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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Algorithm S vs. Algorithm D: Error vs. lteration

@ Should we use Algorithm S or Algorithm D?
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Algorithm S vs. Algorithm D: Error vs. lteration

@ Should we use Algorithm S or Algorithm D?
e On iteration k, Algorithm S has an error of 1/k.
e On iteration k, Algorithm D has an error of 1/2".
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Algorithm S vs. Algorithm D: Error vs. lteration

@ Should we use Algorithm S or Algorithm D?
e On iteration k, Algorithm S has an error of 1/k.
e On iteration k, Algorithm D has an error of 1/2".
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Algorithm S vs. Algorithm D: Error vs. Time

@ But, the error is not the whole story:
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Algorithm S vs. Algorithm D: Error vs. Time

@ But, the error is not the whole story:
o lIterations of Algorithm S are cheap.
o lterations of Algorithm D are expensive.
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Algorithm S vs. Algorithm D
Hybrid Methods

Algorithm S vs. Algorithm D: Error vs. Time

@ But, the error is not the whole story:
o lIterations of Algorithm S are cheap.
o lterations of Algorithm D are expensive.
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Motivation for Hybrid Methods

Stochastic vs. Deterministic:
@ Stochastic makes great progress initially, but slows down.

@ Determinstic makes steady progress, but is expensive.
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Motivation for Hybrid Methods

Stochastic vs. Deterministic:
@ Stochastic makes great progress initially, but slows down.

@ Determinstic makes steady progress, but is expensive.

Can a hybrid method get the best of both worlds?
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Simple Hybrid Method

e Simple hybrid method [Cauchy, 1847]:
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Simple Hybrid Method

e Simple hybrid method [Cauchy, 1847]:

e Start out running the low cost method.
e At some point switch to the low error method.
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Simple Hybrid Method

e Simple hybrid method [Cauchy, 1847]:

e Start out running the low cost method.
e At some point switch to the low error method.
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Better Hybrid Methods?

The question underlying our work:
@ Can a hybrid method do better than both?
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Better Hybrid Methods?

The question underlying our work:
@ Can a hybrid method do better than both?

The basic idea:
@ Start out running the low cost method.

@ Gradually switch to the low error method,
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Deterministic vs. Stochastic Optimization
Algorithm S vs. Algorithm D
Hybrid Methods

Better Hybrid Methods?

The question underlying our work:
@ Can a hybrid method do better than both?

The basic idea:
@ Start out running the low cost method.

@ Gradually switch to the low error method,
keeping the global convergence rate.
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Deterministic vs. Stochastic Optimization

Algorithm S vs. Algorithm D
Hybrid Methods

Better Hybrid Methods?
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Outline

@ Convergence Rates of Gradient Methods
@ Deterministic and Stochastic Convergence Rates
@ Hybrid Algorithm Convergence Rates

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Problem Formulation

@ We want to minimize a once-differentiable function f(x),

in f(x).
min £(x)

e We assume that f(x) is strongly convex.
@ We assume that Vf(x) is Lipschitz-continuous.

@ For twice-differentiable functions, these are equivalent to
pl < V2f(x) < LI,

for some 1 > 0 and some L > pu.
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Deterministic Algorithm Convergence Rate

@ Consider the deterministic gradient descent algorithm:

Xk+1 = Xk — Oéka(Xk).
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Deterministic Algorithm Convergence Rate

@ Consider the deterministic gradient descent algorithm:
Xk+1 = Xk — Oéka(Xk).
@ This algorithm has a strong linear convergence rate,

Fxk) = F(x) < (1= /L) [F(x0) — F(x)].
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Deterministic Algorithm Convergence Rate

@ Consider the deterministic gradient descent algorithm:
Xk+1 = Xk — VI (xk).
@ This algorithm has a strong linear convergence rate,
Fxi) — () < (1= /L) [F(x0) — Fx)]

@ But, it uses the exact gradient on each iteration.

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting
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Stochastic Algorithm Convergence Rate

@ Now consider the stochastic gradient descent algorithm:
Xk+1 = Xk — Oékg(Xk)-
Here, g(xx) is an approximate gradient,

g(Xk) = Vf(Xk) + ek.
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Stochastic Algorithm Convergence Rate

@ Now consider the stochastic gradient descent algorithm:
Xk+1 = Xk — Oékg(Xk)-
Here, g(xx) is an approximate gradient,
g(xk) = VIF(xk) + ex.

@ The (random) error e, must be zero-mean, finite-variance.

@ This might be much cheaper to compute.
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Stochastic Algorithm Convergence Rate

@ Now consider the stochastic gradient descent algorithm:
Xk+1 = Xk — Oékg(Xk)-
Here, g(xx) is an approximate gradient,
g(xk) = VIF(xk) + ex.

@ The (random) error e, must be zero-mean, finite-variance.
@ This might be much cheaper to compute.
@ But, it leads to a weak sublinear convergence rate,

E[f(xk) — f(x)] = O(1/k).
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Hybrid Algorithm: Bounded Error

@ The hybrid gradient descent algorithm:

Xkr1 = Xk — axg(xk), where g(xx) = VF(xx) + e.
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Hybrid Algorithm: Bounded Error

@ The hybrid gradient descent algorithm:
Xkp1 = Xk — akg(xxk), where g(xk) = VF(xx) + ek.

@ We do not assume the error e is zero-mean (or random).

@ Instead we assume we can bound the error size,

lexll? < BX.
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Hybrid Algorithm: Bounded Error

@ The hybrid gradient descent algorithm:
Xkp1 = Xk — akg(xxk), where g(xk) = VF(xx) + ek.

@ We do not assume the error e is zero-mean (or random).

@ Instead we assume we can bound the error size,
el < BX.

@ Can we achieve a strong linear convergence rate?
(without requiring BX = 07?)
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
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Hybrid Algorithm Strong Linear Convergence Rate

We get the strong linear convergence rate,
F(xk) = F(x) < (1= p)<[F(x0) = F(x)]-
if the errors satisfy

llew|? < 2L(k/L — p)IF(x*) — F(x)],
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
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Hybrid Algorithm Strong Linear Convergence Rate

We get the strong linear convergence rate,
F(xk) = F(x) < (1= p)<[F(x0) = F(x)]-
if the errors satisfy

llew|? < 2L(k/L — p)IF(x*) — F(x)],

@ Error can be large if you are far from the solution.
e Classic deterministic rate is the special case that p = u/L.

e For p < u/L, this never requires the exact gradient.
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Hybrid Algorithm Weak Linear Convergence Rate

o What if we don't know p, L, f(x*), or f(x*)?
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Hybrid Algorithm Weak Linear Convergence Rate

o What if we don't know p, L, f(x*), or f(x*)?

If the errors satisfy
llexl[> < O(+%),

then the algorithm has a weak linear convergence rate,
f(xk) — f(x) = O(c"),

for all o > max{1 — u/L,~}.
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Hybrid Algorithm Expected Weak Linear Rate

@ What if we can only bound ey in expectation?
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Hybrid Algorithm Expected Weak Linear Rate

@ What if we can only bound ey in expectation?

If the errors satisfy
E[||ex|[*] < O(+%),

then the algorithm has an expected weak linear convergence rate,
E[f(x¢) — f(x)] = O(c),

for all o > max{vy,1 — p/L}.
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Hybrid Algorithm Expected Weak Sublinear Rate

@ What if we can't geometrically decrease the error?
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Hybrid Algorithm Expected Weak Sublinear Rate

@ What if we can't geometrically decrease the error?

If the errors satisfy
E[|e||’] < O(1/k7),

then the algorithm has an expected weak sublinear rate,

E[f(xx) — f(x:)] = O(1/k7).
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Hybrid Algorithm Convergence Rates

Hybrid Algorithm Expected Weak Sublinear Rate

@ What if we can't geometrically decrease the error?

If the errors satisfy
E[|e||’] < O(1/k7),

then the algorithm has an expected weak sublinear rate,

E[f(xx) — f(x:)] = O(1/k7).

Rough summary:

@ the algorithm converges at the same rate as the errors
(up to the speed of the deterministic algorithm).
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Convergence Rates of Gradient Methods Deterministic and Stochastic Convergence Rates
Hybrid Algorithm Convergence Rates

Extensions and Future Work

We have generalized our analysis to a variety of scenarios:
Newton-like scaling of the gradient (next section)

Convex (but not necessarily strongly convex) objectives.

°
°
@ Accelerated-gradient methods (faster rates of convergence).
@ Projected-gradient methods (constrained optimization).

°

Proximal-gradient methods (non-smooth optimization).
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Extensions and Future Work

We have generalized our analysis to a variety of scenarios:
Newton-like scaling of the gradient (next section)

Convex (but not necessarily strongly convex) objectives.
Accelerated-gradient methods (faster rates of convergence).

Projected-gradient methods (constrained optimization).

Proximal-gradient methods (non-smooth optimization).
There remain several other directions to explore:

@ Mirror descent methods.

@ Concentration bounds, quasi-random sampling.

o Other applications where the gradient is measured with error.
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Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Outline

© Practical Issues and Application
@ Batching Incremental Gradient Algorithm
@ Quasi-Newton Scaling
@ Experimental Results
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Application: Incremental Gradient Methods

@ Many data fitting applications lead to problems of the form

1M
min - 2; fi(x).

(i.e. maximum likelihood estimation from i.i.d. data)
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Application: Incremental Gradient Methods

@ Many data fitting applications lead to problems of the form

1M
min - 2; fi(x).

(i.e. maximum likelihood estimation from i.i.d. data)
o If M is very large, exact gradient calculation may be expensive.

@ It is common to use a mini-batch gradient approximation

g(xk) |B|ZVf

i€By
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Batching Incremental Gradient Algorithm
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Practical Issues and Application Experimental Results

Application: Incremental Gradient Methods

@ Many data fitting applications lead to problems of the form

1M
min - 2; fi(x).

(i.e. maximum likelihood estimation from i.i.d. data)
o If M is very large, exact gradient calculation may be expensive.

@ It is common to use a mini-batch gradient approximation

g(xk) |B|ZVf

i€By

e With a fixed batch size, the convergence rate is sublinear.
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Application: Incremental Gradient Methods

@ Many data fitting applications lead to problems of the form

1M
min - 2; fi(x).

(i.e. maximum likelihood estimation from i.i.d. data)
o If M is very large, exact gradient calculation may be expensive.

@ It is common to use a mini-batch gradient approximation
Vii(x
g(x«) |B | Z
i€By

e With a fixed batch size, the convergence rate is sublinear.

@ We can pick the batch sizes |Bg| to achieve a linear rate.
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application el Reis

Incremental Gradient Method Error Bounds

Under standard assumptions on the Vfi(x), we obtain
f(x) = f(x) = O(c¥),

for all o > max{1 — u/L,~} by choosing |Bi| to satisfy

[Bi| = M — O(v/?).
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application el Reis

Incremental Gradient Method Error Bounds

Under standard assumptions on the Vfi(x), we obtain
f(xi) = (%) = 0(c"),
for all o > max{1 — u/L,~} by choosing |Bi| to satisfy

[Bi| = M — O(v/?).

@ The error decreases at twice the rate the batch size increases.
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application el Reis

Incremental Gradient Method Error Bounds

Under standard assumptions on the Vfi(x), we obtain
f(x) = f(x) = O(c¥),

for all o > max{1 — u/L,~} by choosing |Bi| to satisfy

[Bi| = M — O(v/?).

@ The error decreases at twice the rate the batch size increases.

@ This holds for any sampling without replacement scheme
(but bound is better in expectation for uniform sampling).
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Improved Rates with Newton-like Scaling

@ The algorithm may converge slowly if /L is small.

@ We can also analyze a Newton-like algorithm
Xk+1 = Xk + akdg,
where dj is the solution of

Hidi = —g(x«).
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Improved Rates with Newton-like Scaling

@ The algorithm may converge slowly if /L is small.

@ We can also analyze a Newton-like algorithm
Xp41 = Xk + ouedy,
where dj is the solution of
Hidk = —g(xk)-

@ We can then show rates using a modified p and L based on
the Hessian approximation H,.
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Quasi-Newton Scaling and Heuristic Line Search

@ In our implementation, we use the L-BFGS quasi-Newton
Hessian approximation.
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Quasi-Newton Scaling and Heuristic Line Search

@ In our implementation, we use the L-BFGS quasi-Newton
Hessian approximation.
@ To choose the step size, we use the Armijo condition

?(xk + agdy) < F(Xk) + nag(xk)Tdk,

on the sampled objective

Flxi) = |Blk‘ S ).

i€EB
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Quasi-Newton Scaling and Heuristic Line Search

@ In our implementation, we use the L-BFGS quasi-Newton
Hessian approximation.

@ To choose the step size, we use the Armijo condition
F(Xk + Ozkdk) < F(Xk) + nag(xk)Tdk,
on the sampled objective
- 1
) = = > filx)-
1Bil /5
k

@ By increasing the batch size this eventually reduces to a
conventional line-search quasi-Newton method, inheriting the
global and local convergence guarantees of this method.
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling

Practical Issues and Application Experimental Results

Numerical Evaluation

We performed experiments comparing three algorithms:
@ Deterministic: Conventional L-BFGS quasi-Newton method.
@ Stochastic: Constant step-size stochastic gradient descent.
e Hybrid: An L-BFGS quasi-Newton method with batch size

[Bis1| = [min{L.1-|Bx| + 1, M}].
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Batching Incremental Gradient Algorithm
. P Quasi-Newton Scaling
Practical Issues and Application Experimental Results

Numerical Evaluation

We performed experiments comparing three algorithms:
@ Deterministic: Conventional L-BFGS quasi-Newton method.
@ Stochastic: Constant step-size stochastic gradient descent.

e Hybrid: An L-BFGS quasi-Newton method with batch size

[Bis1| = [min{L.1-|Bx| + 1, M}].

We trained conditional random fields (CRFs) on:

@ The CoNLL-2000 noun-phrase chunking shared task
(chain-structure).

@ A binary image-denoising problem (lattice-structure).

Michael Friedlander and Mark Schmdit
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Practical Issues and Application

Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:
1 1 1 1

=== Stochastic 1(1e-01)
= Stochastic1(1e-02)
5 m—— Stochastic1(1e-03)
= Hybrid

==Q== Deterministic

Objective minus Optimal

T T T T
0 20 40 60 80 100
Passes through data
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Batching Incremental Gradient Algorithm
Quasi-Newton Scaling
Experimental Results

Evaluation on Lattice-Structured CRF

Practical Issues and Application

Results on lattice-structured conditional random field:

(a) uugm\l image m noisy image

HISD
DIHD

FiG. 5.5. Top row: original (a) and noisy (b) image. Second row: marginals after 2 passes
through the data for deterministic (c), stochastic (d), and hybrid (c). Third row: marginals after 5
passes through the data for deterministic (f), stochastic (g), and hybrid (h).
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Practical Issues and Application Experimental Results

Evaluation on Lattice-Structured CRFs

Results on lattice-structured conditional random field:
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@ Other Projects and Summary
@ Other Projects
@ Summary
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Optimization Costly Functions with Simple Constrains

We often have optimization problems with 3 complicating factors:
@ the number of parameters is large.
@ evaluating the objective is expensive.

© the parameters have constraints.
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Optimization Costly Functions with Simple Constrains

We often have optimization problems with 3 complicating factors:
@ the number of parameters is large.
@ evaluating the objective is expensive.
© the parameters have constraints.

But, the constraints are simple.
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Optimization Costly Functions with Simple Constrains

We give a limited-memory inexact projected quasi-Newton
algorithm for optimizing costly functions with simple constraints.
[Schmidt, van den Berg, Friedlander, Murphy, 2009].
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Optimization Costly Functions with Simple Constrains

Comparison of optimizers for fitting Gaussian graphical models

with £1-regularization:
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Group Sparse Priors for Covariance Estimation

@ There has been work on group ¢1-regularization for structure
learning in Gaussian graphical models with variable types:

....@-
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Group Sparse Priors for Covariance Estimation

@ There has been work on group ¢1-regularization for structure
learning in Gaussian graphical models with variable types:

....@-

@ What if we don’t know the variable types?
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Group Sparse Priors for Covariance Estimation

@ There has been work on group ¢1-regularization for structure
learning in Gaussian graphical models with variable types:

....@-

@ What if we don’t know the variable types?

@ We give bounds on integrals of priors over positive-definite
matrices, and a variational method that learns the types.
[Marlin, Schmidt, Murphy, 2009]
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Group Sparse Priors for Covariance Estimation

Learned variable types on mutual fund data:
[Scott & Carvalho, 2008]

a

K 11;:@1:1 G Ll 2

The methods discover the ‘stocks’ and ‘bonds’ groups.
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Causality: Modeling Interventions

@ The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Other Projects
Summary
Other Projects and Summary

Causality: Modeling Interventions

@ The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

o If | see that my watch says 11:55, then it's almost lunch time
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Causality: Modeling Interventions

@ The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:
o If | see that my watch says 11:55, then it's almost lunch time
o If | set my watch so it says 11:55, it doesn't help
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Causality: Modeling Interventions

@ The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

o If | see that my watch says 11:55, then it's almost lunch time
o If | set my watch so it says 11:55, it doesn't help

@ Without knowing the difference, predictions may be useless.
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Causality: Modeling Interventions

@ The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

o If | see that my watch says 11:55, then it's almost lunch time
o If | set my watch so it says 11:55, it doesn't help

@ Without knowing the difference, predictions may be useless.

@ Methods that model interventions are typically called causal.
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Causality: Modeling Interventions

Interventional Cell Signaling Data [Sachs et al., 2005]
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Causality: Modeling Interventions

o Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.
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Causality: Modeling Interventions

o Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.

@ For real data, the structure may not be known, or even a DAG.
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Causality: Modeling Interventions

o Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.

@ For real data, the structure may not be known, or even a DAG.

@ Why not evaluate causal models in terms of modeling the
effects of interventions?
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Causality: Modeling Interventions

o Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.

@ For real data, the structure may not be known, or even a DAG.

@ Why not evaluate causal models in terms of modeling the
effects of interventions?

@ Given this task, there are a variety of approaches to causality.

[Eaton & Murphy, 2007]
[Schmidt & Murphy, 2009]
[Duvenaud, Eaton, Murphy, Schmidt, 2010]
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Causality: Modeling Interventions

Interventional Cell Signaling Data [Sachs et al., 2005]:
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Convex Structure Learning with Higher-Order Potentials

@ Several authors have recently examined structure learning in
graphical models with ¢1-regularization.

@ Almost all of this work focuses on pairwise models.
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Convex Structure Learning with Higher-Order Potentials

@ Several authors have recently examined structure learning in
graphical models with ¢1-regularization.

@ Almost all of this work focuses on pairwise models.
@ This is restrictive if higher-order statistics matter.

e Eg. Mutations in both gene A and gene B lead to cancer.
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Convex Structure Learning with Higher-Order Potentials

Several authors have recently examined structure learning in
graphical models with ¢1-regularization.

Almost all of this work focuses on pairwise models.
This is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

We give one way to go beyond pairwise potentials.
[Schmidt & Murphy, 2010]
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Convex Structure Learning with Higher-Order Potentials

@ We focus on the special case of hierarchical models.

@ We give a convex formulation that uses overlapping group
l1-regularization to enforce the hierarchy.

@ A heuristic hierarchical search allows us to tractably search
the exponential number of possible higher-order potentials.
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Convex Structure Learning with Higher-Order Potentials

Results on traffic flow data.
[Krause & Guestrin, 2005, Shahaf et al., 2009]
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Generalized a-Expansions for Energy Minimization

@ af-swaps and a-expansions are two minimum-cut methods
for approximate MAP estimation in ‘metric’ graphical models.

@ These both ‘dominate’ the classic ICM algorithm.
@ But, neither dominates the other.

@ We present a generalization of both moves that:

e Dominates them both
o Is still solvable in polynomial time.
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Generalized a-Expansions for Energy Minimization

Example of a-expansion [-shrink move [Schmidt & Alahari, 2011]:
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Generalized a-Expansions for Energy Minimization

Relative energy of local minima with respect to different moves.

Name af-Swap | a-Expansion | New Moves
Family 1.0203 1 0.9998
Pano 1.3182 1 1
Tsukuba | 1.0315 1 1.0000
Venus 1.8561 1 0.9968
Teddy 1.0037 1 0.9999
Penguin 1.1283 1 0.9758
House 0.7065 1 0.7032
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Summary

@ There are many instances of optimization problems where we
can not compute the gradient exactly.
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@ There are many instances of optimization problems where we
can not compute the gradient exactly.

@ Most previous work on rate of convergence considers unbiased
gradient error or a fixed error level.

Michael Friedlander and Mark Schmdit Hybrid Deterministic-Stochastic Methods for Data Fitting



Other Projects
Summary
Other Projects and Summary

Summary

@ There are many instances of optimization problems where we
can not compute the gradient exactly.
@ Most previous work on rate of convergence considers unbiased
gradient error or a fixed error level.
@ We considered the case of a decreasing sequence of errors:
o We analyze the rate of convergence under different sequences.

o A practical quasi-Newton batching algorithm for maximum
likelihood and related problems.
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Summary

@ There are many instances of optimization problems where we
can not compute the gradient exactly.

@ Most previous work on rate of convergence considers unbiased
gradient error or a fixed error level.

@ We considered the case of a decreasing sequence of errors:

o We analyze the rate of convergence under different sequences.
o A practical quasi-Newton batching algorithm for maximum
likelihood and related problems.

@ Code is on-line.
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Summary

There are many instances of optimization problems where we
can not compute the gradient exactly.

@ Most previous work on rate of convergence considers unbiased
gradient error or a fixed error level.

We considered the case of a decreasing sequence of errors:

o We analyze the rate of convergence under different sequences.
o A practical quasi-Newton batching algorithm for maximum
likelihood and related problems.

Code is on-line.

Thank you for inviting me!
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