
Novice-Friendly Multi-Armed Robotics
Programming

Nico Ritschel∗, Reid Holmes∗, Ronald Garcia∗ and David C. Shepherd†
∗Department of Computer Science, University of British Columbia, Vancouver, Canada

†ABB Corporate Research, Raleigh, North Carolina, United States
Email: ∗{ritschel, rtholmes, rxg}@cs.ubc.ca †david.shepherd@us.abb.com

Abstract—Collaborative robots are being applied in a growing
number of usage scenarios, but their adoption is slowed down by
the high complexity of robot programming. As previous prototype
studies have shown, block-based programming environments
can enable novice or end users to program industrial single-
armed robots. Some existing block-based tools support parallel
programming and therefore show potential to be used for multi-
armed robot programming as well. We analyze their designs
and argue how improved abstractions and visualizations could
make multi-armed parallelism accessible to novice users. Based
on this analysis, we then extract a list of features that a block-
based environment designed for multi-armed robot programming
should provide. Finally, we present our design vision for a
novel programming environment for two-armed robots, show
how it provides these features and discuss how it can enable
both novices and experienced intermediate users to perform
parallelized programming tasks.

Index Terms—Application programming interfaces, Program-
ming environments, Robot programming, Parallel programming

I. INTRODUCTION

Robots have advanced from highly specialized industrial
machines into essential tools for a wide range of tasks. One
factor that fueled this development is the rise of collaborative
robots which are designed for safe use around humans [1].
As previous work has discussed, robots can be utilized in
assembly lines where they interact with human workers in
various ways [2]. By completing certain tasks faster and with
higher precision, they can have a positive impact on both
production cost and output quality.

The increasingly complex interaction between human and
robot workers intensifies the demand for effective and flexible
programming tools. In the past, programming environments
and languages for robots were often targeted towards engineers
and software developers. As such, they typically favored fine-
grained control over all low-level operations performed by the
robot over accessibility or intuitive usability. The resulting
complexity of the tools causes them to often require years
of education and training to use them effectively. Especially
in smaller companies, this can slow down the adoption of
robotics significantly [3].

Weintrop et. al. [4] have introduced a new programming
environment called CoBlox for robotics that is specifically
targeted towards novices with little to no programming ex-
perience. This environment is based on the concept of block-
based programming, which is most commonly applied in an

educational context [5]. An initial user study on CoBlox
demonstrated that using a block-based environment for simple
robot programming tasks significantly increased success rate,
speed and satisfaction for novice users in comparison to
established programming tools [4].

A comparison of studies evaluating block-based languages
in education has shown that they are inherently more intuitive
for novice users to learn since they prevent syntactical errors,
provide additional visualization and often have more acces-
sible user interfaces than common text-based development
environments [6]. As indicated by the CoBlox user study, a
block-based robotics programming environment can therefore
provide an effective way to enable non-programmers to per-
form programming tasks that are simple but often sufficient
for practical usage scenarios.

Block-based programming environments, including the
CoBlox robotics programming environment, have a reduced
set of language features to avoid overwhelming novice users.
This can lead to the common misconception that block-based
programming languages are inherently less powerful or expres-
sive than their text-based counterparts [6]. In contrast to this
belief, abstractions for complex functionalities like distributed
systems [7] or specific parallel programming patterns [8] have
been successfully ported to block-based languages.

One area in which block-based programming lacks maturity
is enabling parallel programming. While some block-based
languages offer basic functionality for multitasking, they either
provide very limited abstraction, lack efficient visualization
or restrict the user to a very specific set of pre-defined
parallel design patterns. While some usage scenarios for block-
based languages, especially in education, are inherently free
of parallelism, this is typically not the case for robotics.

In this work, we particularly focus on the usage of block-
based languages for programming robots with two or more
arms, which show particularly high benefits in speed and
efficiency when used in collaboration with human workers [9].
Simple tasks that involve interactions between the arms are the
passing of objects, the simultaneous lifting of heavy loads or
tool-based interactions like holding and stirring that need to be
parallelized. We believe that enabling novice users to perform
these tasks without advanced programming knowledge has
great potential to further enable non-engineers to tailor robots
to their own specific needs without outsourcing this task to
expertly-trained robot programmers.



Fig. 1. Parallelism via nested do in order and do together blocks in Alice 3.

Fig. 2. Generated Java code for the block-based program shown in Figure 1

II. EXISTING APPROACHES TO PARALLELISM IN
BLOCK-BASED PROGRAMMING

The type of parallelism required to control a multi-armed
robot is significantly different from typical concurrent pro-
gramming in software: While threads typically interact via
message passing or a shared set of data, in robotics program-
ming each parallel process shares the same fixed interface to
the physical robot components. This limits the possible types
of parallel interactions possible but at the same time causes
a high requirement for synchronization between the arms to
perform even simple tasks. This means that commonly found
high-level abstractions and patterns that have been previously
ported to block-based programming [8] are not applicable.

In this section, we present two previous approaches to
block-based parallel programming that could potentially be
applied to enable block-based robot programming for multi-
armed robots. We analyze their specific strengths but also their
limitations, in particular with a focus on robotics tasks.

A. Nested Sequential and Parallel Contexts in Alice 3

Block-based programming languages, while superficially
different from established programming languages, typically
share the same foundational features and are often even based
on the same libraries. The reason for this similarity is that
block-based programming is typically implemented using the
same underlying syntactical structure, and often simply con-
verted to an existing text-based language during compilation.
While this means that block-based programming is not limited
in its expressive power compared to classical languages, it
also leads to them exhibiting the same design patterns and
paradigms as textual languages [6].

The direct mapping of block-based languages to text-based
patterns can be observed in parallel programming as well:

Figure 1 shows a parallel program written in the block-based
language Alice 3 [10] that is intended to be used in early
undergraduate programming education. In the shown example,
two bears in a virtual 3D scene are programmed to perform a
sequence of actions: Both move forward simultaneously, then
say “hello” and finally the brown bear turns left.

Alice uses two types of blocks called do in order and do
together that can be nested arbitrarily to switch between a
parallel and sequential context for the inserted statements.
While it might not be immediately obvious how the block-
based code from Figure 1 can be translated into text-based
code, the generated Java code shown in Figure 2 reveals a very
straight-forward mapping to a library method that instantiates
separate threads for each element inside the surrounding block.

The advantage of the way Alice 3 implements parallelism is
that it is intuitive to see when switches between a parallel and
a sequential context happen and in particular when threads will
be joined together. In the shown example, it is easy to explain
that both bears will start moving simultaneously, that each bear
will only say “hello” after it has moved forward, and that the
brown bear will only turn left after all other commands have
finished. On the other hand, the overall timeline of operations
is less intuitive: An inexperienced user may not be able to
immediately tell based on the code if the polar bear will
“hello” before, after or simultaneously with the brown bear.
Due to its structural similarity to the textual representation in
Java, Alice 3’s block-based code barely provides any clarity
benefits to the user.

A related issue that would affect an approach like Alice 3’s
when applied to physical robots is that it may not be clear for
users how contradicting commands are executed. For example,
Alice 3’s underlying simulation engine can handle an object
simultaneously moving forward and backward in two parallel
commands by simply adding up these geometrical movements
to cancel each other. In a real robot, trying to control the
same motor with two different speeds may result in an error,
unspecified behaviour or when executed very naively even
damage to the hardware component.

B. Control Flow Visualization in Lego Mindstorms EV3

Lego Mindstorms EV3 is another example of a block-based
language supporting parallelism. EV3 is a tool for program-
ming Lego robots which is based on the LabVIEW graphical
programming environment [11]. LabVIEW, targeted towards
engineers and scientists simulating physical components like
electrical circuits, is specifically designed with parallelism in
mind: It uses a producer-consumer mechanism for managing
the availability of input resources and data, and its simulation
can handle even the often complex dependency structures in
physical designs in parallel.

In comparison to LabVIEW, EV3 features a much simpler
user interface and block design since it is more targeted
towards children and other novice users with very little
programming experience. However, as shown in Figure 3, it
retains the basic parallelism functionality of LabVIEW: The
program shown here, which is intended to be read left-to-right,



Fig. 3. Parallelism via forking in Lego Mindstorms EV3. To synchronize
the threads, the user needs to manually implement a barrier (highlighted in
yellow) by setting a flag in each thread and then using a loop to wait until
all other threads have set theirs.

immediately splits into two separate threads (one shown on the
top and one on the bottom) after it is started. In contrast to
LabVIEW, threads in EV3 cannot be joined by connecting
them to a single successor block but run independently. They
can only be synchronized by an explicit variable- and loop-
based barrier as highlighted in yellow in Figure 3, which needs
to be hand-built by the user.

In comparison to Alice 3, the design of EV3 moves further
away from the linearized representation of parallel operations
that is typical for text-based languages. This allows it to
visualize the order of execution more intuitively on a 2D
grid as threads can be read as individual chains of blocks
in left-to-right order. A major factor that enables EV3’s more
flexible layout is the free positioning of blocks and variable-
length connectors like in a control-flow diagram. While this
feature adds a certain amount of initial complexity, it can be
particularly helpful for users familiar with the environment
who can manually structure their code much more clearly by
making use of EV3’s full 2D canvas versus Alice 3’s linear
sequence of statements.

Contrasting EV3’s advantages in visualization, the lack
of an abstracted mechanism for joining threads is likely to
pose a significant challenge to novice users. Having to write
parallel barriers by hand increases the likelihood of errors that
might be particularly hard to find and resolve for this target
audience. Further, EV3 also lacks a mechanism that prevents
or at least visualizes potential conflicts of concurrently exe-
cuted commands. Manuals and tutorials for the environment
explicitly warn users not to send commands to the same
hardware components in multiple threads since this can cause
unexpected behavior [12].

III. OUR VISION OF BLOCK-BASED PARALLELISM FOR
TWO-ARMED ROBOTS

The parallelism approaches of Alice 3 and EV3 presented
in Section II provide two fundamentally different block-based
representations for parallelism: One is very similar to text-
based high-level languages in both the level of abstraction
and linear layout it provides, while the other makes more use

Arm 1 Arm 2

Close Hand

Close Hand

Move to “Pick up”

Move to Position “Drop off”

Open Hand

Open Hand

then wait …

Move to “Handover point A” Move to “Handover point B”

Fig. 4. Envisioned example implementation of a simple object handover task

then wait …

then wait …

Arm 1 Arm 2

Move to “Pick up point A” Move to “Pick up point B”

Close Hand Close Hand

Move to “Target Point A” Move to “Target Point B”

Fig. 5. Envisioned example implementation of a simple joint load carry task

of its block-based 2-dimensional visualization but provides
little abstraction to its users. At the same time, both fail to
provide an embedded mechanism that prevents conflicts during
parallel interaction to which multi-armed robot programming
is particularly sensitive.

To combine the strengths of both approaches, we envision
a system that provides the following properties:

• Makes the canvas readable as a time-line, making it clear
which operations are executed parallel or sequentially.

• Allows users to immediately see which actions are exe-
cuted by which robot arm.

• Prevents unexpected conflicts in concurrent commands
that would lead to unexpected behavior.

• Provides an abstraction for synchronizing threads that
doesn’t require the manual set-up of low-level constructs.

A sketch of a design targeting two-armed robots that has
all of these envisioned properties can be seen in Figure 4 and
Figure 5. The figures show sample programs for two usage
scenarios: Handing over an object from one arm to another
and using two arms to jointly carry a load. Each colored box
is a block that users can drag and drop to edit the program.
In addition, the canvas is divided into sections for each robot
arm, and blocks are automatically associated with the arm’s
area they are placed in. Further, blocks are not placed freely
on the canvas but are positioned in a fixed grid of time slots
that could be visualized to the user by blocks ”snapping” into
this grid when dropped.



As only one block can be positioned per arm in each time
slot, this design implicitly prevents colliding commands for
the same arm. However, since we assume block heights to
be uniform and not dependent on the actual duration of a
single operation, there is still a need for synchronization.
To achieve this synchronization, our design automatically
highlights blocks that are placed concurrently (here by placing
them in a grey box) and adds an explicit wait operation as a
parallel barrier for both arms. In Figure 4, this synchronization
is used to ensure that both arms have reached the designated
handover point before continuing the process.

We intentionally decided against a potentially simpler im-
plicit synchronization after every block since this would limit
users in the ways they can program concurrent operations. In
Figure 5, an explicit synchronization is required after both
arms have grabbed the load before they can lift it. However,
there is no need for the first arm reaching the pick-up position
to wait for the other arm to arrive before it closes its gripper
hand. Therefore, in our design users can decide when the
final synchronization happens and add additional, potentially
unsynchronized blocks to the same continuous operation.

IV. DISCUSSION

Section III presented our envisioned design and some rather
simple usage examples. In future work, we intend to build a
prototype based on this design so that we can evaluate it and
verify our observations in experiments with real users. There
are however some open research questions relevant for actual
implementations that we want to pose and briefly discuss here:

A. Handling Procedural Encapsulation

In their design for the single-threaded block-based robot
programming interface CoBlox, Weintrop et. al. [4] introduce
so-called robot recipes to allow users to encapsulate recurring
behavior into re-usable procedures. We believe that having
such a tool for structuring and creating simple abstractions
is a powerful tool for users that our envisioned environment
should support as well. However, procedures do not fit directly
into the static grid-like timeline abstraction we envisioned.

One option to integrate procedures with our design is to
move procedures into a separate canvas that provides the same
layout divided by arms as our main design. A more flexible
option could however be to instead allow the definition of
procedures for a single arm. These could then be implicitly
parametrized based on the canvas side the procedure call is
placed in, applying only to this side’s arm. To provide users
with a maximum of design freedom, both single and multi-
arm procedures could be provided. Which of these is more
intuitive to use is a question that only future studies on real
users can answer.

B. Designs for Different Experience Levels

Many design choices, like the ability to skip block-by-block
synchronization we have presented in Section III or procedural
encapsulation as described in Section IV-A, require a careful
balancing of simplicity and power. A way to avoid such com-
promises is providing users with a choice of different interface

designs for different experience levels. Alice 3 [10] that we
have presented in Section II-A provides this functionality in
a more limited way by disabling a few advanced features like
recursion initially and requiring users to manually enable them.

An example in the context of our two-arm programming
environment could be a multi-tiered design where novices
initially see an interface similar to Figure 4 and Figure 5
but synchronization happening implicitly to reduce the optical
clutter of the user interface. Then, when users feel like
they have a solid understanding of the basic features of the
environment, they can select an extended interface with all
features as described in Section III. Once users have reached
an even higher degree of maturity in their programming skills,
more features like procedures or even multiple concurrent
operations per arm could be enabled.

ACKNOWLEDGMENT

This work is supported in part by the Institute for Comput-
ing, Information and Cognitive Systems (ICICS) at UBC.

REFERENCES

[1] P. J. Hinds, T. L. Roberts, and H. Jones, “Whose job is it anyway?
a study of human-robot interaction in a collaborative task,” Human-
Computer Interaction, vol. 19, no. 1, pp. 151–181, 2004.

[2] J. Krüger, T. K. Lien, and A. Verl, “Cooperation of human and machines
in assembly lines,” CIRP Annals-Manufacturing Technology, vol. 58,
no. 2, pp. 628–646, 2009.

[3] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” in Robotics
(ISR), 2010 41st International Symposium on and 2010 6th German
Conference on Robotics (ROBOTIK). VDE, 2010, pp. 1–8.

[4] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. ACM,
2018, p. 366.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, p. 16, 2010.

[6] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children. ACM, 2015, pp. 199–208.

[7] B. Broll, A. Lédeczi, P. Volgyesi, J. Sallai, M. Maroti, A. Carrillo, S. L.
Weeden-Wright, C. Vanags, J. D. Swartz, and M. Lu, “A visual program-
ming environment for learning distributed programming,” in Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. ACM, 2017, pp. 81–86.

[8] A. Feng, E. Tilevich, and W.-c. Feng, “Block-based programming
abstractions for explicit parallel computing,” in Blocks and Beyond
Workshop (Blocks and Beyond), 2015 IEEE. IEEE, 2015, pp. 71–75.

[9] S. Kock, T. Vittor, B. Matthias, H. Jerregard, M. Källman, I. Lundberg,
R. Mellander, and M. Hedelind, “Robot concept for scalable, flexible
assembly automation: A technology study on a harmless dual-armed
robot,” in Assembly and Manufacturing (ISAM), 2011 IEEE Interna-
tional Symposium on. IEEE, 2011, pp. 1–5.

[10] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-d tool for introductory
programming concepts,” in Journal of Computing Sciences in Colleges,
vol. 15, no. 5. Consortium for Computing Sciences in Colleges, 2000,
pp. 107–116.

[11] R. Jamal, “Graphical object-oriented programming with labview,” Nu-
clear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, vol. 352,
no. 1-2, pp. 438–441, 1994.

[12] D. Benedetelli, LEGO MINDSTORMS EV3 Laboratory: Build, Program,
and Experiment with Five Wicked Cool Robots. No Starch Press, 2013.


