
Speculative Analysis of
Integrated Development Environment Recommendations

Kıvanç Muşlu , Yuriy Brun , Reid Holmes , Michael D. Ernst , David Notkin
Computer Science & Engineering Department of Computer Science School of Computer Science

University of Washington University of Massachusetts University of Waterloo
Seattle, WA, USA Amherst, MA, USA Waterloo, ON, Canada

{kivanc, mernst, notkin}@cs.washington.edu brun@cs.umass.edu rtholmes@cs.uwaterloo.ca

Abstract
Modern integrated development environments make recom-
mendations and automate common tasks, such as refactorings,
auto-completions, and error corrections. However, these tools
present little or no information about the consequences of
the recommended changes. For example, a rename refactor-
ing may: modify the source code without changing program
semantics; modify the source code and (incorrectly) change
program semantics; modify the source code and (incorrectly)
create compilation errors; show a name collision warning
and require developer input; or show an error and not change
the source code. Having to compute the consequences of
a recommendation — either mentally or by making source
code changes — puts an extra burden on the developers.

This paper aims to reduce this burden with a technique
that informs developers of the consequences of code transfor-
mations. Using Eclipse Quick Fix as a domain, we describe a
plug-in, Quick Fix Scout, that computes the consequences of
Quick Fix recommendations. In our experiments, developers
completed compilation-error removal tasks 10% faster when
using Quick Fix Scout than Quick Fix, although the sample
size was not large enough to show statistical significance.

Categories and Subject Descriptors D.2.0 [Software Engi-
neering]: General; D.2.3 [Software Engineering]: Coding
Tools and Techniques; D.2.6 [Software Engineering]: Pro-
gramming Environments

General Terms Algorithms, Experimentation, Human Fac-
tors

Keywords Quick Fix Scout, Eclipse, Quick Fix dialog,
Quick Fix, speculative analysis, IDE, recommendations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c� 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
Integrated development environments (IDEs), such as Eclipse
and Visual Studio, provide tools that automate common
tasks, such as refactoring, auto-complete, and correction of
compilation errors. These tools have two goals: increasing
developer speed and reducing developer mistakes. These
tools are widely used: they are the most frequent developer
actions after common text editing commands such as delete,
save, and paste [12].

Despite their popularity, these recommendations are pro-
vided with little or no information about their consequences.
For example, a rename refactoring changes the name of a
variable everywhere in a program. However, this refactoring
cannot be correctly and automatically applied when there are
compilation errors or name collisions in the project. In those
cases, if the developer is lucky, the IDE will detect the failure
and either roll back the refactoring or assist the developer
in performing the refactoring manually. For an unlucky de-
veloper, the IDE will perform an incomplete refactoring and
break the code without notification, causing the developer to
spend time determining if and why the refactoring failed, and
fixing the code.

As another example, whenever there is a compilation error
in an Eclipse project, Eclipse offers Quick Fix proposals:
transformations that may resolve the error. However, some
of these proposals may not resolve the compilation error
and may even introduce new errors. When this happens, a
developer may waste time undoing the proposal or trying
other proposals, and may even give up on Quick Fix.

Figure 1 shows a Quick Fix dialog with proposals for a
compilation error. Clicking on a proposal shows an additional
yellow window previewing the changed code. However, the
developer still needs to answer the following questions about
each proposal:

• Does it resolve this compilation error?
• Does it resolve other compilation errors?
• Does it introduce new compilation errors?

mailto:kivanc@cs.washington.edu,brun@cs.umass.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu
mailto:kivanc@cs.washington.edu,brun@cs.umass.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu
mailto:kivanc@cs.washington.edu,brun@cs.umass.edu,rtholmes@cs.uwaterloo.ca,mernst@cs.washington.edu,notkin@cs.washington.edu

Figure 1. A Quick Fix dialog with 12 proposals. The
window on the right previews the highlighted proposal.

Considering Quick Fix proposals in isolation can be
limiting because developers may further wish to consider
the following question:

• Which proposal, among those that would be offered for
all compilation errors in the project, resolves the largest
number of errors?

The Quick Fix dialog does not answer these questions.
The developer can try to compute the answers mentally, or
the developer can apply a proposal and manually investigate
its effects on the programs. Both approaches are error-prone
and time-consuming.

We aim to improve Quick Fix by informing developers
of the consequences of each proposal, specifically of the
proposal’s effect on the number of compilation errors. As a
proof-of-concept, we have built an Eclipse plug-in, Quick Fix
Scout, that computes which compilation errors are resolved
by each proposal. When a user invokes Quick Fix, Quick Fix
Scout augments the standard dialog with additional, relevant
proposals, and sorts the proposals with respect to the number
of compilation errors they resolve.

This paper makes the following contributions:

• A novel technique for automatically computing the conse-
quences of Quick Fix recommendations.

• An open-source, publicly-available tool — Quick Fix
Scout: http://quick-fix-scout.googlecode.com —
that communicates the consequences of a Quick Fix
proposal to the developer.

• A case study that shows that most of the time (93%)
developers apply one of the top three proposals in the
dialog (Section 5.1).

• A controlled experiment with 20 users that demonstrates
that Quick Fix Scout allows developers to remove com-
pilation errors 10% faster, compared to using traditional
Quick Fix (Section 5.2).

The rest of the paper is organized as follows. Section 2
explains the problem with Eclipse’s Quick Fix. Section 3
presents speculative analysis and the Quick Fix Scout imple-
mentation. Section 4 introduces global best proposals — the

Figure 2. A Java program with two compilation errors.
There is only one logical error: the type sTRING should be
String.

additional proposals Quick Fix Scout adds to the dialog. Sec-
tion 5 details the case study and controlled experiment design
and results, and Section 6 discusses threats to the validity of
these results. Section 7 places Quick Fix Scout in the context
of related work. Finally, Section 8 concludes the paper.

2. Not Knowing the Consequences
Eclipse uses a fast, incremental compiler to identify and
underline compilation errors with a “red squiggly”. A
developer who invokes Quick Fix at an error sees a pop-
up dialog with a list of actions each of which may fix the
error. The Eclipse documentation notes that Quick Fix can
be used not only to provide suggestions but also as a shortcut
for more expert users. 1

Figures 2–4 demonstrate a situation in which Quick Fix
falls short. Figure 2 shows a program with two compilation
errors due to a single type mismatch between a variable dec-
laration and a use site. The variable name should be declared
to be of type String but is instead declared as sTRING. In-
voking Quick Fix at the declaration error shows 12 proposals
(Figure 3). The correct proposal — Change to ‘String’ —
is the fourth choice in the list. Ideally, Eclipse would pro-
vide the correct proposal as the first recommendation. Lower
positions in the list likely cause the user to spend more time
studying the choices or to cancel Quick Fix and address the
error manually.

Invoking Quick Fix at the use error is worse for the
developer. Figure 4 shows the 15 Quick Fix proposals, none
of which resolves either error. Sophisticated users may realize
this, cancel the invocation, and finish the change manually.
Others may apply a proposal and either quickly realize that
this was a poor choice and undo it, or perform more actions
attempting to resolve the error, creating successively more
difficult situations to recover from.

2.1 Visualizing Quick Fix consequences
Quick Fix Scout pre-computes the consequences of each
proposal and visualizes this information by augmenting the
Quick Fix dialog in three ways:

1
http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F

http://quick-fix-scout.googlecode.com
http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F

Figure 3. 12 Quick Fix proposals to resolve the type error
from Figure 2.

Figure 4. 15 Quick Fix proposals to resolve the assignment
error from Figure 2. None of these proposals resolves either
compilation error.

1. To the left of each proposal, add the number of compila-
tion errors that remain after the proposal’s hypothetical
application.

2. Sort the proposals with respect to the number of remaining
compilation errors.

3. Color the proposals: green for proposals that reduce the
number of compilation errors, black for proposals that do
not change the number of compilation errors, and red for
proposals that increase the number of compilation errors.

Figure 5 — the Quick Fix Scout equivalent of Figure 3 —
shows all these augmentations, except the red coloring.

Section 4 discusses one additional feature of Quick Fix
Scout: global best proposal, which addresses the problem in
Figure 4. Changing sTRING to String (offered only at the

Figure 5. Quick Fix Scout sorts the 12 proposals offered by
Eclipse (shown in Figure 3) by the number of errors that the
proposal fixes.

first error’s site) resolves both compilation errors. However,
Quick Fix does not present this proposal at the second error’s
site, even though it is relevant. Quick Fix Scout addresses
this problem by providing the relevant proposal at both
compilation error locations.

Quick Fix Scout uses the number of remaining compi-
lation errors as the main criterion to reorder and color the
proposals. Since the primary intent of Quick Fix is to re-
solve compilation errors, we assume that a proposal that
resolves more compilation errors is likely to be preferred by
the developer. The proposals that resolve the same number
of compilation errors are sorted using Quick Fix’s standard
ordering. This allowed us to measure the effects of the main
criterion more accurately when evaluating Quick Fix Scout.
The empirical data support the premise that the developers
prefer proposals that resolve the highest number of compila-
tion errors. Case study participants (Section 5.1) who used
Quick Fix Scout selected a proposal that resolved the most
compilation errors 90% of the time. Similarly, controlled
experiment participants (Section 5.2) who used Quick Fix
Scout selected such proposals 87% of the time, and those
who used Quick Fix, 73% of the time.

3. Quick Fix Scout
Speculative analysis [2] explores possible future development
states to help the developer make a decision that may lead
to one or more of those states. Quick Fix Scout [10] is
an Eclipse plug-in that speculatively applies each available
Quick Fix proposal and compiles the resulting program.
Quick Fix Scout augments the Quick Fix dialog to show how
many compilation errors would remain after each proposal’s
hypothetical application, and sorts the proposals accordingly.

Next, Section 3.1 details the mechanism for computing
Quick Fix proposals’ consequences. Then, Section 3.2 de-
scribes the requirements for seamless background computa-
tion. Section 3.3 explains additional optimizations specific

1 while (true) {

2 waitUntilChangeInErrors();

3 for (Error err: copy.getErrors()) {

4 for (Proposal p: err.quickFixes()) {

5 copy.applyProposal(p);

6 copy.saveAndBuild();

7 results.add(p, copy.getErrors());

8 copy.applyProposal(p.getUndo());

9 }

10 publishResults();

11 }

12 }

Figure 6. A high-level description of the speculative
analysis algorithm for computing the compilation errors
that remain after applying each Quick Fix proposal. The
publishResults() method augments the Quick Fix dialog with
the proposal consequences.

to Quick Fix Scout. Section 3.4 discusses implementation
limitations. Finally, Section 3.5 provides insight into gener-
alizing the technique and the implementation to other IDEs
and recommendations.

3.1 Computing Quick Fix consequences
Quick Fix Scout uses the speculative analysis algorithm, de-
scribed at a high level in Figure 6, to compute the conse-
quences of Quick Fix proposals. Quick Fix Scout maintains
a separate, hidden copy of the developer’s code and performs
all its analysis on that copy, to avoid disturbing the devel-
oper’s workspace. (Section 3.2 further describes the use of
the copy.) Whenever the developer introduces a new com-
pilation error or fixes an old one (line 2), Quick Fix Scout
applies each proposal to the copy (line 5), one at a time, saves
and builds the copy (line 6), and associates that proposal with
the set of compilation errors that remain (line 7). Quick Fix
Scout then undoes the proposal to restore the copy’s state
(line 8). Quick Fix Scout updates the Quick Fix dialog after
computing the consequences of all the proposals (line 10).

3.2 Managing a copy of the developer’s code
Quick Fix Scout maintains a copy of the developer’s
workspace. The copy is changed in two ways:

• Whenever the developer edits the main workspace, the
copy is edited to keep it in sync with the mail workspace.
Quick Fix Scout uses Eclipse’s resource change listeners
to listen for edits.

• Quick Fix Scout applies Quick Fix proposals, analyzes
the consequences, and reverts the modifications.

Suppose the developer makes an edit while Quick Fix
Scout is applying and reverting proposals. If the edit does not
change the current compilation errors, then Quick Fix Scout
buffers the changes until its speculative analysis completes,

and only then applies them to the copy. If the edit does
change the current compilation errors, then Quick Fix Scout
abandons and restarts its speculative computation. This
prevents stale results from being displayed and improves
responsiveness.

3.3 Optimizations for a responsive UI
Ideally, Quick Fix Scout computes the consequences of a
new error’s proposals in the time between when the developer
introduces the error and invokes Quick Fix. Quick Fix Scout
includes the following optimizations and heuristics:
• It only recomputes consequences if a code change affects

the compilation errors, as described in Section 3.2.
• It uses a user-adjustable typing session length to identify

atomic sets of changes. A series of edits without a
typing-session-length pause constitute an atomic set of
edits. Quick Fix Scout waits for an entire atomic session
to complete before recomputing consequences. Thus,
for example, Quick Fix Scout ignores the temporary
compilation errors that arise in the middle of typing a
complete token.

• It considers first the errors that are closest to the cursor in
the currently open file.

• It caches the consequences (i.e., the remaining compila-
tion errors) for each proposal and uses the cache whenever
Eclipse offers the same proposal at multiple locations.

• It updates the Quick Fix dialog incrementally, as results
for errors (but not individual proposals for each error)
become available. This is shown in Figure 6.

In general, each proposal application is a small change and,
even for large projects, Eclipse can incrementally compile
the updated project extremely quickly. Therefore, Quick
Fix Scout’s computation scales linearly with the number of
proposals (which is proportional to the number of compilation
errors), and independently of the size of the project. During
typical coding, at any particular time, a project has several
compilation errors with several proposals for each. The
total number of proposals is typically less than a couple
hundreds. As a worst-case example, we experimented with
an 8K-line project with 50 compilation errors and 2,400
proposals. A 2.4GHz Intel Core i5 (quad core) MacBook
Pro with 8GB of RAM computed all the consequences
in 10 seconds, on average (computed over 10 consecutive
computations, after allowing Eclipse’s incremental compiler
to optimize). This suggests Quick Fix Scout can scale well
to large projects. Finally, since each proposal is analyzed
separately, the analysis can be parallelized, though we have
not yet implemented that functionality.

3.4 Current implementation limitations
There are at least four ways to invoke Quick Fix in Eclipse:
(1) by pressing the keyboard shortcut, (2) by selecting Quick
Fix through the context menu, (3) by clicking on the icon on

the left of the screen, and (4) by hovering the mouse over the
compilation error. Internally, the first three methods create
a Quick Fix dialog and the last method creates a Hover Dia-
log. The Hover Dialog is handled by org.eclipse.jdt.ui

plug-in and the Eclipse installation does not permit us to mod-
ify this plug-in as we modified org.eclipse.jface.text.
Though we have an implementation that works in debug
mode for the Hover Dialog, our installation fails when it in-
cludes a modified jdt.ui. A future version of Eclipse will
include a public API for reordering content assist type rec-
ommendations (e.g., auto-complete and Quick Fix),2 which
would simplify our implementation and might remove this
limitation.

For each proposal, the Eclipse API provides an undo
change that rolls back the associated proposal application.
After analyzing each proposal, Quick Fix Scout uses this
mechanism to return the copy project to its initial state. The
proposals “Change compilation unit to ‘typeName’ ” and
“Move ‘typeName’ to ‘packageName’ ” have a bug in their
implementation: the corresponding undos do not restore the
project to its original state.3 We have reported both bugs to
Eclipse and they have been reproduced by the developers, but
they have not yet been resolved. Quick Fix Scout must either
skip analyzing these two proposals or re-copy the copy project
after their analysis. Since re-copying can take considerable
time for large projects, for performance reasons, the current
implementation skips the analysis of these proposals and
produces no consequence information for them, leaving the
appropriate lines in the Quick Fix dialog unaugmented.

Quick Fix Scout uses an internal Eclipse API to apply
proposals to the copy project. By default, this API acts
as a no-op for the proposals that require user interaction.
Therefore, currently, Quick Fix Scout does not compute the
consequences of these proposals and leaves the appropriate
lines in the Quick Fix dialog unaugmented. However, to our
best knowledge, there are only four such proposals: Create
class, interface, annotation, and enum ‘typeName’. These
proposals do not modify existing code, but instead create
new code. Therefore, it is relatively simple for developers to
mentally predict their consequences.

3.5 Generalizing beyond Quick Fix and Eclipse
The ideas we demonstrated on Quick Fix Scout within
Eclipse also apply to engines that produce other types of
recommendation, such as refactorings and automatic code
completions, and to other IDEs, such as NetBeans, IntelliJ,
and Visual Studio.

Analysis of the possible future states of a non-pure rec-
ommendation — that modifies the source code when applied
— cannot be applied to the developer’s working copy as it

2
http://blog.deepakazad.com/2012/03/

jdt-3842-m6-new-and-noteworthy.html

3
https://bugs.eclipse.org/bugs/show_bug.cgi?id=338983 and

https://bugs.eclipse.org/bugs/show_bug.cgi?id=339181

might interfere with development. Most popular types of
recommendations, such as refactorings, automatic code com-
pletions, and automatic code corrections, are non-pure code
transformations. Section 3.2 proposes one way to separate the
analysis from the developer’s working copy using a code copy.
Although this method uses Eclipse-specific constructs, such
as resource change listeners, these constructs are a common
design pattern available in all major IDEs. Therefore, the use
of code copies for background analysis integration, without
disturbing the developer’s possibly active code, generalizes
to other IDEs and recommendations.

Any recommendation may become obsolete when the code
changes. Thus, most of the optimizations and heuristics in
Section 3.3 apply to other recommendations. For example,
automatic code completions that are closest to the current
cursor position can be prioritized and computed first.

Finally, Quick Fix Scout is an instantiation of speculative
analysis: the future states are generated via Quick Fix
proposals, and the consequences are represented by the
number of remaining compilation errors. By generating
future states and representing consequences in other ways,
speculative analysis can generalize to other consequences
and recommendation engines. For example, refactoring
suggestions can generate future states, and failing tests could
represent the consequences.

4. Global Best Quick Fixes
Quick Fix Scout helps developers to quickly locate the
best local proposals — the proposals that resolve the most
compilation errors — by sorting them to the top in the
Quick Fix dialog. However, sometimes, Eclipse offers the
best proposal to fix an error at a different location than the
error itself (recall Section 2). Quick Fix Scout’s speculative
analysis handles such situations because the analysis is global
and applies to all compilation errors and proposals in the
project, thus computing the information necessary to offer
the global best proposal at all the relevant locations [11].
Figure 7 (the Quick Fix Scout equivalent of Figure 4) shows
a global best proposal at the top of the dialog. That proposal is
suggested by Eclipse at a different compilation error location,
and is not displayed by the original Quick Fix.

For global best proposals, Quick Fix Scout adds the
following context information:

1. The location of the error where Eclipse offers the proposal
(Motivation.java:5:17 in Figure 7).

2. The remote context that will be modified (‘sTRING’ is
added to the original message Change to ‘String’ in
Figure 7).

While this context information is not necessary for local
proposals, it is useful when the proposal is displayed at a dif-
ferent location than the error to which it directly applies. For
example, a developer may interpret Change to ‘String’

http://blog.deepakazad.com/2012/03/jdt-3842-m6-new-and-noteworthy.html
http://blog.deepakazad.com/2012/03/jdt-3842-m6-new-and-noteworthy.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=338983
https://bugs.eclipse.org/bugs/show_bug.cgi?id=339181

Figure 7. Quick Fix Scout computes the global best
proposal for each compilation error and adds it to the Quick
Fix dialog for that error. The addition of the associated error
location (Motivation.java:5:17) and the associated error
context (‘sTRING’) distinguish global best proposals from
normal proposals. If the global best proposal is already one
of the local proposals, Quick Fix Scout makes no additions.

incorrectly, without knowing what token, and on what line,
will be changed to ‘String’.

As a consequence of the above process, global best pro-
posals are only shown if they resolve the local error, among
other errors. While it is possible to augment the dialogs of all
errors with the proposal that resolves the most errors in the
project overall, we believe that showing a fix for an unrelated
error might confuse developers. However, if invoked on a
location without a warning or a compilation error, Quick Fix
Scout does show the proposal that resolves the most errors
(Figure 8).

One of the controlled experiment (Section 5.2) participants
articulated the usefulness of global best proposals:

“[Global best proposals] were great, because hon-
estly the source of error is often not at the [location
where I invoke Quick Fix].”

5. Evaluation
Our evaluation was based on two activities. First, over a
roughly one-year period, we distributed a version of Quick
Fix Scout to a collection of 13 friendly users (including three
of the authors) and gathered information about their Quick
Fix and Quick Fix Scout behavior in their normal workflow
(Section 5.1). Second, we ran a controlled experiment with
a within-participants mixed design across 20 participants,
asking them to resolve various compilation errors on code
they had not previously seen (Section 5.2).

Figure 8. If invoked on a location without a warning or
a compilation error, Quick Fix Scout shows the proposals
that resolve the most errors whereas the default implementa-
tion would only inform the user that there are no available
proposals for that location.

The friendly users selected, at their discretion, to use
either Quick Fix or Quick Fix Scout during each logged
session. The design of the controlled experiment determined
the situations in which participants used Quick Fix and Quick
Fix Scout.

For both activities, we acquired data with an instrumented
version of the tool. The tool logs:

• whether Quick Fix or Quick Fix Scout is is running,
• the proposals offered by Quick Fix or Quick Fix Scout,
• whether the user selected a Quick Fix proposal or canceled

the invocation,
• which proposal the user selected, if any, and
• how long it took the user to either make a selection or

cancel the invocation.

The tool also tracks information that lets us detect some
situations in which a user applies a proposal but soon after
undoes that proposal.

5.1 Case study: friendly users
The goal of our informal case study was to understand how
Quick Fix is used “in the wild” by developers. We wished to
investigate the following questions:

• Does the ordering of the displayed proposals affect which
proposal is selected?

• Does the number of proposals displayed affect which
proposal is selected?

• Does the kind of proposal displayed affect which proposal
is selected?

5.1.1 Case study design
Over approximately one year, 13 developers — including
three of the authors — ran our tool and allowed us to view its
logs. For each Eclipse session, each participant was free to
use either the standard Quick Fix or our Quick Fix Scout; all
sessions were logged.

Standard Quick Fix Quick Fix Scout
User # completed QF selection rate # completed QF selection rate
ID sessions 1st 2nd 3rd top 3 sessions 1st 2nd 3rd top 3
1 4 100% 0% 0% 100% 1 100% 0% 0% 100%
2 0 — 1 100% 0% 0% 100%
3? 45 64% 16% 13% 93% 362 81% 15% 2% 98%
4 167 78% 20% 1% 99% 0 —
5 17 47% 24% 0% 71% 0 —
6? 25 40% 24% 8% 72% 22 55% 27% 0% 82%
7? 82 70% 22% 2% 94% 28 68% 18% 0% 86%
8 9 67% 22% 11% 71% 0 —
9 7 71% 0% 0% 71% 10 60% 10% 10% 80%
10 6 33% 17% 33% 83% 0 —
11 0 — 0 —
12 6 17% 0% 17% 34% 0 —
13 0 — 2 50% 0% 0% 50%
All 368 69% 20% 4% 93% 426 78% 15% 2% 95%

Figure 9. Case study information. A ? in the User ID indicates the participant is an author of this paper. Completed sessions are
the number of times the user invoked Quick Fix and selected a proposal. For each of the first three proposals in the Quick Fix
menu, we report how often that proposal was selected. For example, user 9 never selected the second or third offered proposal
from a standard Quick Fix menu, but did so when using Quick Fix Scout.

5.1.2 Case study results
Figure 9 shows that users selected the first (top) proposal 70%
of the time, one of the top two proposals 90% of the time, and
one of the top three proposals 93% of the time. For Quick Fix
Scout sessions, the percentages are slightly higher, at 78%,
93%, and 95%. Given the small difference, and that three
of the participants are authors, this data does not confirm a
hypothesis that Quick Fix Scout is different from Quick Fix
in this dimension.

For the completed sessions, Quick Fix offered as many
as 72 (mean=5.7, median=2) proposals. For the canceled
sessions, Quick Fix offered as many as 80 (mean=6.4, me-
dian=4) proposals. In contrast, for the completed sessions,
Quick Fix Scout offered as many as 38 (mean=4.2, median=2)
proposals. For the canceled sessions, Quick Fix Scout offered
as many as 27 (mean=5.1, median=3) proposals. These data
may suggest that when a user does not find an expected or a
useful proposal easily, the invocation is more likely to be can-
celed. To investigate this further, we looked for a correlation
between the number of proposals offered in the dialog and
the session completion rate. We found no such correlation,
further suggesting that as long as the correct proposal is lo-
cated near the top of the list, the number of proposals shown
might not have an effect on developers’ decisions.

Eclipse documentation categorizes the Quick Fixes (see
the column headings in Figure 10).4 Five out of the nine
proposal types represent 92% of all selected proposal types.

4
http://help.eclipse.org/galileo/index.jsp?topic=/org.

eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.

htm

Figure 11 presents the most-frequently selected propos-
als and their selection ratios. Except for one user, these six
proposals constitute about 80% of the selected proposals.
Note the similarity in selection ratio between the proposals
“Import . . . ”, “Add Throws Declaration”, and “Add Unim-
plemented Methods” and their types “Types”, “Exception
Handling”, and “Constructor” respectively. The “Change to
. . . ” proposal falls into “Methods” and “Fields & Variable”,
depending on its recipient.

Though there is some variation between participants, the
results suggest that all proposals do not have the same
importance: there are a few proposals that are favored by the
developers. This observation can be explained by the nature
of these proposals. For example, the “Import . . . ” proposal is
offered whenever the developer declares an unresolvable type.
If the developer makes this mistake intentionally, most of the
time, she either wants to import that type or create a new type
with that name. Therefore, there is a high probability that one
of these proposal will be selected. “Add throws declaration”
and “Surround with Try/Catch” are two proposals that are
always offered for exception-handling-related compilation
errors. When there is an exception-handling error, it is very
likely that the developer will either propagate that exception
or handle it immediately, which suggests that one of these
proposals will be selected.

The imbalance in proposal selection rate can be used to
improve Quick Fix by prioritizing proposals with respect to
the user’s history. Bruch et al. [1] have already done this for
auto-complete.

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm

User Exception Fields & Package Build Path
ID Types Handling Methods Constructors Variables Other Unknown Declaration Imports Problems
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 26% 22% 29% 11% 9% 1% 3% 0% 0% 0%
4 2% 65% 11% 10% 1% 5% 2% 0% 4% 0%
5 94% 0% 0% 0% 6% 0% 0% 0% 0% 0%
6 51% 19% 17% 0% 2% 0% 6% 0% 4% 0%
7 49% 0% 13% 9% 14% 7% 3% 5% 0% 1%
8 44% 0% 0% 11% 33% 11% 0% 0% 0% 0%
9 59% 18% 6% 6% 12% 0% 0% 0% 0% 0%
10 67% 0% 0% 0% 33% 0% 0% 0% 0% 0%
11 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
12 0% 0% 83% 0% 17% 0% 0% 0% 0% 0%
13 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
All 30% 27% 21% 10% 8% 3% 3% 3% 1% 1%

Figure 10. Proposal types and their selection ratios during the case study. The proposals whose type was unclear are listed as
“Unknown”.

5.2 Controlled experiment: graduate students
The goal of our controlled experiment was to determine
whether users behave differently when using Quick Fix and
when using Quick Fix Scout.

Each participant performed two sets of tasks — a and b
task sets — of 12 tasks each. Each task presented the partici-
pant with a program that contained at least two compilation
errors and required the participant to resolve all the compila-
tion errors. The non-compilable program states were chosen
randomly from the real development snapshots captured dur-
ing the case studies from Section 5.1. For 6 of the tasks in
each task set, we manually seeded each task with either 1 or
2 additional mutation errors, such as changing a field type or
a method signature. The mutations introduced an average of
2.8 extra compilation errors per task.

Our study answers two research questions:
RQ 1: Does the additional information provided by Quick
Fix Scout — specifically, the count of remaining compilation
errors, and the coloring and reordering of proposals — allow
users to remove compilation errors more quickly?
RQ 2: Does Quick Fix Scout affect the way users choose
and use Quick Fix proposals?

5.2.1 Controlled experiment design
We recruited 20 participants, all graduate students who were
familiar with Quick Fix but had never used Quick Fix Scout.5

We used a within-participants mixed design. We consid-
ered two factors: the tool or treatment factor (Quick Fix vs.
Quick Fix Scout), and the task factor (a vs. b task sets). To re-
duce the confounding effects from developer differences and
learning effects, we defined four blocks — the cross-product

5 Approved human subject materials were used; participants were offered a
$20 gift card.

of the two factors. We used a balanced randomized block pro-
tocol, randomly selecting which participants perform which
block with a guarantee that each block is performed an equal
number of times. (We rejected a full within-participants facto-
rial design because of the learning effects we would anticipate
if a participant performed the same set of tasks twice using
Quick Fix and then Quick Fix Scout or vice versa.)

Each participant received a brief tutorial about Quick
Fix Scout, performed the two blocks (task sets), and took
a concluding survey comparing Quick Fix Scout and Quick
Fix around the two blocks. The two blocks differed in both
the tool/treatment factor (from Quick Fix to Quick Fix Scout,
or vice versa) and also the task factor (from the a task set to
the b task set, or vice versa).

To answer RQ 1, we measured the time it took participants
to complete tasks. In addition to the time per task group (a
and b), we calculated per-task time by using the screen casts.
The beginning of a task is defined to be the time when the
participant opens the related project for the first time and the
end of a task is defined to be the time when the participant
resolved all compilation errors in the task and was satisfied
with the implementation.

To answer RQ 2, we measured whether the user selected
a proposal after invoking the Quick Fix menu or canceled
the menu, how long it took the user to make that decision,
which proposal the user selected, and whether the user undid
a selected proposal.

5.2.2 Controlled experiment results
We used R to perform a 4-way blocked MANOVA test utiliz-
ing all independent and dependent variables. This minimizes
the risk of a type 1 statistical error. All independent vari-
ables (user, Quick Fix vs. Quick Fix Scout, task, and order of

User Add Throws Create Add Unimplemented Surround with
ID Import . . . Declaration Method . . . Change to . . . Methods Try/Catch Total
1 100% 0% 0% 0% 0% 0% 100%
2 100% 0% 0% 0% 0% 0% 100%
3 24% 21% 21% 10% 7% 0% 83%
4 2% 47% 11% 1% 8% 14% 83%
5 76% 0% 0% 6% 0% 0% 82%
6 34% 11% 2% 26% 0% 6% 79%
7 37% 0% 11% 7% 9% 0% 64%
8 44% 0% 0% 33% 11% 0% 88%
9 53% 18% 0% 24% 6% 0% 100%
10 50% 0% 0% 50% 0% 0% 100%
11 0% 0% 0% 0% 0% 0% 0%
12 0% 0% 0% 83% 0% 0% 83%
13 0% 0% 0% 0% 0% 0% 0%
All 25% 23% 15% 10% 7% 4% 84%

Figure 11. Most-frequently selected proposals and their selection ratios for the case study. Proposals that are selected less than
3% overall (represented by the “All” row) are excluded.

treatment 1st 2nd all
type treatment treatment treatments

a QF 27m 19m 23m
QFS 17m 15m 16m

b QF 31m 22m 27m
QFS 36m 21m 29m

QF 29m 20m 25m
QFS 26m 18m 22m

Figure 12. Mean time to remove compilation errors, in
minutes.

task) had statistically significant effects, so we examined the
analysis-of-variance results of the MANOVA test.

RQ 1 Participants completed tasks 10% faster, on average,
when using Quick Fix Scout than Quick Fix (Figure 12).
However, this result was not statistically significant (p=.11).

All the other independent variables did have statistically
significant effects on task completion time: user (p=5⇥10�7),
task (p=2⇥10�16), and order (p=3⇥10�6).

Even the task group had an effect (p=3⇥10�5): tasks in
the b group were harder, and in fact five participants could not
complete all tasks in b. We had not anticipated any difference
between the task groups. Future work should investigate how
the b tasks differ from the a tasks and why Quick Fix Scout
caused a slight (but not statistically significant) slowdown on
the b tasks. Per-task descriptive statistics appear in Figure 13.

There is a learning bias (p=4⇥10�8): the participants
completed a task set 22% faster if it was their second task
set. Possible explanations for this bias include participants
getting used to resolving compilation errors and participants
becoming familiar with the code (since multiple tasks were
drawn from the same development projects).

RQ 2 Figure 14 summarizes the data we collected regarding
user behavior with respect to Quick Fix.

Use of Quick Fix Scout improved the best proposal
selection rate by 14% (p=10�8). This increase and the
frequent (75%) usage of global best proposals suggest that
the participants were resolving more compilation errors per
Quick Fix invocation with Quick Fix Scout. Though the
difference between the total number of Quick Fix invocations
is low (36) between treatments, we believe that the Quick
Fix Scout increased usefulness of completed Quick Fix
invocations, which helped the participants to save time overall.
One participant noted:

“With [Quick Fix Scout] I had a much better idea
of what the error was. . . I found [Quick Fix] to be more
vague. . . ”

Use of Quick Fix Scout increased by .8 seconds the time
spent selecting a proposal (p=.004). Possible explanations
for this phenomenon include that (1) the Quick Fix Scout dia-
log contains extra information that the participants took extra
time to process, and (2) Quick Fix Scout may take time to
compute causing the participants to wait for the information
to appear. Explanation (1) also explains the overall productiv-
ity improvement. If the participant gets enough information
from the dialog, she could resolve the error without having
to investigate the related code. Supporting this hypothesis,
half of the participants agreed that they needed to type more
manually — instead of using Quick Fix proposals — to re-
solve compilation errors when not using Quick Fix Scout
(Figure 17).

Use of Quick Fix Scout did not have any other statistically
significant effects. This stability between treatments strength-
ens our hypothesis that Quick Fix Scout did not change the
way participants used Quick Fix, rather the extra information

Figure 13. Median, minimum, and maximum time spent to complete each task by participants in seconds with and without
Quick Fix Scout. The first 12 tasks make up the a set and the last 12 tasks make up the b set. The tasks with seeded errors are
followed by an asterisk. Outliers are represented as small circles.

provided by Quick Fix Scout increased participants’ under-
standing of the code and helped them make better decisions.
One participant noted:

“It was pretty apparent after using regular Quick
Fix second, that [Quick Fix] Scout sped things up. I
got frustrated as I’d have to scan from error to error to
fix a problem rather than just go to the first error I saw.
What’s more, I had to spend more time staring at the
[Quick Fix dialog] often to find that there was nothing
relevant.”

The data, the analysis, and the qualitative insights from
the case study and controlled experiment participants suggest
that RQ 2 holds: Quick Fix Scout indeed changes the way in
which users choose and use Quick Fix proposals. We have
not teased out which aspects of Quick Fix Scout have the
most influence.

6. Threats to Validity
We assess our evaluation activities in terms of simple charac-
terizations of internal and external validity. Internal validity
refers to the completeness and the correctness of the data
collected through the experiments. External validity refers to
the generalizability of our results to other settings.

One threat to internal validity is that, due to implemen-
tation difficulties, we log all Quick Fix invocations except
those invoked through the Hover Dialog. We tried to limit
this threat by rejecting participants who indicated that they
consistently use Hover Dialog for invoking Quick Fix and by
mentioning this restriction to accepted participants, recom-
mending that they invoke Quick Fix in a different way. So
the data we logged about invocations is accurate, although it
may be incomplete.

Another threat to internal validity is in our computation of
which proposal resolves the most errors. Since the developer
might complete a Quick Fix invocation before the speculation
computation completes, and because some proposals are
omitted a priori (for example, a “Create class” proposal),
we may not always log the number of compilation errors that
would remain for every Quick Fix proposal. In some cases,
these omitted proposals could resolve more compilation
errors than the ones we identify as resolving the most errors.
In our case study, only 6% of all completed Quick Fix
invocations are completed before the speculative analysis
finishes. Further, in our case study, none of the users selected
instances of the a priori omitted proposals.

In addition to common external validity threats (such
as having students rather than professional developers as

invocations undone +invs. avg. time 1st prop. 2nd prop. 3rd prop. BP GBP
treatment (invs.) invs. rate rate +invs. -invs. rate rate rate rate rate

a QF 554 17% 58% 3.0s 6.8s 79% 18% 0% 76%
QFS 449 10% 68% 4.6s 8.8s 79% 16% 0% 90% 79%

b QF 572 13% 56% 4.3s 7.9s 73% 20% 2% 71%
QFS 631 17% 55% 4.4s 6.8s 71% 22% 2% 85% 67%

QF 1116 15% 57% 3.7s 7.4s 76% 19% 1% 73%
QFS 1080 14% 60% 4.5s 7.4s 75% 19% 1% 87% 75%

Figure 14. Quick Fix and Quick Fix Scout invocation duration and proposal selection rate results. Invocations that were
immediately undone by the participant are excluded. + and - invocations are ones for which the participant selected and did
not select a proposal, respectively. For each treatment, we report the rates with which participants chose the 1st, 2nd, and 3rd

proposal, as well as the best (BP) and global best proposals (GBP). Best proposals are defined as the proposals that resolve the
highest number of compilation errors for a given Quick Fix invocation.

participants), a key threat is the decisions we made about
which programs to use in the controlled experiment:

• Using small programs with multiple compilation errors.
• Using snapshots from the case study participants to popu-

late our tasks in the controlled experiment.
• Adding seeded errors to half of the snapshots using

mutation operators, as well as using a specific set of
mutation operators.

Although there are strong motivations for each of these
decisions in our experimental design, they could still, in
principle, lead to inaccurate conclusions about how Quick
Fix Scout would work if it were broadly distributed and used.

7. Related Work
The interest in software recommendation systems — “soft-
ware . . . that provides information items estimated to be valu-
able for a software engineering task in a given context” [15]
— has grown over the past few years, with an increasing
number of research results and tools, as well as an ongoing
workshop [6].

Work in recommendation systems includes: defining
recommendations for new domains, such as requirements
elicitation [5] and team communication [17]; frameworks for
defining recommendation systems [9]; and techniques for
choosing recommendations to include in a system, such as
data mining [16].

Some of efforts that are more directly relevant to Quick Fix
Scout also aim to improve IDE recommendations. Robbes
and Lanza propose eight different ways to reorder code-
completion recommendations; they evaluated these tech-
niques on a realistic benchmark, and show that reordering
the matches based on historical usage provides the greatest
improvement [14].

Bruch et al. reorder and filter the Eclipse auto-complete
dialog using mined historical data and developer usage
habits [1]. Recently, Perelman et al. showed that Visual
Studio auto-complete (IntelliSense) can be improved by

using developer-supplied partial types, to search all APIs
for auto-completions that would transform the input type to
the expected output type [13].

In contrast to the first two of these approaches, which
rely on past usage patterns, Quick Fix Scout reorders rec-
ommendations based on information about properties of the
program that will be created if a recommendation is selected.
In contrast to the third approach, the developer need not add
any information to the program for Quick Fix Scout (or, of
course, Quick Fix) to work. In addition, we have recently
shown how to improve IDE recommendations by considering
the interactions between existing recommendations [11]; this
is a key motivation for global best proposals (Section 4).

In addition to industrial efforts related to Quick Fix,6 some
research efforts address various aspects of Quick Fix. For
example, a paper on automatic refactoring in the face of prob-
lems such as references to unavailable declarations mentions
an experimental participant’s idea to augment the system with
invocations to Quick Fix [8]. As another example, a recom-
mendation system approach to increasing reuse also suggests
integrating their system through Quick Fix [7].

Quick Fix Scout is built on speculative analysis: a tech-
nique that computes precise information about likely future
states of a program and presents this information to the de-
veloper so that she can make better and more informed deci-
sions [2]. Applying speculative analysis on collaborative soft-
ware development [4], we built Crystal [3]: a tool that notifies
developers as soon as a conflict emerges. The biggest differ-
ence between Crystal and Quick Fix Scout is the granularity
of the speculation. For collaboration conflicts, it is acceptable
if the developer is notified after the conflict emerges since
she would still be able to find the reason of the conflict and
coordinate it. As a result, Crystal does not have to work on
the most recent copy of the project and might report results
with some delay. However, when a developer invokes Quick
Fix, she needs the results for the recent version of the project
as the results from any previous version is not acceptable and

6
http://eclipse.org/recommenders

http://eclipse.org/recommenders

Status in the Java Know- Eclipse Know- QF Usage Keyboard Quick Context
User ID Department ledge (Years) ledge (Years) Frequency Shortcut Fix Icon Menu Hovering
CS01 4th year BS 6 3 2 4 4 4
CS02 1st year PhD 4 1.5 1 4
CS03* 2nd year PhD 7 7 4 4 4
CS04 1st year Post-doc 13 9 3 4 4
CS05 6th year PhD 2 2 3 4 4 4 4
CS06* Assistant Prof. 11 4 4 4 4 4
CS07* Assistant Prof. 12 10 4 4 4
CS10 5th year PhD 7 3 2 4 4 4
CS12 3rd year PhD 7 6 4 4 4
CE01 1st year PhD 3 3 3 4 4 4
CE02 2nd year PhD 11 5 3 4 4 4 4
CE03 2nd year PhD 10 10 3 4
CE04 5th year PhD 10 9 1 4 4
CE05 1st year PhD 3 2 2 4 4
CE06 2nd year PhD 1 1 1 4
CE07 2nd year PhD 2 2 1 4 4
CE08 3rd year PhD 10 8 3 4 4 4
CE09 2nd year PhD 8 2 3 4 4
CE10 2nd year PhD 5 5 2 4 4
CE11 2nd year PhD 5 5 2 4 4
CE12 3rd year PhD 3 2 1 4 4
CE13 6th year PhD 10 3 3 4 4
CE14 2nd year PhD 6.5 6.5 4 4 4 4
CE15 1st year PhD 7 3 2 4 4
CE16 2nd year PhD 6 7 1 4 4
CE17 3rd year PhD 3 1 1 4
CE18 2nd year PhD 8 3 1 4 4 4
CE19 3rd year PhD 4 2 3 4
CE20 2nd year PhD 4 4 3 4 4 4

Figure 15. Case study and controlled experiment participants familiarity with Java, Eclipse and Quick Fix. “CS” and “CE”
prefixes in user id represent case study and controlled experiment participants respectively. QF Usage Frequency is how
frequently the participants use Quick Fix on a scale from 0 to 4, 0 meaning never and 4 meaning very frequently. A check mark
in the last four columns represent that the participant prefers Quick Fix using the method in the column header. Case study
participants # 8, 9, 11, and 13 are not shown since they have not completed our survey.

actionable. In addition, the developers want to see the results
as soon as the Quick Fix dialog is created since it takes a
couple of seconds for them to decide what to choose.

8. Contributions
Quick Fix Scout is an enhancement of Eclipse’s standard
Quick Fix that computes and reports to the user the number
of compilation errors that would remain in the program for
each Quick Fix proposal. Our prototype Eclipse plug-in
addresses issues ranging from challenges in the user interface
(additional information must be presented in roughly the
same space used by the Quick Fix dialog) to challenges in
keeping a background copy of the developer’s code in sync
with the dynamically changing code (Quick Fix Scout uses
a copy to speculatively apply the proposals). We evaluated

Quick Fix Scout in two ways: an informal case study of
how a set of friendly users use both Quick Fix and Quick
Fix Scout in their own work, and a 20-user, within-subjects,
mixed-design controlled experiment that compares Quick Fix
and Quick Fix Scout. Users fixed compilation errors 10%
faster, on average, when using Quick Fix Scout, although this
improvement was not statistically significant.

We are considering several improvements to Quick Fix
Scout. First, if errors remain after applying a proposal, Quick
Fix Scout can apply the approach repeatedly until all compi-
lation errors are resolved or no progress can be made. Such
multiple-ply speculation can identify proposals that resolve
few errors but lead Quick Fix to generate new proposals that
may resolve more errors. One goal of the approach would
be to produce the smallest set of consecutive proposal appli-

Question S. Agree Agree Neutral Disagree S. Disagree N/A
Number of remaining compilation errors was helpful. 4 13 2 1 0 0
Reordering of proposals was helpful. 7 13 0 0 0 0
Coloring of proposals was helpful. 5 7 5 0 0 3
I liked the user experience provided by Quick Fix Scout. 7 12 1 0 0 0

Figure 16. The four-question survey, and a summary of the participants’ responses, administered after each participant used
Quick Fix Scout. “S. Agree” (resp. Disagree) represents “Strongly Agree” (resp. Disagree).

Question Both Quick Fix Scout Quick Fix Neither
Quick Fix (Scout) is helpful when resolving compilation errors. 19 1 0 0
There was no performance issues before Quick Fix dialog is updated. 10 1 2 7
For some tasks, I undid a proposal when using Quick Fix (Scout). 12 1 7 0
I manually resolved errors more often with Quick Fix (Scout). 2 0 10 8

Figure 17. The four-question survey, and a summary of the participants’ responses, administered at the end of each participant’s
experiment session.

cations that resolves all, or the most possible, errors. This
improvement raises several performance concerns, as the
search space of proposals may be large. Second, Quick Fix
Scout can use more-complex analyses to identify the conse-
quences of possible future states. For example, if each of
multiple proposals removes all compilation errors, Quick Fix
Scout can speculatively run tests to determine which proposal
makes the most tests pass. This information would likely
allow users to make better decisions. As another example,
successfully-compiling code might still cause version con-
trol conflicts; Quick Fix Scout could integrate our approach
to proactively identify version control conflicts [4]. Again,
these analyses may be computationally intensive and raise
performance concerns for Quick Fix Scout.

The use of speculative analysis in software development is
promising but full of technical challenges. Quick Fix Scout is
an exemplar for speculative analysis. The underlying environ-
ment (Eclipse’s Quick Fix) defines the actions that generate
likely future states, and the computation of consequences
is made efficient by Eclipse’s incremental compiler. Find-
ing other domains, and other implementation techniques,
that provide an effective balance between performance and
information to usefully guide developers, is a difficult but
worthwhile effort.

Acknowledgments
We thank Deepak Azad and Dani Megert for explaining, on
the Eclipse JDT forum, the internal Eclipse API and several
implementation details. We thank Daniel Perelman, Colin
Gordon, and Ivan Beschastnikh for piloting our experiment.
We especially acknowledge the detailed and pertinent reviews
that helped us significantly improve the paper.

This material is based upon work supported by the Bradley
Chair in Computer Science & Engineering, the National Sci-
ence Foundation under Grants CNS-0937060 to the Com-
puting Research Association for the CIFellows Project and
CCF-0963757, and by Microsoft Research through a Soft-
ware Engineering Innovation Foundation grant.

A. Appendix
This section presents additional details of the data gathered
during the experiments. Figure 15 summarizes the partic-
ipants’ familiarity with Java, Eclipse, and Quick Fix. Fig-
ures 16 and 17 summarize the surveys given to the controlled
experiment participants.

References
[1] M. Bruch, M. Monperrus, and M. Mezini. Learning from

examples to improve code completion systems. In Proceed-
ings of the the 7th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC/FSE09),
pages 213–222, Amsterdam, The Netherlands, 2009. doi:
10.1145/1595696.1595728.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative
analysis: Exploring future states of software. In Proceedings
of the 2010 Foundations of Software Engineering Working
Conference on the Future of Software Engineering Research,
FoSER ’10, Santa Fe, NM, USA, November 2010. doi:
10.1145/1882362.1882375.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Crys-
tal: Proactive conflict detector for distributed version control.
http://crystalvc.googlecode.com, 2010.

[4] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive
detection of collaboration conflicts. In Proceedings of the 8th
Joint Meeting of the European Software Engineering Confer-

http://crystalvc.googlecode.com
http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf
http://alum.mit.edu/www/brun/pubs/pubs/Brun11fse.pdf

ence and ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE ’11, pages 168–178, Szeged,
Hungary, September 2011. doi: 10.1145/2025113.2025139.

[5] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and
B. Mobasher. A recommender system for requirements elici-
tation in large-scale software projects. In Proceedings of the
2009 ACM Symposium on Applied Computing, SAC ’09, pages
1419–1426, 2009. doi: 10.1145/1529282.1529601.

[6] R. Holmes, M. Robillard, R. Walker, T. Zimmermann, and
W. Maalej. International Workshops on Recommendation
Systems for Software Engineering (RSSE). https://sites.
google.com/site/rsseresearch, 2012.

[7] W. Janjic, D. Stoll, P. Bostan, and C. Atkinson. Lowering
the barrier to reuse through test-driven search. In Proceed-
ings of the 2009 31st International Conference on Software
Engineering Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, SUITE ’09, pages 21–24,
2009. doi: 10.1109/SUITE.2009.5070015.

[8] P. Kapur, B. Cossette, and R. J. Walker. Refactoring references
for library migration. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’10, pages 726–738, 2010.
doi: 10.1145/1869459.1869518.

[9] F. M. Melo and Á. Pereira Jr. A component-based open-
source framework for general-purpose recommender systems.
In Proceedings of the 14th International ACM SIGSOFT
Symposium on Component Based Software Engineering, CBSE
’11, pages 67–72, 2011. doi: 10.1145/2000229.2000239.

[10] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Quick Fix Scout. http://quick-fix-scout.googlecode.com, 2010.

[11] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Improving IDE recommendations by considering global im-

plications of existing recommendations. In Proceedings of
the 34th International Conference on Software Engineering,
New Ideas and Emerging Results Track, ICSE ’12, Zurich,
Switzerland, June 2012. doi: 10.1109/ICSE.2012.6227082.

[12] G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE? IEEE Software,
23(4):76–83, July 2006. doi: 10.1109/MS.2006.105.

[13] D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-
directed completion of partial expressions. In Proceedings of
Programming Language Design and Implementation, PLDI
’12, Beijing, China, June 2012. doi: 10.1145/2254064.
2254098.

[14] R. Robbes and M. Lanza. How program history can improve
code completion. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering,
ASE ’08, pages 317–326, L’Aquila, Italy, 2008. doi: 10.1109/
ASE.2008.42.

[15] M. Robillard, R. Walker, and T. Zimmermann. Recommen-
dation systems for software engineering. IEEE Software, 27:
80–86, 2010. doi: 10.1109/MS.2009.161.

[16] K. Schneider, S. Gärtner, T. Wehrmaker, and B. Brügge.
Recommendations as learning: From discrepancies to software
improvement. In Proceedings of the International Workshop on
Software Recommendation Systems, RSSE ’12, pages 31–32,
2012. doi: 10.1109/RSSE.2012.6233405.

[17] P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich,
M. E. Helander, P. M. Matchen, A. Empere, P. L. Tarr,
C. Williams, and S. X. Yang. Ensemble: a recommendation
tool for promoting communication in software teams. In Pro-
ceedings of the International Workshop on Recommendation
Systems for Software Engineering, RSSE ’08, pages 2:1–2:1,
2008. doi: 10.1145/1454247.1454259.

https://sites.google.com/site/rsseresearch
https://sites.google.com/site/rsseresearch
http://quick-fix-scout.googlecode.com

	1 Introduction
	2 Not Knowing the Consequences
	2.1 Visualizing Quick Fix consequences

	3 Quick Fix Scout
	3.1 Computing Quick Fix consequences
	3.2 Managing a copy of the developer's code
	3.3 Optimizations for a responsive UI
	3.4 Current implementation limitations
	3.5 Generalizing beyond Quick Fix and Eclipse

	4 Global Best Quick Fixes
	5 Evaluation
	5.1 Case study: friendly users
	5.1.1 Case study design
	5.1.2 Case study results

	5.2 Controlled experiment: graduate students
	5.2.1 Controlled experiment design
	5.2.2 Controlled experiment results

	6 Threats to Validity
	7 Related Work
	8 Contributions
	A Appendix

