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1 Generalized Interventional
Potentials

It is common to model interventions in DAG models
using Pearl’s do-calculus [Pearl, 2000]. However, for
modeling interventional data the assumption of acy-
cility is often innappropriate; many models of bio-
logical networks contain feedback cycles (for example,
see Sachs et al. [2005]). In contrast, undirected graph-
ical models allow cycles. However, under most inter-
pretations of the data generating processes associated
with undirected graphs there is no difference between
conditioning by observation and conditioning by inter-
vention [Lauritzen and Richardson, 2002]; undirected
models do not distinguish between observing a variable
(‘seeing’) and setting it by intervention (‘doing’).

Motivated by the problem of using cyclic models for
interventional data, in [Schmidt and Murphy, 2009]
we defined the notion of an interventional potential.
These are undirected potential functions that are aug-
mented with interventional semantics. However, in
that previous work we focused on the case of pair-
wise potentials where each potential has a single tar-
get variable. In this note we consider a generalization
of interventional potential that allows multiple target
variables (or even no target variables), and the inter-
pretation of higher-order interventional potentials in
the special case of hierarchical models.

2 Intervention Semantics by
Variable-Partitioning

In causal DAGs, the effect of a (perfect) intervention
on node i is to remove the CPD p(xi|xπ(i)) from the
joint distribution, removing the statistical association
between the effect xi and its causes xπ(i). We would
like to define similar semantics for the potential func-
tions φA(xA) in undirected models, since it might be
the case that the statistical relationship represented by
φA might be removed if we intervene on some element

of A. However, the nodes in A are treated symmetri-
cally in φA so we must augment the potential with ad-
ditional information that defines the effects of possible
interventions. Toward this end, we consider using an
undirected graphical where we define the probability
of a set of p random variables as a globally normalized
product of interventional potentials φA(xB |xC),

p(x) ,
1

Z

∏
A

φA(xB |xC). (1)

In the interventional potential φA(xB |xC) we require
that B and C from a partition of A, including the
case where either B or C is the empty set.1 Given
only observational data, φA(xB |xC) is simply defined
as the usual undirected potential φA(xA). Thus, for
observational data this representation reduces to the
standard undirected graphical model representation.
Further, in analogy with the DAG case we say that
the effect of a (perfect) intervention on node i in (1)
is to remove all potentials φA(xB |xC) where i is an
element of B.

An interesting aspect of these potentials is that we get
different types of edges depending on the particular
partition of A into B and C. In the case of pairwise
edges (where A has two elements), we describe the
three possibilities below:

1. Undirected edges: If we have φij(∅|xij), then
the statistical relationship between i and j is pre-
served under intervention on either node. Thus,
edges with this partition have the usual semantics
of interventions in undirected graphs [Lauritzen
and Richardson, 2002], where there is no differ-
ence between observation and intervention. Such
an edge might reflect a purely associative relation-
ship, or that the statistical relationship between
the variables is due to a latent variable that is a
common effect.

1We obtain the interventional potentials used
in [Schmidt and Murphy, 2009] as the special case
where we force B to be a singleton.



2. Directed edges: If we have φij(xi|xj), the sta-
tistical relationship between i and j is preserved
under intervention on j but lost under interven-
tion on i. Edges with this partition adopt the
graphical semantics associated with causal DAGs,
and were the type of interventional potential we
considered in [Schmidt and Murphy, 2009]. Such
an edge might reflect that xj has a direct causal
effect on xi, or that xj has a causal influence on
xi through a latent variable.2

3. Unstable edges: If we have φij(xij |∅), the sta-
tistical relationship between i and j is lost under
intervention on either node. This type of edge
does not arise in (purely) directed or undirected
models. Such an edge might reflect that the statis-
tical relationship between xi and xj exists because
of a latent variable that is a common cause.

Note that in causal DAGs we can model indirect causal
effects and common effects due to latent variables,
without explicitly introducing latent variables. How-
ever, it is not possible to model common latent causes
using DAGs over the observed variables, while unsta-
ble edges allow interventional potentials to represent
this case.

In the pairwise case, we can visualize the dependencies
encoded by the interventional potentials as a graph
with directed, undirected, and unstable edges. The
conditional independence properties in the observa-
tional distribution are simply given by ignoring the
edge types and using the conditional independence
properties of the resulting undirected graph. When we
intervene on node i, we first remove unstable edges in-
volving i and directed edges into i, and then we remove
the edge types and use the conditional independence
properties of the resulting undirected graph. Note that
directed cycles are allowed in both the observational
and interventional distributions.

3 Higher-Order Potentials

The independence properties encoded in a model with
pairwise interventional potentials can be represented
by a directed cyclic graph. However, when we have
higher-order factors it will prove more useful to repre-
sent the independencies using a factor graph [Koller
and Friedman, 2009, §4.4.1] augmented with addi-
tional information about the effects of intervention.
In particular, we first ignore the partition of each po-
tential φA into B and C and draw a standard factor
graph. We then add an arrow from each factor to the
nodes in the first component of the partition B, and

2We could also have both φij(xi|xj) and φij(xj |xi), and
this may represent a feedback cycle.

in this case we will refer to nodes in B as children and
nodes in C as parents. In the observational distribu-
tion, we simply ignore these arrows and apply graph
separation in the factor graph. If we intervene on node
i, we can visualize all dependencies present in the in-
terventional distribution by removing all factors with
an arrow into node i.

We discussed the three types of edges that arise from
different partitions of a pairwise interventional poten-
tial, and how they can be interpreted. Here, we use
latent variables to give an interpretation to arbitrary
higher-order interventional potentials. First, we will
make an assumption that is similar to the hierarchical
inclusion assumption present in hierarchical log-linear
models: if we have a factor φA(xB |xC), then we also
have the factors φA(xD|xC) for all D ⊂ B. Then,
to give an interpretation to the factor φA(xB |xC), we
draw a causal DAG over the variables B, C, and an
additional latent variable y. We draw directed edges
from all variables in C to y, and from y to all variables
in B. We give the four possible cases for a three-way
factor below:

1. Three causes (undirected edge): If we have
φijk(∅|xijk), then all three nodes point to the
common effect y, and the potential remains af-
ter intervention on any node. This is the usual
semantics of intervention in undirected graphical
models [Lauritzen and Richardson, 2002].

2. Two causes, one effect (directed edge): If
we have φijk(xi|xjk), then j and k point to y and
y points to i. Here, intervention on the effect i re-
moves the potential but intervening on the causes
j or k leaves the potential unaffected. This is the
interventional semantics associated with a causal
DAG model where i is the head of a v-structure
between the three nodes.

3. One cause, two effects: If we have φijk(xij |xk),
then k points to y and y points to i and j. Here,
intervention on k leaves the potential unaffected
but intervention on i or j removes the potential.
However, note that if we only intervene on one of
the nodes, say i, then the lower-order potential
φjk(xj |xk) will remain that preserves the depen-
dency between j and k.

4. Three effects (unstable edge); If we have
φijk(xijk|∅), then y points to all three nodes.
Here, intervention on any node removes the po-
tential. This is similar to unstable pairwise edges.
However, if we only intervene on one of the nodes,
say i, then the lower order potential φjk(xjk|∅)
preserves the dependency between the other two.
However, if we intervene on two of the nodes then
the dependency on the third node is removed.



4 Other Possible Effects of
Intervetions

In this note we considered a generalization of interven-
tional potentials where for each potential we choose a
subset of the variables in the potential, and interven-
tion on any variable in the subset removes the poten-
tial from the interventional distribution. Another al-
ternative would be to have a potential where we must
intervene on all variables in the subset to remove the
potential, or some other combinatorial structure.
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