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Algorithm S vs. Algorithm D
Hybrid Methods

Algorithm S vs. Algorithm D: Error vs. Iteration

Should we use Algorithm S or Algorithm D?

On iteration k, Algorithm S has an error of 1/k.
On iteration k, Algorithm D has an error of 1/2k .
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Algorithm S vs. Algorithm D: Error vs. Time

But, the error is not the whole story:

Iterations of Algorithm S are cheap.
Iterations of Algorithm D are expensive.
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Motivation for Hybrid Methods

Stochastic vs. Deterministic:

Stochastic makes great progress initially, but slows down.

Determinstic makes steady progress, but is expensive.

Can a hybrid method get the best of both worlds?
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Simple Hybrid Method

Simple hybrid method [Cauchy, 1847]:

Start out running the low cost method.
At some point switch to the low error method.
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Better Hybrid Methods?

The question underlying our work:

Can a hybrid method do better than both?

The basic idea:

Start out running the low cost method.

Gradually switch to the low error method,
keeping the global convergence rate.
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Problem Formulation

We want to minimize a once-differentiable function f (x),

min
x∈Rp

f (x).

We assume that f (x) is strongly convex.

We assume that ∇f (x) is Lipschitz-continuous.

For twice-differentiable functions, these are equivalent to

µI � ∇2f (x) � LI ,

for some µ > 0 and some L ≥ µ.
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Deterministic Algorithm Convergence Rate

Consider the deterministic gradient descent algorithm:

xk+1 = xk − αk∇f (xk).

This algorithm has a strong linear convergence rate,

f (xk)− f (x∗) ≤ (1− µ/L)k [f (x0)− f (x∗)].

But, it uses the exact gradient on each iteration.
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Stochastic Algorithm Convergence Rate

Now consider the stochastic gradient descent algorithm:

xk+1 = xk − αkg(xk).

Here, g(xk) is an approximate gradient,

g(xk) = ∇f (xk) + ek .

The (random) error ek must be zero-mean, finite-variance.

This might be much cheaper to compute.

But, it leads to a weak sublinear convergence rate,

E[f (xk)− f (x∗)] = O(1/k).
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Hybrid Algorithm: Bounded Error

The hybrid gradient descent algorithm:

xk+1 = xk − αkg(xk), where g(xk) = ∇f (xk) + ek .

We do not assume the error ek is zero-mean (or random).

Instead we assume we can bound the error size,

||ek ||2 ≤ Bk .

Can we achieve a strong linear convergence rate?
(without requiring Bk = 0?)
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Hybrid Algorithm Strong Linear Convergence Rate

We get the strong linear convergence rate,

f (xk)− f (x∗) ≤ (1− ρ)k [f (x0)− f (x∗)].

if the errors satisfy

||ek ||2 ≤ 2L(µ/L− ρ)[f (xk)− f (x∗)],

Error can be large if you are far from the solution.

Classic deterministic rate is the special case that ρ = µ/L.

For ρ < µ/L, this never requires the exact gradient.
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Hybrid Algorithm Weak Linear Convergence Rate

What if we don’t know µ, L, f (x∗), or f (xk)?

If the errors satisfy
||ek ||2 ≤ O(γk),

then the algorithm has a weak linear convergence rate,

f (xk)− f (x∗) = O(σk),

for all σ > max{1− µ/L, γ}.
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Hybrid Algorithm Expected Weak Linear Rate

What if we can only bound ek in expectation?

If the errors satisfy
E[||ek ||2] ≤ O(γk),

then the algorithm has an expected weak linear convergence rate,

E[f (xk)− f (x∗)] = O(σk),

for all σ > max{γ, 1− µ/L}.
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Hybrid Algorithm Expected Weak Sublinear Rate

What if we can’t geometrically decrease the error?

If the errors satisfy

E[||ek ||2] ≤ O(1/kγ),

then the algorithm has an expected weak sublinear rate,

E[f (xk)− f (x∗)] = O(1/kγ).

Rough summary:

the algorithm converges at the same rate as the errors
(up to the speed of the deterministic algorithm).
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Extensions and Future Work

We have generalized our analysis to a variety of scenarios:

Newton-like scaling of the gradient (next section)

Convex (but not necessarily strongly convex) objectives.

Accelerated-gradient methods (faster rates of convergence).

Projected-gradient methods (constrained optimization).

Proximal-gradient methods (non-smooth optimization).

There remain several other directions to explore:

Mirror descent methods.

Concentration bounds, quasi-random sampling.

Other applications where the gradient is measured with error.
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Application: Incremental Gradient Methods

Many data fitting applications lead to problems of the form

min
x

1

M

M∑
i=1

fi (x).

(i.e. maximum likelihood estimation from i.i.d. data)

If M is very large, exact gradient calculation may be expensive.

It is common to use a mini-batch gradient approximation

g(xk) =
1

|Bk |
∑
i∈Bk

∇fi (x
k).

With a fixed batch size, the convergence rate is sublinear.

We can pick the batch sizes |Bk | to achieve a linear rate.
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Incremental Gradient Method Error Bounds

Under standard assumptions on the ∇fi (x), we obtain

f (xk)− f (x∗) = O(σk),

for all σ > max{1− µ/L, γ} by choosing |Bk | to satisfy

|Bk | = M − O(γk/2).

The error decreases at twice the rate the batch size increases.

This holds for any sampling without replacement scheme
(but bound is better in expectation for uniform sampling).

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Deterministic vs. Stochastic Optimization
Convergence Rates of Gradient Methods

Practical Issues and Application
Other Projects and Summary

Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Incremental Gradient Method Error Bounds

Under standard assumptions on the ∇fi (x), we obtain

f (xk)− f (x∗) = O(σk),

for all σ > max{1− µ/L, γ} by choosing |Bk | to satisfy

|Bk | = M − O(γk/2).

The error decreases at twice the rate the batch size increases.

This holds for any sampling without replacement scheme
(but bound is better in expectation for uniform sampling).

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Deterministic vs. Stochastic Optimization
Convergence Rates of Gradient Methods

Practical Issues and Application
Other Projects and Summary

Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Incremental Gradient Method Error Bounds

Under standard assumptions on the ∇fi (x), we obtain

f (xk)− f (x∗) = O(σk),

for all σ > max{1− µ/L, γ} by choosing |Bk | to satisfy

|Bk | = M − O(γk/2).

The error decreases at twice the rate the batch size increases.

This holds for any sampling without replacement scheme
(but bound is better in expectation for uniform sampling).

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Deterministic vs. Stochastic Optimization
Convergence Rates of Gradient Methods

Practical Issues and Application
Other Projects and Summary

Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Improved Rates with Newton-like Scaling

The algorithm may converge slowly if µ/L is small.

We can also analyze a Newton-like algorithm

xk+1 = xk + αkdk ,

where dk is the solution of

Hkdk = −g(xk).

We can then show rates using a modified µ and L based on
the Hessian approximation Hk .

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Deterministic vs. Stochastic Optimization
Convergence Rates of Gradient Methods

Practical Issues and Application
Other Projects and Summary

Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Improved Rates with Newton-like Scaling

The algorithm may converge slowly if µ/L is small.

We can also analyze a Newton-like algorithm

xk+1 = xk + αkdk ,

where dk is the solution of

Hkdk = −g(xk).

We can then show rates using a modified µ and L based on
the Hessian approximation Hk .

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Deterministic vs. Stochastic Optimization
Convergence Rates of Gradient Methods

Practical Issues and Application
Other Projects and Summary

Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Quasi-Newton Scaling and Heuristic Line Search

In our implementation, we use the L-BFGS quasi-Newton
Hessian approximation.

To choose the step size, we use the Armijo condition

f̄ (xk + αkdk) < f̄ (xk) + ηαg(xk)Tdk ,

on the sampled objective

f̄ (xk) =
1

|Bk |
∑
i∈Bk

fi (xk).

By increasing the batch size this eventually reduces to a
conventional line-search quasi-Newton method, inheriting the
global and local convergence guarantees of this method.
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Numerical Evaluation

We performed experiments comparing three algorithms:

Deterministic: Conventional L-BFGS quasi-Newton method.

Stochastic: Constant step-size stochastic gradient descent.

Hybrid: An L-BFGS quasi-Newton method with batch size

|Bk+1| = dmin{1.1 · |Bk |+ 1,M}e.

We trained conditional random fields (CRFs) on:

The CoNLL-2000 noun-phrase chunking shared task
(chain-structure).

A binary image-denoising problem (lattice-structure).
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:
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(a) original image (b) noisy image

(c) (d) (e)

(f) (g) (h)

Fig. 5.5. Top row: original (a) and noisy (b) image. Second row: marginals after 2 passes
through the data for deterministic (c), stochastic (d), and hybrid (e). Third row: marginals after 5
passes through the data for deterministic (f), stochastic (g), and hybrid (h).

Our experiments on general CRFs are based on the image-denoising experiments
described by Kumar and Hebert [12]. We use their set of 50 synthetic 64-by-64 images.
Figure 5.4 shows the performance of the different methods with a regularization
parameter of λ = 1. Figure 5.5 illustrates the marginal probabilities for the different
methods at various points in the optimization for a randomly-chosen image in the
data set. (For the stochastic method, we plot the result with a step size of α = 10−4.)
To approximate these marginals, we use the loopy belief propagation message-passing
algorithm [5, §8.4.7]. In these plots we see that the deterministic method does poorly
even after two full passes through the data set, while the stochastic and hybrid methods
do much better. After five passes through the data set, the hybrid method has found
a solution that is visually nearly indistinguishable from the true solution, while it is
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Optimization Costly Functions with Simple Constrains

We often have optimization problems with 3 complicating factors:

1 the number of parameters is large.

2 evaluating the objective is expensive.

3 the parameters have constraints.

But, the constraints are simple.
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Optimization Costly Functions with Simple Constrains

We give a limited-memory inexact projected quasi-Newton
algorithm for optimizing costly functions with simple constraints.
[Schmidt, van den Berg, Friedlander, Murphy, 2009].

Feasible Set

f(x)

q(x)

minx!C q(x)

P(xk - gk)
dk
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Optimization Costly Functions with Simple Constrains

Comparison of optimizers for fitting Gaussian graphical models
with `1-regularization:
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Group Sparse Priors for Covariance Estimation

There has been work on group `1-regularization for structure
learning in Gaussian graphical models with variable types:

What if we don’t know the variable types?

We give bounds on integrals of priors over positive-definite
matrices, and a variational method that learns the types.
[Marlin, Schmidt, Murphy, 2009]
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Group Sparse Priors for Covariance Estimation

Learned variable types on mutual fund data:
[Scott & Carvalho, 2008]

The methods discover the ‘stocks’ and ‘bonds’ groups.
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Causality: Modeling Interventions

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

If I see that my watch says 11:55, then it’s almost lunch time
If I set my watch so it says 11:55, it doesn’t help

Without knowing the difference, predictions may be useless.

Methods that model interventions are typically called causal.
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Causality: Modeling Interventions

Interventional Cell Signaling Data [Sachs et al., 2005]
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Causality: Modeling Interventions

Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.

For real data, the structure may not be known, or even a DAG.

Why not evaluate causal models in terms of modeling the
effects of interventions?

Given this task, there are a variety of approaches to causality.
[Eaton & Murphy, 2007]
[Schmidt & Murphy, 2009]
[Duvenaud, Eaton, Murphy, Schmidt, 2010]
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Causality: Modeling Interventions

Interventional Cell Signaling Data [Sachs et al., 2005]:
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Convex Structure Learning with Higher-Order Potentials

Several authors have recently examined structure learning in
graphical models with `1-regularization.

Almost all of this work focuses on pairwise models.

This is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

We give one way to go beyond pairwise potentials.
[Schmidt & Murphy, 2010]
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Convex Structure Learning with Higher-Order Potentials

We focus on the special case of hierarchical models.

We give a convex formulation that uses overlapping group
`1-regularization to enforce the hierarchy.

A heuristic hierarchical search allows us to tractably search
the exponential number of possible higher-order potentials.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5
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Convex Structure Learning with Higher-Order Potentials

Results on traffic flow data.
[Krause & Guestrin, 2005, Shahaf et al., 2009]
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Generalized α-Expansions for Energy Minimization

αβ-swaps and α-expansions are two minimum-cut methods
for approximate MAP estimation in ‘metric’ graphical models.

These both ‘dominate’ the classic ICM algorithm.

But, neither dominates the other.

We present a generalization of both moves that:

Dominates them both
Is still solvable in polynomial time.
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Generalized α-Expansions for Energy Minimization

Example of α-expansion β-shrink move [Schmidt & Alahari, 2011]:
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βγ
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Generalized α-Expansions for Energy Minimization

Relative energy of local minima with respect to different moves.

Name αβ-Swap α-Expansion New Moves

Family 1.0203 1 0.9998
Pano 1.3182 1 1
Tsukuba 1.0315 1 1.0000
Venus 1.8561 1 0.9968
Teddy 1.0037 1 0.9999
Penguin 1.1283 1 0.9758
House 0.7065 1 0.7032
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Summary

There are many instances of optimization problems where we
can not compute the gradient exactly.

Most previous work on rate of convergence considers unbiased
gradient error or a fixed error level.

We considered the case of a decreasing sequence of errors:

We analyze the rate of convergence under different sequences.
A practical quasi-Newton batching algorithm for maximum
likelihood and related problems.

Code is on-line.

Thank you for inviting me!
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