
Revisiting Bug Triage and Resolution Practices

Olga Baysal, Reid Holmes, and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{obaysal, rtholmes, migod}@uwaterloo.ca

Abstract—Bug triaging is an error-prone, tedious and time-
consuming task. However, little qualitative research has been
done on the actual use of bug tracking systems, bug triage, and
resolution processes. We are planning to conduct a qualitative
study to understand the dynamics of bug triage and fixing
process, as well as bug reassignments and reopens. We will
study interviews conducted with Mozilla Core and Firefox
developers to get insights into the primary obstacles developers
face during the bug fixing process. Is the triage process flawed?
Does bug review slow things down? Does approval takes
too long? We will also categorize the main reasons for bug
reassignments and reopens. We will then combine results with
a quantitative study of Firefox bug reports, focusing on factors
related to bug report edits and number of people involved in
handling the bug.

I. INTRODUCTION

Bug reporting and fixing is an essential part of the
software development process. In large software projects
such as Eclipse or Firefox, the bug tracking system is the
central hub for coordination that collects informal comments
about bug reports and development issues.

Hundreds of bug reports are submitted every day, and
the bug triage process is often error prone, tedious to
perform, and very time consuming. While there is strong
anecdotal evidence that bug triage is time consuming, few
qualitative studies are available to support this statement. We
would like to take another look at bug triage and resolution
practice in open source projects. To our knowledge, the most
recent qualitative study that involved surveying real-world
developers on how they handle bug report and what they
think a good bug report looks like was performed in 2008
by Bettenburg [1]. We would like to revisit bug reporting
and fixing practices to find out if bug tracking systems have
been improved since.

Users: In our study, the users are Mozilla developers,
who are the users of the Bugzilla bug tracking system. By
studying real-world users and evaluating their experience
with Bugzilla, we can gather insights on flaws that still exist
in bug assignment system and suggest possible improve-
ments to bug tracking systems. By studying interview data,
we can also understand dynamics of bug reassignments and
reopens.

II. RELATED WORK

Most work on bug fixing have focused on how particular
bugs should be fixed (or who is the best person to fix it) [2]
and which types of bugs get fixed [3].

Bug Triage: Bug triaging has been studied a lot by
researchers of SE community. Breu et al. [4] quantitatively
and qualitatively analysed the questions asked in a sample of
600 bug reports from the Mozilla and Eclipse projects. They
categorized the questions and analysed response rates and
times by category and project and provided recommendation
on how bug tracking systems could be improved.

Categorization of bug reports: Ko et al. [5] studied
bug report titles and suggested designs for more structured
problem report forms. Bettenburg et al. conducted a survey
among 175 developers and users from the Apache, Eclipse,
and Mozilla projects to determine which information con-
tents comprise good quality bug reports. Just et al. [6] per-
formed a quantitative study on the responses from the same
survey to suggest improvements to bug tracking systems.

Bug reassignments and reopens: As yet, little atten-
tion has been paid to studying bug reassignments and bug
reopens.

Jeong et al. [7] analyzed bug report reassignments (which
they called “bug tossing”) in the Mozilla and Eclipse
projects. They used a graph structure and Markov chains
to reduce the number of reassignments.

In an empirical study of which bugs get fixed in the
Microsoft Windows codebase, Guo et al. [8] observed reas-
signments are not always detrimental to bug-fix likelihood;
several tries might be needed to find the optimal bug fixer.
While they provided a comprehensive discussion of causes
for reassignments, their study was done on a large commer-
cial software project – Microsoft Windows. They categorized
five primary reasons for reassignments: finding the root
cause, determining ownership, poor bug report quality, hard
to determine proper fix, and workload balancing. They built
a descriptive statistical model to identify the relationship
between bug report features and reassignments. They also
provided some recommendations for the design of more
socially-aware bug tracking systems. Recently, Zimmermann
et al. [9] used the same survey data in the context of
Microsoft Windows operating system to study bug reopens,
primary reasons of reopens and the impact of various metrics



on reopening bugs ranging from the reputation of the opener
to how the bug was found.

We are interested in studying bug reporting and fixing
practices in open source projects. While we might reach sim-
ilar conclusions on the main reasons for bug reassignments
and reopens to the ones reported in the study on Microsoft
Windows, we hope to detect differences on triage practices
between open and close source software projects.

III. REVISITING BUG TRIAGE AND RESOLUTION
PRACTICES: A CASE OF MOZILLA CORE AND FIREFOX

We are interested in studying bug triaging and fixing
practices, including bug reassignments and reopenings, in
the context of the Mozilla Core and Firefox projects, which
we consider to be representative examples of a large-scale
open source software project. We plan to conduct qualitative
and quantitative analysis of the bug assignment practices.

We are interested in providing insights into several areas:
• triage practices, review and approval processes;
• root cause analysis of bug reassignments and reopens

in open source software projects; and
• recommendations for improvements/redesign of bug

tracking systems.
Data: Our primary data source is available interview

transcripts [10], with questions about various aspects of
the bug triaging, fixing process, and use of a bug tracking
system. One-hour interviews were conducted by Mozilla
product manager Martin Best and free-response statements
are transcribed to permit analysis. Interview questions are
focused on developers’ experience with the Bugzilla bug
tracking system.

Approach: Since the length of the responses varies
from phrases to paragraphs, we will print the responses
and split them into individual statements written on index
cards. We plan to perform a card sort to organize interview
responses into hierarchies to deduce a higher level of ab-
straction and identify common themes in the participants’
feedback.

Card sorting is an inexpensive and user-centered sorting
technique that is widely used in information architecture to
create mental models and derive taxonomies from input [11].
There are three phases within a card sort: 1) preparation,
in which participants and contents of the card sort are
selected; 2) execution, where the indexed cards are sorted
into meaningful groups with a descriptive title; and 3)
analysis, in which the cards are sorted to form more abstract
hierarchies that are used to deduce themes.

During the card sort execution process, we plan to catego-
rize participants’ feedback according to a number of topics
including triage, review, reassignments, reopens. We hope
to detect more emerging themes, such as bottlenecks in
bug fixing process, development workflow, usability issues,
report quality, new feature suggestions, etc.

Two of the authors will independently perform an open
card sort and then merge the results into a single taxonomy;
this will be used to inform improvements to Bugzilla to help
it better meet the needs of Mozilla developers.

IV. WORKSHOP GOALS

We hope to use the USER workshop as a venue to learn
about user evaluation methodologies and to seek feedback
on the execution and analysis of the proposed qualitative
study. We hope to receive guidelines on what methods are
the best for analysing the kind of data we have; how to
physically organize the data; how to make sure our findings
are consistent with and reflective of data; how to establish
reliability, validity and triangulation in qualitative studies,
etc.

REFERENCES

[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proc.
of the 16th ACM SIGSOFT Int. Symp. on Foundations of Soft.
Eng. ACM, 2008, pp. 308–318.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proc. of the 28th Int. Conf. on Soft. Eng., 2006, pp.
361–370.

[3] S. Zaman, B. Adams, and A. E. Hassan, “Security versus
performance bugs: a case study on Firefox,” in Proc. of the
8th Working Conf. on Mining Soft. Rep., 2011, pp. 93–102.

[4] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Infor-
mation needs in bug reports: improving cooperation between
developers and users,” in Proc. of the 2010 ACM Conf. on
Computer Supported Cooperative Work, 2010, pp. 301–310.

[5] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis
of how people describe software problems,” in Proc. of the
Visual Lang. and Human-Centric Comp., 2006, pp. 127–134.

[6] S. Just, R. Premraj, and T. Zimmermann, “Towards the next
generation of bug tracking systems,” in Proc. of the 2008
IEEE Symp. on Visual Lang. and Human-Centric Comp.,
2008.

[7] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” in Proc. of the the 7th joint meeting
of the European Soft. Eng. Conf. and the ACM SIGSOFT
Symp. on The Foundations of Soft. Eng., 2009, pp. 111–120.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
““Not my bug!” and other reasons for software bug report
reassignment,” in Proc. of the ACM Conf. on Computer
Supported Cooperative Work, March 2011.

[9] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy,
“Characterizing and predicting which bugs get reopened,” in
Proc. of the 34th Int. Conf. on Soft. Eng., June 2012.

[10] M. Best, “The Bugzilla Anthropology.” [Online]. Available:
https://wiki.mozilla.org/Bugzilla Anthropology

[11] Wikipedia, “Card sorting — Wikipedia, the free
encyclopedia,” February 2012. [Online]. Available:
http://en.wikipedia.org/wiki/Card sorting


