between letters.



Motivation: Structured Prediction

Naive approaches to predicting letters y given images x :

Multinomial logistic regression to predict word:

p(y |x ,w) =
exp(wT

y F (x))∑
y ′ exp(wT

y ′F (x))
.

This requires parameter vector wk for all possible words k .

Multinomial logistic regression to predict each letter:

p(yj |xj ,w) =
exp(wT

yj
F (xj))∑

y ′
j

exp(wT
y ′

j
F (xj))

.

This works if you are really good at predicting individual letters.
But this ignores dependencies between letters.



Motivation: Structured Prediction

Naive approaches to predicting letters y given images x :

Multinomial logistic regression to predict word:

p(y |x ,w) =
exp(wT

y F (x))∑
y ′ exp(wT

y ′F (x))
.

This requires parameter vector wk for all possible words k .

Multinomial logistic regression to predict each letter:

p(yj |xj ,w) =
exp(wT

yj
F (xj))∑

y ′
j

exp(wT
y ′

j
F (xj))

.

This works if you are really good at predicting individual letters.

But this ignores dependencies between letters.



Motivation: Structured Prediction

Naive approaches to predicting letters y given images x :

Multinomial logistic regression to predict word:

p(y |x ,w) =
exp(wT

y F (x))∑
y ′ exp(wT

y ′F (x))
.

This requires parameter vector wk for all possible words k .

Multinomial logistic regression to predict each letter:

p(yj |xj ,w) =
exp(wT

yj
F (xj))∑

y ′
j

exp(wT
y ′

j
F (xj))

.

This works if you are really good at predicting individual letters.
But this ignores dependencies between letters.



Motivation: Structured Prediction

What letter is this?

What are these letters?



Motivation: Structured Prediction

What letter is this?

What are these letters?



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.

F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).

F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).

F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).

F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Conditional Random Fields

Conditional random fields model targets y given inputs x using

p(y |x ,w) =
exp(wT F (y , x))∑
y ′ exp(wT F (y , x))

=
exp(wT F (y , x))

Z
.

where w are the parameters.

Examples of features F (y , x):

F (yj , x): these features lead to a logistic model for each letter.
F (yj−1, yj , x): dependency between adjacent letters (‘q-u’).
F (yj−1, yj , j , x): position-based dependency (French: ‘e-r’ ending).
F (yj−2, yj−1, yj , j , x): third-order and position (English: ‘i-n-g’ end).
F (y ∈ D, x): is y in dictionary D?

CRFs are a ubiquitous tool in natural language processing:

Part-of-speech tagging, semantic role labelling, information
extraction, shallow parsing, named-entity recognition, etc.



Optimization Formulation and Challenge

Typically train using `2-regularized negative log-likelihood:

min
w

f (w) =
λ

2
‖w‖2 − 1

n

n∑
i=1

log p(yi |xi ,w).

Good news: ∇f (w) is Lipschitz-continuous, f is strongly-convex.

Bad news: evaluating log p(yi |xi ,w) and its gradient is expensive.

Chain-structures: run forward-backward on each example.
General features: exponential in tree-width of dependency graph.
A lot of work on approximate evaluation.

This optimization problem remains a bottleneck.



Optimization Formulation and Challenge

Typically train using `2-regularized negative log-likelihood:

min
w

f (w) =
λ

2
‖w‖2 − 1

n

n∑
i=1

log p(yi |xi ,w).

Good news: ∇f (w) is Lipschitz-continuous, f is strongly-convex.

Bad news: evaluating log p(yi |xi ,w) and its gradient is expensive.

Chain-structures: run forward-backward on each example.
General features: exponential in tree-width of dependency graph.
A lot of work on approximate evaluation.

This optimization problem remains a bottleneck.



Optimization Formulation and Challenge

Typically train using `2-regularized negative log-likelihood:

min
w

f (w) =
λ

2
‖w‖2 − 1

n

n∑
i=1

log p(yi |xi ,w).

Good news: ∇f (w) is Lipschitz-continuous, f is strongly-convex.

Bad news: evaluating log p(yi |xi ,w) and its gradient is expensive.

Chain-structures: run forward-backward on each example.
General features: exponential in tree-width of dependency graph.
A lot of work on approximate evaluation.

This optimization problem remains a bottleneck.



Optimization Formulation and Challenge

Typically train using `2-regularized negative log-likelihood:

min
w

f (w) =
λ

2
‖w‖2 − 1

n

n∑
i=1

log p(yi |xi ,w).

Good news: ∇f (w) is Lipschitz-continuous, f is strongly-convex.

Bad news: evaluating log p(yi |xi ,w) and its gradient is expensive.

Chain-structures: run forward-backward on each example.

General features: exponential in tree-width of dependency graph.
A lot of work on approximate evaluation.

This optimization problem remains a bottleneck.



Optimization Formulation and Challenge

Typically train using `2-regularized negative log-likelihood:

min
w

f (w) =
λ

2
‖w‖2 − 1

n

n∑
i=1

log p(yi |xi ,w).

Good news: ∇f (w) is Lipschitz-continuous, f is strongly-convex.

Bad news: evaluating log p(yi |xi ,w) and its gradient is expensive.

Chain-structures: run forward-backward on each example.
General features: exponential in tree-width of dependency graph.
A lot of work on approximate evaluation.

This optimization problem remains a bottleneck.



Current Optimization Methods

Lafferty et al. [2001] proposed an iterative scaling approach.

Outperformed by L-BFGS quasi-Newton algorithm.
[Wallach, 2002, Sha Pereira, 2003]

Has a linear convergence rate: O(log(1/ε)) iterations required.

But each iteration requires log p(yi |xi ,w) for all n examples.

To scale to large n, we looked at stochastic gradient methods.
[Vishwanathan et al., 2006]

Iteration cost is independent of n.
But has a sub linear convergence rate: O(1/ε) iterations required.
Or with constant step-size you get linear rate up to fixed tolerance.

These remain the strategies used by most implementations.

Many packages implement both strategies.
My codes still use L-BFGS because it’s easier to tune.



Current Optimization Methods

Lafferty et al. [2001] proposed an iterative scaling approach.

Outperformed by L-BFGS quasi-Newton algorithm.
[Wallach, 2002, Sha Pereira, 2003]

Has a linear convergence rate: O(log(1/ε)) iterations required.
But each iteration requires log p(yi |xi ,w) for all n examples.

To scale to large n, we looked at stochastic gradient methods.
[Vishwanathan et al., 2006]

Iteration cost is independent of n.
But has a sub linear convergence rate: O(1/ε) iterations required.
Or with constant step-size you get linear rate up to fixed tolerance.

These remain the strategies used by most implementations.

Many packages implement both strategies.
My codes still use L-BFGS because it’s easier to tune.



Current Optimization Methods

Lafferty et al. [2001] proposed an iterative scaling approach.

Outperformed by L-BFGS quasi-Newton algorithm.
[Wallach, 2002, Sha Pereira, 2003]

Has a linear convergence rate: O(log(1/ε)) iterations required.
But each iteration requires log p(yi |xi ,w) for all n examples.

To scale to large n, we looked at stochastic gradient methods.
[Vishwanathan et al., 2006]

Iteration cost is independent of n.

But has a sub linear convergence rate: O(1/ε) iterations required.
Or with constant step-size you get linear rate up to fixed tolerance.

These remain the strategies used by most implementations.

Many packages implement both strategies.
My codes still use L-BFGS because it’s easier to tune.



Current Optimization Methods

Lafferty et al. [2001] proposed an iterative scaling approach.

Outperformed by L-BFGS quasi-Newton algorithm.
[Wallach, 2002, Sha Pereira, 2003]

Has a linear convergence rate: O(log(1/ε)) iterations required.
But each iteration requires log p(yi |xi ,w) for all n examples.

To scale to large n, we looked at stochastic gradient methods.
[Vishwanathan et al., 2006]

Iteration cost is independent of n.
But has a sub linear convergence rate: O(1/ε) iterations required.
Or with constant step-size you get linear rate up to fixed tolerance.

These remain the strategies used by most implementations.

Many packages implement both strategies.
My codes still use L-BFGS because it’s easier to tune.



Current Optimization Methods

Lafferty et al. [2001] proposed an iterative scaling approach.

Outperformed by L-BFGS quasi-Newton algorithm.
[Wallach, 2002, Sha Pereira, 2003]

Has a linear convergence rate: O(log(1/ε)) iterations required.
But each iteration requires log p(yi |xi ,w) for all n examples.

To scale to large n, we looked at stochastic gradient methods.
[Vishwanathan et al., 2006]

Iteration cost is independent of n.
But has a sub linear convergence rate: O(1/ε) iterations required.
Or with constant step-size you get linear rate up to fixed tolerance.

These remain the strategies used by most implementations.

Many packages implement both strategies.
My codes still use L-BFGS because it’s easier to tune.



L-BFGS vs. Stochastic Gradient

L-BFGS has fast convergence but slow iterations.

SG (decreasing α) has slow convergence but fast iterations.

SG (constant α) has fast convergence but not to optimal.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104 L-BFGS

Pegasos

SG

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

L-BFGS

Pegasos

SG

(Using αt = α/(δ +
√

t) gives intermediate performance.)

Can we develop a method that outperforms these methods?



L-BFGS vs. Stochastic Gradient

L-BFGS has fast convergence but slow iterations.

SG (decreasing α) has slow convergence but fast iterations.

SG (constant α) has fast convergence but not to optimal.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104 L-BFGS

Pegasos

SG

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

L-BFGS

Pegasos

SG

(Using αt = α/(δ +
√

t) gives intermediate performance.)

Can we develop a method that outperforms these methods?



Better Stochastic Gradient Methods?

2007: summer project with Kevin Swersky on improving SG.

ASG: averaged stochastic gradient with large step-sizes.
[Polyak & Juditsky, 1992, Bach & Moulines, 2011]

Typically outperform non-averaged SG, doesn’t always beat L-BFGS.

Rejected NIPS paper.

2010: methods with improved regret.
AdaGrad: adaptive diagonal scaling. [Duchi et al., 2010]

Often improves performance over basic stochastic gradient.
Still has O(1/ε) rate and typically outperformed by ASG.



Better Stochastic Gradient Methods?

2007: summer project with Kevin Swersky on improving SG.

ASG: averaged stochastic gradient with large step-sizes.
[Polyak & Juditsky, 1992, Bach & Moulines, 2011]

Typically outperform non-averaged SG, doesn’t always beat L-BFGS.

Rejected NIPS paper.

2010: methods with improved regret.
AdaGrad: adaptive diagonal scaling. [Duchi et al., 2010]

Often improves performance over basic stochastic gradient.
Still has O(1/ε) rate and typically outperformed by ASG.



Comparison of Stochastic Gradient Methods

Comparison of Pegasos, SG, ASG, and AdaGrad:

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104 SG

AdaGradASG

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

SG

AdaGradASG

(Averaging did not improve performance of Pegasos. )

ASG often outperforms SG and AdaGrad.



Motivation for New Methods

2008: proposed to explore hybrid methods in my PhD proposal:

Also rejected! “Too hard, focus on existing projects”.



Motivation for New Methods

Deterministic methods requires O(log(1/ε)) with O(N).

Stochastic methods requires O(1/ε) iterations with O(1).

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Can we develop a method that outperforms both?



Motivation for New Methods

Deterministic methods requires O(log(1/ε)) with O(N).

Stochastic methods requires O(1/ε) iterations with O(1).

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time

Can we develop a method that outperforms both?



Comparison of L-BFGS Methods

2010: Hybrid of L-BFGS and stochastic gradient.
[Frielander & Schmidt, 2012]

Key idea: control variance of gradient by growing batch size.
O(log(1/ε)) rate but cheaper in early iterations.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104

L-BFGS

Hybrid

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105
L-BFGSHybrid

Hybrid often outperforms L-BFGS, but not by very much.



Motivation for New Methods

Deterministic methods requires O(log(1/ε)) with O(N).

Stochastic methods requires O(1/ε) iterations with O(1).

Can we have O(1) cost and only O(log(1/ε)) iterations?



Motivation for New Methods

Deterministic methods requires O(log(1/ε)) with O(N).

Stochastic methods requires O(1/ε) iterations with O(1).

Can we have O(1) cost and only O(log(1/ε)) iterations?



Online Exponentiated Gradient

OEG: online exponentiated gradient.
[Collin et al., 2008]

O(log(1/ε)) iterations for dual problem with O(1) cost.
In theory, the rate of deterministic with the cost of stochastic.

Sometimes great and sometimes poor performance.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104
ASG

Hybrid

O
EG

4

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

ASG

Hybrid
OEG4

Best of hybrid vs. ASG vs. OEG is problem dependent.

Fancier methods do not give consistent/significant improvement.



Online Exponentiated Gradient

OEG: online exponentiated gradient.
[Collin et al., 2008]

O(log(1/ε)) iterations for dual problem with O(1) cost.
In theory, the rate of deterministic with the cost of stochastic.
Sometimes great and sometimes poor performance.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104
ASG

Hybrid

O
EG

4

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

ASG

Hybrid
OEG4

Best of hybrid vs. ASG vs. OEG is problem dependent.

Fancier methods do not give consistent/significant improvement.



A New Hope: Linearly-Convergent Stochastic Gradient

Recent new stochastic algorithms for minimizing finite sums,

min
w

f (w) =
1
n

n∑
i=1

fi(x),

requiring O(log(1/ε)) iterations with O(1) cost.

Stochastic average gradient (SAG): [Le Roux et al., 2012]

w t+1 = w t − α

n

n∑
i=1

st
i ,

where iteration sets st
i = ∇fi(x t) for random i (o.w., st

i = st−1
i ).

Similar rate to full gradient but iterations are n times cheaper.

Unlike EG, adaptive to strong-convexity.



A New Hope: Linearly-Convergent Stochastic Gradient

Recent new stochastic algorithms for minimizing finite sums,

min
w

f (w) =
1
n

n∑
i=1

fi(x),

requiring O(log(1/ε)) iterations with O(1) cost.

Stochastic average gradient (SAG): [Le Roux et al., 2012]

w t+1 = w t − α

n

n∑
i=1

st
i ,

where iteration sets st
i = ∇fi(x t) for random i (o.w., st

i = st−1
i ).

Similar rate to full gradient but iterations are n times cheaper.

Unlike EG, adaptive to strong-convexity.



A New Hope: Linearly-Convergent Stochastic Gradient

Recent new stochastic algorithms for minimizing finite sums,

min
w

f (w) =
1
n

n∑
i=1

fi(x),

requiring O(log(1/ε)) iterations with O(1) cost.

Stochastic average gradient (SAG): [Le Roux et al., 2012]

w t+1 = w t − α

n

n∑
i=1

st
i ,

where iteration sets st
i = ∇fi(x t) for random i (o.w., st

i = st−1
i ).

Similar rate to full gradient but iterations are n times cheaper.

Unlike EG, adaptive to strong-convexity.



A New Hope: Linearly-Convergent Stochastic Gradient

Recent new stochastic algorithms for minimizing finite sums,

min
w

f (w) =
1
n

n∑
i=1

fi(x),

requiring O(log(1/ε)) iterations with O(1) cost.

Stochastic average gradient (SAG): [Le Roux et al., 2012]

w t+1 = w t − α

n

n∑
i=1

st
i ,

where iteration sets st
i = ∇fi(x t) for random i (o.w., st

i = st−1
i ).

Similar rate to full gradient but iterations are n times cheaper.

Unlike EG, adaptive to strong-convexity.



Comparison of Convergence Rates

Number of iterations to reach an accuracy of ε:

Deterministic: O(n
√

L
µ log(1/ε)) (primal)

Stochastic O(σ
2

µε +
√

L
µ log(1/ε)) (primal)

Dual stochastic EG O((n + L
λ ) log(1/ε)) (dual)

SAG O((n + L
µ ) log(1/ε)) (primal)

Similar to deterministic methods, SAG can adapt to problem:

SAG automatically adapts to local µ at solution.

Practical implementations try to automatically adapt to L, too.
Strong empirical performance for independent classification.



Comparison of Convergence Rates

Number of iterations to reach an accuracy of ε:

Deterministic: O(n
√

L
µ log(1/ε)) (primal)

Stochastic O(σ
2

µε +
√

L
µ log(1/ε)) (primal)

Dual stochastic EG O((n + L
λ ) log(1/ε)) (dual)

SAG O((n + L
µ ) log(1/ε)) (primal)

Similar to deterministic methods, SAG can adapt to problem:

SAG automatically adapts to local µ at solution.

Practical implementations try to automatically adapt to L, too.
Strong empirical performance for independent classification.



SAG for Logistic Regression

Performance on logistic regression problems:

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

SAG starts fast and stays fast.



Addressing the Memory Requirements

Could this algorithm consistently outperform old CRF methods?

First, we need to address that SAG requires storing n gradients,

st
i = λwk −∇ log p(yi |xi ,wk ),

for some previous k , which do not have a nice structure.

We could use SVRG/mixedGrad:
[Johnson & Zhang, 2013, Mahdavi et al, 2013, ]

Similar convergence rate but without memory requirement.
But requires extra evaluations of ∇ log p(yi |xi ,w t) per iteration.



Addressing the Memory Requirements

Could this algorithm consistently outperform old CRF methods?

First, we need to address that SAG requires storing n gradients,

st
i = λwk −∇ log p(yi |xi ,wk ),

for some previous k , which do not have a nice structure.

We could use SVRG/mixedGrad:
[Johnson & Zhang, 2013, Mahdavi et al, 2013, ]

Similar convergence rate but without memory requirement.
But requires extra evaluations of ∇ log p(yi |xi ,w t) per iteration.



Addressing the Memory Requirements

Could this algorithm consistently outperform old CRF methods?

First, we need to address that SAG requires storing n gradients,

st
i = λwk −∇ log p(yi |xi ,wk ),

for some previous k , which do not have a nice structure.

We could use SVRG/mixedGrad:
[Johnson & Zhang, 2013, Mahdavi et al, 2013, ]

Similar convergence rate but without memory requirement.

But requires extra evaluations of ∇ log p(yi |xi ,w t) per iteration.



Addressing the Memory Requirements

Could this algorithm consistently outperform old CRF methods?

First, we need to address that SAG requires storing n gradients,

st
i = λwk −∇ log p(yi |xi ,wk ),

for some previous k , which do not have a nice structure.

We could use SVRG/mixedGrad:
[Johnson & Zhang, 2013, Mahdavi et al, 2013, ]

Similar convergence rate but without memory requirement.
But requires extra evaluations of ∇ log p(yi |xi ,w t) per iteration.



Addressing the Memory Requirements

The deterministic gradient update can be written:

w t+1 = w t − αλw t +
α

n

n∑
i=1

∇ log p(yi |xi ,w t).

The SAG update:

w t+1 = w t − α

n

n∑
i=1

st
i ,

where st
i = λwk −∇ log p(yi |xi ,wk ) for some previous k .

A modified update where we don’t approximate the regularizer:

w t+1 = w t − αλw t − α

n

n∑
i=1

gt
i ,

where gt
i = −∇ log p(yi |xi ,wk ) for some previous k .

The gt
i have a nice structure, and regularizer update is efficient.



Addressing the Memory Requirements

The deterministic gradient update can be written:

w t+1 = w t − αλw t +
α

n

n∑
i=1

∇ log p(yi |xi ,w t).

The SAG update:

w t+1 = w t − α

n

n∑
i=1

st
i ,

where st
i = λwk −∇ log p(yi |xi ,wk ) for some previous k .

A modified update where we don’t approximate the regularizer:

w t+1 = w t − αλw t − α

n

n∑
i=1

gt
i ,

where gt
i = −∇ log p(yi |xi ,wk ) for some previous k .

The gt
i have a nice structure, and regularizer update is efficient.



Addressing the Memory Requirements

The deterministic gradient update can be written:

w t+1 = w t − αλw t +
α

n

n∑
i=1

∇ log p(yi |xi ,w t).

The SAG update:

w t+1 = w t − α

n

n∑
i=1

st
i ,

where st
i = λwk −∇ log p(yi |xi ,wk ) for some previous k .

A modified update where we don’t approximate the regularizer:

w t+1 = w t − αλw t − α

n

n∑
i=1

gt
i ,

where gt
i = −∇ log p(yi |xi ,wk ) for some previous k .

The gt
i have a nice structure, and regularizer update is efficient.



Addressing the Memory Requirements

The deterministic gradient update can be written:

w t+1 = w t − αλw t +
α

n

n∑
i=1

∇ log p(yi |xi ,w t).

The SAG update:

w t+1 = w t − α

n

n∑
i=1

st
i ,

where st
i = λwk −∇ log p(yi |xi ,wk ) for some previous k .

A modified update where we don’t approximate the regularizer:

w t+1 = w t − αλw t − α

n

n∑
i=1

gt
i ,

where gt
i = −∇ log p(yi |xi ,wk ) for some previous k .

The gt
i have a nice structure, and regularizer update is efficient.



Addressing the Memory Requirements

Consider a chain-structured CRF model of the form

p(y |x ,w) ∝ exp

 V∑
j=1

xT
j wyj +

V−1∑
j=1

wyj ,yj+1

 .

The gradient with respect to a particular vector wk is

∇wk log p(y |x ,w) =
V∑

j=1

xj
[
I(yj = k)− p(yj = k |x ,w)

]
.

The modified SAG algorithm needs to update the sum,

n∑
i=1

gt+1
i =

n∑
i=1

[gt
i ] + gt+1

i − gt
i .

To do this, we only need to store the unary marginals.

General pairwise graphical models require O(VK + EK 2).

Unlike basic SAG, no dependence on number of features.



Addressing the Memory Requirements

Consider a chain-structured CRF model of the form

p(y |x ,w) ∝ exp

 V∑
j=1

xT
j wyj +

V−1∑
j=1

wyj ,yj+1

 .

The gradient with respect to a particular vector wk is

∇wk log p(y |x ,w) =
V∑

j=1

xj
[
I(yj = k)− p(yj = k |x ,w)

]
.

The modified SAG algorithm needs to update the sum,

n∑
i=1

gt+1
i =

n∑
i=1

[gt
i ] + gt+1

i − gt
i .

To do this, we only need to store the unary marginals.

General pairwise graphical models require O(VK + EK 2).

Unlike basic SAG, no dependence on number of features.



Addressing the Memory Requirements

Consider a chain-structured CRF model of the form

p(y |x ,w) ∝ exp

 V∑
j=1

xT
j wyj +

V−1∑
j=1

wyj ,yj+1

 .

The gradient with respect to a particular vector wk is

∇wk log p(y |x ,w) =
V∑

j=1

xj
[
I(yj = k)− p(yj = k |x ,w)

]
.

The modified SAG algorithm needs to update the sum,

n∑
i=1

gt+1
i =

n∑
i=1

[gt
i ] + gt+1

i − gt
i .

To do this, we only need to store the unary marginals.

General pairwise graphical models require O(VK + EK 2).

Unlike basic SAG, no dependence on number of features.



Addressing the Memory Requirements

Consider a chain-structured CRF model of the form

p(y |x ,w) ∝ exp

 V∑
j=1

xT
j wyj +

V−1∑
j=1

wyj ,yj+1

 .

The gradient with respect to a particular vector wk is

∇wk log p(y |x ,w) =
V∑

j=1

xj
[
I(yj = k)− p(yj = k |x ,w)

]
.

The modified SAG algorithm needs to update the sum,

n∑
i=1

gt+1
i =

n∑
i=1

[gt
i ] + gt+1

i − gt
i .

To do this, we only need to store the unary marginals.

General pairwise graphical models require O(VK + EK 2).

Unlike basic SAG, no dependence on number of features.



Addressing the Memory Requirements

Consider a chain-structured CRF model of the form

p(y |x ,w) ∝ exp

 V∑
j=1

xT
j wyj +

V−1∑
j=1

wyj ,yj+1

 .

The gradient with respect to a particular vector wk is

∇wk log p(y |x ,w) =
V∑

j=1

xj
[
I(yj = k)− p(yj = k |x ,w)

]
.

The modified SAG algorithm needs to update the sum,

n∑
i=1

gt+1
i =

n∑
i=1

[gt
i ] + gt+1

i − gt
i .

To do this, we only need to store the unary marginals.

General pairwise graphical models require O(VK + EK 2).

Unlike basic SAG, no dependence on number of features.



Practical issues: setting the step size and stopping

Traditional sources of frustration for stochastic gradient users:

1 Need to choose between slow convergence or oscillations.

2 Setting the sequence of step-sizes.

3 Deciding when to stop.

These are easier to address in methods like SAG:

1 Faster convergence rates.

2 Allow a constant step-size (α = 1/L).

3 Approximate the full gradient for deciding when to stop.



Practical issues: setting the step size and stopping

Traditional sources of frustration for stochastic gradient users:

1 Need to choose between slow convergence or oscillations.

2 Setting the sequence of step-sizes.

3 Deciding when to stop.

These are easier to address in methods like SAG:

1 Faster convergence rates.

2 Allow a constant step-size (α = 1/L).

3 Approximate the full gradient for deciding when to stop.



Practical issues: setting the step size and stopping

No manual step-size tuning, we approximate L as we go:

Start with L = 1.

If ‖f ′i (x)‖2 ≥ δ, increase L until we satisfy:

fi(x −
1
L

f ′i (x)) ≤ f ′i (x)−
1

2L
‖f ′i (x)‖2.

(Lipschitz approximation procedure from FISTA)

Decrease L between iterations.
(makes algorithm adaptive to local L)

Performance is better than using 1/L for global L.

Similar to choosing the optimal step-size.



Practical issues: setting the step size and stopping

No manual step-size tuning, we approximate L as we go:

Start with L = 1.

If ‖f ′i (x)‖2 ≥ δ, increase L until we satisfy:

fi(x −
1
L

f ′i (x)) ≤ f ′i (x)−
1

2L
‖f ′i (x)‖2.

(Lipschitz approximation procedure from FISTA)

Decrease L between iterations.
(makes algorithm adaptive to local L)

Performance is better than using 1/L for global L.

Similar to choosing the optimal step-size.



Practical issues: setting the step size and stopping

No manual step-size tuning, we approximate L as we go:

Start with L = 1.

If ‖f ′i (x)‖2 ≥ δ, increase L until we satisfy:

fi(x −
1
L

f ′i (x)) ≤ f ′i (x)−
1

2L
‖f ′i (x)‖2.

(Lipschitz approximation procedure from FISTA)

Decrease L between iterations.
(makes algorithm adaptive to local L)

Performance is better than using 1/L for global L.

Similar to choosing the optimal step-size.



Practical issues: setting the step size and stopping

No manual step-size tuning, we approximate L as we go:

Start with L = 1.

If ‖f ′i (x)‖2 ≥ δ, increase L until we satisfy:

fi(x −
1
L

f ′i (x)) ≤ f ′i (x)−
1

2L
‖f ′i (x)‖2.

(Lipschitz approximation procedure from FISTA)

Decrease L between iterations.
(makes algorithm adaptive to local L)

Performance is better than using 1/L for global L.

Similar to choosing the optimal step-size.



Comparison of SAG to existing methods

Comparison of SAG and state of the art methods.

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104 L-BFGS

Pegasos

SGAdaGradASG

Hybrid

O
EG

4

SMDSAG

0 20 40 60 80 100
O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

L-BFGS

Pegasos

SGAdaGradASG

Hybrid OEG4

SMD

SAG

Sometimes better and sometimes worse than existing methods.

Have we really made so little progress???



Non-Uniform Sampling (NUS)

Maybe random sampling is too naive?

Can we instead do non-uniform sampling?

Sample some training examples more often than others.

Key idea:

Bias sampling towards examples whose gradients change quicky.
“If the gradient changes slowly, don’t sample it as often”.

Implemented by biasing sampling towards Lipschitz constants:

High Lipschitz constant → gradient can change quickly.



Non-Uniform Sampling (NUS)

Maybe random sampling is too naive?

Can we instead do non-uniform sampling?

Sample some training examples more often than others.

Key idea:

Bias sampling towards examples whose gradients change quicky.
“If the gradient changes slowly, don’t sample it as often”.

Implemented by biasing sampling towards Lipschitz constants:

High Lipschitz constant → gradient can change quickly.



Non-Uniform Sampling (NUS)

Maybe random sampling is too naive?

Can we instead do non-uniform sampling?

Sample some training examples more often than others.

Key idea:

Bias sampling towards examples whose gradients change quicky.
“If the gradient changes slowly, don’t sample it as often”.

Implemented by biasing sampling towards Lipschitz constants:

High Lipschitz constant → gradient can change quickly.



Non-Uniform Sampling (NUS)

Recent works show this improves various methods:

[Strohmer & Vershynin, 2009, Nesterov, 2010, Schmidt et al, 2013,
Xiao & Zhang, 2014, Needell et al., 2014].

Does SAG converge with NUS?

Not known, and seems hard to prove.

We instead analyzed the SAGA variant with NUS.
[Defazio et al., 2014]

Proved O(log(1/ε)) rate for any reasonable NUS method.
Proved that rate is faster with Lipschitz sampling.



Non-Uniform Sampling (NUS)

Recent works show this improves various methods:

[Strohmer & Vershynin, 2009, Nesterov, 2010, Schmidt et al, 2013,
Xiao & Zhang, 2014, Needell et al., 2014].

Does SAG converge with NUS?

Not known, and seems hard to prove.

We instead analyzed the SAGA variant with NUS.
[Defazio et al., 2014]

Proved O(log(1/ε)) rate for any reasonable NUS method.
Proved that rate is faster with Lipschitz sampling.



Non-Uniform Sampling (NUS)

Recent works show this improves various methods:

[Strohmer & Vershynin, 2009, Nesterov, 2010, Schmidt et al, 2013,
Xiao & Zhang, 2014, Needell et al., 2014].

Does SAG converge with NUS?

Not known, and seems hard to prove.

We instead analyzed the SAGA variant with NUS.
[Defazio et al., 2014]

Proved O(log(1/ε)) rate for any reasonable NUS method.
Proved that rate is faster with Lipschitz sampling.



Adaptive Non-Uniform Sampling

Still not practical.

Global Lipschitz constants are hard to get.
Even if you have them, it doesn’t help much.

But it works better if you try to estimate local Lipschitz constant:

We estimate each Li using similar Lipschitz approximation method.
Adapts to the local distribution of Li at the solution.

Why should the local Li values work?

For correctly-classified examples, Li is near zero.
Algorithm focuses on incorrectly-classified examples.



Adaptive Non-Uniform Sampling

Still not practical.

Global Lipschitz constants are hard to get.
Even if you have them, it doesn’t help much.

But it works better if you try to estimate local Lipschitz constant:

We estimate each Li using similar Lipschitz approximation method.
Adapts to the local distribution of Li at the solution.

Why should the local Li values work?

For correctly-classified examples, Li is near zero.
Algorithm focuses on incorrectly-classified examples.



Adaptive Non-Uniform Sampling

Still not practical.

Global Lipschitz constants are hard to get.
Even if you have them, it doesn’t help much.

But it works better if you try to estimate local Lipschitz constant:

We estimate each Li using similar Lipschitz approximation method.
Adapts to the local distribution of Li at the solution.

Why should the local Li values work?

For correctly-classified examples, Li is near zero.
Algorithm focuses on incorrectly-classified examples.



Comparison of SAG-NUS to existing methods

Comparison of SAG with NUS to existing methods:

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-4

10-2

100

102

104 L-BFGS

Pegasos

SGAdaGradASG

Hybrid

SAG

SAG-NUS*

O
EG

4

SMD

0 20 40 60 80 100

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
a
l

10-5

100

105

L-BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG-NUS*

OEG4

SMD

(NUS did not improve performance of SG.)

Similar or significantly better than best of previous methods.



Comparison of SAG-NUS to existing methods

Test error:

0 20 40 60 80 100

T
e
s
t
 
e
r
r
o
r

0.04

0.045

0.05

0.055

L-BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG-NUS*

OEG4

SMD

0 20 40 60 80 100

T
e
s
t
 
e
r
r
o
r

0.024

0.026

0.028

0.03

0.032

0.034
L-BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG-NUS*

OEG4

SMD

(NUS did not improve performance of SG.)



Discussion

We explored applying SAG to train CRFs.

With a few modifications, the memory issue is not an issue.
Allows adaptive step-size and has a stopping criterion.
With NUS, substantially improves on state of the art.
SAG4CRF code available on my webpage.

Various extensions are possible:

Could use non-smooth regularizers via proximal/ADMM versions.
Faster methods may be possible via acceleration/Newton.
Method should work with approximate inference.
For conditional neural fields and variants like FCNs+CRFs:

Need SVRG to deal with the memory.



Discussion

We explored applying SAG to train CRFs.

With a few modifications, the memory issue is not an issue.
Allows adaptive step-size and has a stopping criterion.
With NUS, substantially improves on state of the art.
SAG4CRF code available on my webpage.

Various extensions are possible:

Could use non-smooth regularizers via proximal/ADMM versions.
Faster methods may be possible via acceleration/Newton.
Method should work with approximate inference.
For conditional neural fields and variants like FCNs+CRFs:

Need SVRG to deal with the memory.


