
An Empirical Study on Maintainable Method Size in Java
Shaiful Alam Chowdhury
University of British Columbia

Vancouver, BC, Canada
shaifulc@cs.ubc.ca

Gias Uddin
University of Calgary
Calgary, AB, Canada

gias.uddin@ucalgary.ca

Reid Holmes
University of British Columbia

Vancouver, BC, Canada
rtholmes@cs.ubc.ca

Abstract
Code metrics have been widely used to estimate software main-

tenance effort. Metrics have generally been used to guide developer
effort to reduce or avoid future maintenance burdens. Size is the
simplest and most widely deployed metric. The size metric is perva-
sive because size correlates with many other common metrics (e.g.,
McCabe complexity, readability, etc.). Given the ease of computing
a method’s size, and the ubiquity of these metrics in industrial set-
tings, it is surprising that no systematic study has been performed
to provide developers with meaningful method size guidelines with
respect to future maintenance effort. In this paper we examine the
evolution of ∼785K Java methods and show that developers should
strive to keep their Java methods under 24 lines in length. Addition-
ally, we show that decomposing larger methods to smaller methods
also decreases overall maintenance efforts. Taken together, these
findings provide empirical guidelines to help developers design
their systems in a way that can reduce future maintenance.

CCS Concepts
• Software engineering→ Code metrics.

Keywords
SLOC, code metrics, maintenance, McCabe, Readability

1 Introduction
Software maintenance has long been identified as challenge

for software engineers [43] and maintenance costs often exceed
initial development costs [13]. Consequently, both researchers and
practitioners are keen to model future maintenance effort from
the current state of a software project—to facilitate risk planning
and to assist project optimization [20, 45, 53, 76, 79, 85, 93]. These
maintenance models rely on various metrics to provide the data
necessary to predict future maintenance challenges.

Two of the most widely adopted maintenance indicators are
change-proneness [26, 69] and bug-proneness [38, 54, 62, 85, 94].
These metrics suggest that code components (e.g., methods, classes,
or modules) that are bug- or change-prone are generally expensive
to maintain. Early identification and optimization of such compo-
nents could thus help reduce future maintenance effort. Unfortu-
nately, change- and bug-proneness of code components are not
generally available until after one or more system releases [78].

To address this shortcoming, researchers have investigated static
code metrics to learn how these metrics alias with change- and bug-
proneness (e.g., [26, 43, 62, 93]). These metrics include McCabe [52],
McClure [53], nested block depth [42], C&K [18], and size, just
to name a few. The utility of these metrics, however, has long
been debated (e.g., [25, 26, 74]). While some research has shown
that these static metrics correlate with bug- and change-proneness
(e.g.,[6, 10, 42, 47, 78]), other research has criticized these findings

(e.g., [26, 71, 74]). One underlying concern with these metrics is how
they alias with the size of the component being measured. It has
been shown that most code metrics are highly influenced by their
correlation with size [23, 26, 77]. This suggests that component size,
which is easy for software engineers to both measure and reason
about, could be the primary maintenance indicator [26].

Ultimately, developers want to be able to design their systems
in a way that reduces future maintenance effort. Unfortunately,
there is no evidence-based guidelines that developers can follow to
optimize the size of their components. In this paper we focus on
method level granularity to measure size (e.g., in contrast to class-,
or module-level granularities), because method level granularity is
desired by both developers and researchers [29, 62]. There is not
currently broad consensus for how long a method should be; for
example, consider ‘What is the ideal length of a method for you?’ [80].
The suggestions vary greatly: between 5-15 lines, 50 lines, and
100-200 lines. We propose that having evidence-based guidance to
help developers understand the relationship between method size
and software maintenance would help them better structure their
systems to reduce future maintenance effort. Therefore, this paper
describes an empirical study to investigate optimal method sizes
with respect to software maintenance.

To do this, we examined the evolution of ∼785K Java methods
from 49 open-source software projects to investigate the relation-
ship between method length and change- and bug-proneness. Based
on our study, we make the following four primary contributions to
the field of software maintenance:
Maintenance effort correlates with method length (RQ1).
Previous work has shown that both file-length [26] and module-
length [27] negatively impact maintenance; we extend these find-
ings to method-length. We also investigate the best method length
measure to use for maintenance prediction.
Methods should be 24 SLOC or fewer (RQ2). Suggesting shorter
methods are better is insufficient guidance for practical application
as there are challenges to having arbitrarily small methods. We
show that methods that are 24 or fewer SLOC are less maintenance-
prone than longer methods. We also show that in practice this
threshold is widely achievable.
Decomposed large methods undergo less maintenance (RQ3).
Complex problems often require complex solutions, which may
exceed the 24 SLOC threshold. A natural question is whether these
complex solutions are inherently maintenance-prone. We show that
in most cases, larger methods are more maintenance-prone than
methods that have been decomposed into shorter helper methods.
Controlling for size also controls other code quality metrics
(RQ4). We show that keeping method size within 24 SLOC also
improves the testability, readability, and maintainability of source
methods.

Chowdhury et al.

Taken together, this paper provides an evidence-based analysis
of the impact onmethod length on software maintenance that devel-
opers can use to reduce future maintenance effort as they write and
evolve their systems. We further show that these length guidelines
are both achievable in practice and suggest that refactoring com-
plex methods into smaller sub-methods further improves system
maintainability. To reproduce our results, we publicly share the
dataset of ∼785K methods with their change and bug information.1

2 Related Work
Maintenance effort can be estimated through external factors

such as correctness and performance of the underlying software
system. Unfortunately, these factors are hard to collect and are often
unavailable from the beginning of software development life cycle
(SDLC) [26]. Internal metrics, also known as code metrics, are easy
to collect and are available throughout the SDLC. Therefore, it has
been a holy grail to the research community to understand software
maintenance using different code metrics [18, 46, 52, 53, 62, 86].
Consequently, a significant numbers of code metrics have been
proposed and studied over the last forty years [48].

McCabe [52], or cyclomatic complexity, is a measure of the num-
ber of independent paths in a source code component. The assump-
tion is that a source code component with high McCabe score
would be hard to maintain; it would be more change- and bug-
prone [5, 6, 21, 47, 61, 62, 68, 84, 93]. Another popular code metric
is the Halstead metric, which is mainly based on the number of
operators and operands in a code component [7, 21, 35, 43, 63].
Abreu et al. [2] proposed the coupling factor metric which is based
on the client-supplier relationships among different classes.

Chidamber and Kemerer have proposed the popular suite of six
OO metrics, known as the C&K metric [18]. This suite includes
Depth of Inheritance Tree, Number of Children, and Coupling between
Object Classes. Readability as a code metric was developed by Buse
et al. [15], who modelled different code features, such as number of
comments, and number of blank lines, to a readability score. This
model was later improved by Posnett et al. [63] and Scalabrino et
al. [72]. Mo et al. [56] developed the decoupling level metric to
measure how hard it is to modify a class without affecting other
classes in a software project. Code metrics are often used to define
antipatterns (code smells)—i.e., poor design choices that make a
software less maintainable. Studies have found that classes (and
modules) with antipatterns are generally more change- and bug-
prone than classes with no, or few, antipatterns [30, 44, 70].

Unfortunately, the effectiveness of code metrics for understand-
ing future maintenance has been debated extensively. Although
many studies have been positive about the utility of reasoning
about maintenance with code metrics [6, 10, 42, 47, 78], some stud-
ies found them ineffective [26, 71, 74]. According to these studies,
size is the only code metric that can estimate maintenance to some
extent [23, 26, 32, 77], and all the other code metrics are only as
effective as their correlation strength with size [26]. A code met-
ric, such as McCabe, Halstead, or even the C&K, cannot offer any
new information about maintenance if their correlation with size is
neutralized. Size has been acknowledged as the predominant code
metric even by the studies that support the usefulness of other code

1https://github.com/shaifulcse/MaintainableSLOC-data

metrics [42, 78]. Evenmany of the code smells, or antipatterns, were
found to be directly associated with size [44]. It is no exaggeration
to state that size is “The One Metric to rule them all”.

One of the primary goals of code metric studies is to provide
guidelines about metrics thresholds for maintainability [3, 4, 8]. And
yet, despite being the most important metric, there is no systematic
study that provides guidelines about the relationship between size
and future maintainability. In this paper we focus on size thresholds
at the method-level granularity. Method level is the most desirable
to the developers, because class/file, or module-level granularities
are often too coarse to be practically useful [24, 29, 62, 75].

3 Methodology
This section describes the methodology of this paper.

3.1 Project Selection

Code metrics research relies on aggregated [26, 62, 78] or individ-
ual project analysis [43, 69, 76, 93]. In aggregated approaches, mea-
surements from a set of selected projects are merged together to pro-
duce an observation (e.g., a correlation coefficient between McCabe
and change proneness). We argue that this approach is inaccurate.
For example, the change-proneness of a method could be influenced
by factors that are project dependent, such as the number of active
contributors, their commit patterns, code review policy, and the
number of releases influences how a software evolves [33, 51, 90].
Additionally, aggregated analysis results can be heavily influenced
by a few large projects, making observations from smaller projects
unnoticeable. A more accurate approach is to analyze each project
separately to see if an observation is common across projects. This
approach, however, can be criticized for selection bias [26, 64].

We addressed the selection bias threat by selecting all the GitHub
projects used by five different previous studies (specifically from [26,
29, 60, 67, 78]), resulting in 49 open-source Java projects. Table 1
summarizes the dataset. The dataset contains projects from different
domainswith varied number ofmethods and varied average number
of revisions per method. This broad selection of a large number
of projects increases the generalizability of the observations about
codemetrics andmaintenance we canmake. One thing to note is the
low average number of method revisions in Table 1. This is because
only a small subset of methods undergo many revisions, which
increases the utility of approaches that can detect these methods:
if we can detect and improve those few high-churn methods early,
we can meaningfully reduce future maintenance effort.

3.2 Data Collection
To understand the relationship between method size and change-

/bug-proneness, we need method-level evolution history. We used
the state-of-the-art history tracing tool CodeShovel [28, 29], which
returns the complete change history of a given method. CodeShovel
also collects information about when a method was modified, who
modified it, what was modified, and why the modification took
place (i.e., commit message). CodeShovel is robust to method or file
rename operations while uncovering amethod’s history. It produces
accurate change histories for 90% methods (with 97% accuracy for
method changes).

An Empirical Study on Maintainable Method Size in Java

Table 1: Description of the top and the bottom five projects (ranked by # methods) and their method-level statistics. To save
space, the full table is shared with our dataset (stats/table-1.pdf). In total, 785,606 Java methods were extracted. Getters and
setters and methods that are younger than 2 years are excluded. Snapshot SHAs are included to aid reproducibility.

Repository # Methods # Revisions (avg) # Getters-Setters Age ≥ 2 Years # Used Methods Snapshot

hadoop 70,524 1.8 11,219 63,378 53,729 4c5cd7
elasticsearch 63,253 3.7 8,875 39,085 34,641 92be38
flink 38,482 1.9 6,790 19,967 15,792 261e72
presto 37,639 1.9 8,520 26,785 20,766 bb20eb
lucene-solr 37,600 1.6 5,625 29,287 24,641 b457c2
...
mockito 1,526 4.2 144 1,221 1,113 077562
cucumber-jvm 1,222 2.7 170 435 374 b57b92
commons-io 1,149 3.1 85 952 884 11f0ab
vraptor4 934 1.7 132 933 801 593ce9
junit4 879 3.1 56 856 801 50a285

Total 785,606 520,874

3.3 Maintenance Effort Indicators

User studies are a widely adopted approach [1, 7, 11, 15, 21, 22, 36,
43, 71, 72] for understanding maintenance effort. The maintenance
effort of a code fragment can be understood by the cognitive effort
and time required to understand the code by a selected group of
users. The outcome of user studies, however, are often not generaliz-
able [14], and contradictory conclusions can be made by comparing
two independent studies [42, 71]. We have mitigated this threat
by using change- and bug-proneness as the maintenance indica-
tors as have been widely used in previous maintenance studies
(e.g. [16, 24, 26, 65, 69, 75]).

3.3.1 Change-proneness A maintainable code fragment (a Java
method in our case) should be less change-prone: it should not
require too many revisions, and none of its changes should be too
big. Supporting this hypothesis, we opted for the following four
sub-indicators to understand how change-prone a Java method is.

#Revisions: The number of revisions, a common maintenance
indicator [5, 6, 58, 76], is the total number of times a method has
been modified, regardless of the type of modification—corrective,
adaptive, preventive, or perfective [22].

ChangeSize: The number of revisions can be misleading, be-
cause the effort required to change two Java methods with the
same number of revisions might not be the same. Also, number
of revisions can be impacted by developers’ commit habit [90].
One alternative is to use the sum of the change sizes (i.e., git
diff) [73, 76] considering all the revisions the method underwent.

AdditionOnly: Does adding new lines require the same effort
to delete existing lines? Probably not. Therefore, following prior
work [76], we also use the sum of the number of added lines only
as an indicator of change-proneness.

EditDistance: The number of added, and/or deleted lines (as
considered in git diff) can be impacted by an individual’s coding
style. It also does not differentiate between modifying a large line
and a small line. We therefore used Levenshtein edit distance [49]
as our final change-proneness indicator, as recommended by some

prior studies [71, 73, 79]. Levenshtein edit distance counts the num-
ber of characters that are added, deleted, or modified, to convert
one source code version into another.

3.3.2 Bug-proneness We consider a method as bug-prone, if it is
associated with a bug-fixing commit. In accordance with earlier
stdies [57, 67], a commit is considered as bug-fix if the its commit
message contains at least one bug related keyword: error, bug, fixes,
fixing, fix, fixed, mistake, incorrect, fault, defect, flaw. The level
of bug-proneness of a method is the number of bug-fix commits
associated with the method.

3.4 Size Calculation

Size is commonly referred to as the source lines of code (SLOC).
Some previous studies were explicit about how they calculated
SLOC (e.g., [6, 47, 62]), but some studies were not (e.g., [26, 76]). We
calculated SLOC in three different ways, to evaluate if how size is
calculated has any impact on its relationship with the maintenance
indicators, such as change- and bug-proneness.

SLOCStandard source lines of code without comments and
blank lines. This form of SLOC is widely used (e.g., [47, 66]).

SLOCAsItIs source lines of code with comments and blank lines.
SLOCPretty The same code snippet, when written by different

developers, may produce different SLOC values. By using the Pret-
tyPrinter function of the javaparser [39], we convert every source
code to a common format producing the same SLOC value for the
variants of a code snippet.

3.5 Preprocessing
Getters/setters: Getters and setters, also known as accessor

methods, are often generated automatically and create noise in code
metric studies [8, 31, 50]. Similar to earlier studies [1, 8], we filtered
them out from our dataset, before calculating any code metrics. If a
method name starts with get, has non-void return type, and does
not have any parameter, then we identify this method as a getter.
Similarly, if a method name starts with set, has one parameter and
a void return type, then we label this method as a setter. Table 1
shows the number of getters/setters for each project.

Chowdhury et al.

Controlling for Age: The Kendall’s 𝜏 correlation coefficient
between ages of methods and their number of revisions is 0.2 in our
aggregated dataset. When considered individually, some projects
show very high correlation (e.g., 0.51 for the checkstyle project).
Therefore, when analyzing the relationship between SLOC and
maintenance indicators, we should not include methods with differ-
ent ages. Generally speaking, a ten year old method will have more
chances to change than a newly introduced method, regardless of
their code complexity. To perform age normalization, we followed
a two step procedure. In step 1, we removed methods that are less
than two years old. This does not, however, solve the problem com-
pletely, because we may still compare a 2 years old with a 2+𝑥
years old method. Therefore, in step 2, we excluded all revisions
and bugs that happened after two years of a method’s life. If we set
the threshold more than two years, we lose many methods from our
dataset. As presented in Table 1, with two year threshold, we still
have 520,874 methods for our final analyses. If we set the threshold
less than two years, we lose many change and bug information,
because the window to observe changes becomes narrower.

Multiple Versions: A method can have multiple SLOCs while it
evolves. Consider a method associated with 5 SLOCs in its lifetime:
20, 50, 50, 50, 22. The method was revised 4 times after its intro-
duction, so the value of #revisions is 4. To calculate the correlation
between SLOC and #revisions, what SLOC value should represent
this method? If we take the introduction SLOC, we will map SLOC
20 to 4 revisions, which is inaccurate because the method was re-
vised only once for SLOC 20. We solve this problem by applying a
versioning technique, where the above method has three different
versions. That way version 1 has SLOC 20 with 1 revision, version
2 has SLOC 50 with 3 revisions, and version 3 has SLOC 22 with 0
revision, because the method did not change afterwards. We apply
this technique for other maintenance indicators as well.

3.6 Statistical Tests
Throughout this paper, we compare if different distributions are

statistically different. We applied the Anderson-Darling normal-
ity test [83] to some of the randomly selected distributions and
found that many of the distributions are not normally distributed.
Therefore, non-parametric tests are selected for our statistical test-
ing. For evaluating if two distributions are different, we use the
Wilcoxon rank sum test (andWilcoxon signed rank test for pairwise
comparison). For calculating the correlation coefficient between
two variables, we use the non-parametric Kendall’s 𝜏 , instead of
the Pearson’s correlation. For calculating effect sizes, we apply
Cliff’s Delta instead of Cohen’s d. In accordance with [34], we
classify an effect size either as Negligible (0 ≤ |𝛿 | < 0.147), Small
(0.147 ≤ |𝛿 | < 0.330), Medium (0.330 ≤ |𝛿 | < 0.474), or Large
(0.474 ≤ |𝛿 | ≤ 1). These non-parametric tests are widely used in
software engineering research [19, 26, 37].

4 Results
In this section, we present our findings to our four research ques-

tions. We investigate whether method size is an important factor
to understand change- and bug-proneness, what the upper-limit
of method’s size should be, whether developers should decompose
large methods into smaller ones, and if controlling for size controls
other code quality factors.

4.1 RQ1: Is SLOC correlated with change- and
bug-proneness at method-level?

0.1 0.2 0.3 0.4 0.5 0.6
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

#Revisions
NewAdditions
DiffSizes
EditDistances
Buggycommiit

Figure 1: Cumulative distribution functions of the correla-
tion between SLOC and the fivemaintenance indicators. Each
line represents 49 points for our 49 different projects. For
graph readability, number of markers has been reduced.

Figure 1 shows the distribution of Kendall’s 𝜏 correlation coeffi-
cients between SLOC and the five maintenance indicators. Correla-
tion coefficient for each project is shared with our pubic dataset as
a table as well (stats/table-2.pdf). For all projects, the correla-
tion coefficients are positive, indicating method size is an indicator
of future maintenance. When compared among the four change-
proneness indicators, SLOC performance is generally the lowest
for #revisions, and highest for EditDistance. Correlations between
SLOC and bug-proneness (i.e., #BuggyCommits) are significantly
lower than the four change-proneness indicators. This implies that,
at the method-level, code metrics are comparatively less helpful for
bug prediction than for change prediction. This complements the
recent findings of Pascarella et al. [62], who consider method-level
bug prediction as an open research problem. We argue that it is un-
realistic to expect very high correlation between a code metric and
maintenance effort. A very high correlation would mean that main-
tenance effort can be estimated just by using one code metric. This
is unrealistic because there are many factors that influence code
maintenance, such as developer habits [82], application domain and
platforms [88, 92], code clones [58], software architecture [4], test
code quality [9, 78], and changes in requirements.

We also observe that SLOC performance is not similar across
projects. For the docx4j project, SLOC correlates to change-proneness
very weakly (e.g., correlation is only 0.05 with #revisions) while
for the voldemort project the correlation is 0.56. This observation
is true for bug-proneness as well. For the cucumber-jvm project,
the correlation is only 0.05, but for the xerces2-j, the correlation is
0.29. These observations explain why cross project maintenance
prediction is still a challenging problem [81, 92].

Unless otherwise mentioned, we have considered SLOC as the
source lines of code without comments and blank lines (SLOCStan-
dard), which we found to be the most common in the literature
(e.g., [47, 66]). No previous study, however, has investigated if this

An Empirical Study on Maintainable Method Size in Java

Table 2: P-values fromWilcoxon signed rank test (i.e., pairwise test). Most of the time SLOCPretty is significantly different
than the other two (𝑝 ≤ 0.05).

Type1 Type2 # Revisions # Additions DiffSize EditDistance Bugs

SLOCStandard SLOCAsItIs 0.45 0.78 0.06 0.00 0.02
SLOCStandard SLOCPretty 0.00 0.00 0.00 0.00 0.07
SLOCAsItIs SLOCPretty 0.00 0.00 0.00 0.00 0.01

0.1 0.2 0.3 0.4 0.5 0.6
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLOCStandard
SLOCAsItIs
SLOCPretty

Figure 2: Cumulative distribution functions of the correla-
tion between different SLOC types and number of revisions.

is the best size measure to understand maintenance. With #revi-
sions as the maintenance indicator, Figure 2 shows the performance
comparison among the three different SLOC calculations (described
in Section 3.4). Both SLOCStandard and SLOCAsItIs slightly outper-
form SLOCPretty. According to the Wilcoxon signed rank test (for
pairwise testing), the performance between SLOCStandard and SLO-
CAsItIs are not statistically different (𝑝 > 0.05). Their performance,
however, are statistically different with SLOCPretty (𝑝 ≤ 0.05).
Table 2 shows the results for all the maintenance indicators.

We also calculated the Cliff’s Delta effect sizes among the perfor-
mance distributions. The differences are always negligible, except
for two cases. These two cases are between SLOCPretty and SLO-
CAsItIs: one for the DiffSize and the other for the EditDistance
indicator. The signs of the Cliff’s Delta values (+/-), however, sug-
gest that SLOCPretty performs the worst whereas SLOCStandard
performs the best, although with negligible effect sizes.
Summary: SLOC correlates with change- and bug-proneness
at the method-level granularity. SLOC’s correlation with bug-
proneness is generally lower than change-proneness. The best
way to calculate SLOC is to calculate source lines of code without
comments and blank lines.

4.2 RQ2: What is the maintainable method size?
Our previous analysis shows that method SLOC is positively

correlated with maintenance effort. This means developers should
try to keep their method size as small as possible. But how small
should methods be? Suggesting a very low upper-bound, such as
‘keep your method size within 5 SLOC’, can be impractical. In order
to find a method size limit that is realistic and maintainable at the

same time, we follow two steps. In step 1, we find a realistic method
size limit by studying all the methods from the 49 Java projects in
our dataset. In step 2, we empirically evaluate if this limit can indeed
reduce maintenance effort by reducing change- and bug-proneness.

4.2.1 A realistic upper bound of method size Alves et al. [3] pro-
posed a 6-steps systematic approach to find thresholds for any given
code metric, such as McCabe. The methodology does not depend
on intuition or expert opinion and is resilient to outlier projects.
From the source code of a set of software projects, the methodology
can automatically derive thresholds of a code metric in four sizes:
small, medium, large, and very large. We apply this methodology to
find these four thresholds for SLOC at the method-level granularity
for our dataset of 49 projects. Although we refer to [3, 8, 91] for
more details, for reproducibility, we here describe the exact process
followed. To have better understanding, let us consider two projects
each containing three methods. For the first project (𝑃1), SLOCs of
the methods are 10, 20, and 10, whereas for the second project (𝑃2),
the SLOCs are 20, 10, and 20.

Step 1 For each method𝑀𝑚 in project 𝑃1, we calculate its SLOC:
𝑃1
𝑀𝑚

𝑠𝑙𝑜𝑐

. So for the first project, we have:

𝑃1
𝑀1

𝑠𝑙𝑜𝑐

= 10, 𝑃1
𝑀2

𝑠𝑙𝑜𝑐

= 20, 𝑃1
𝑀3

𝑠𝑙𝑜𝑐

= 10

Step 2 For each𝑀𝑚 in 𝑃1, we calculate its weight ratio:
𝑃1
𝑀𝑚

𝑤𝑒𝑖𝑔ℎ𝑡

= 𝑃1
𝑀𝑚

𝑠𝑙𝑜𝑐

/∑𝑛
𝑘=1 𝑃

1
𝑀𝑘

𝑠𝑙𝑜𝑐

, where n is the number of methods

in project 𝑃1. Therefore:

𝑃1
𝑀1

𝑤𝑒𝑖𝑔ℎ𝑡

= 𝑃1
𝑀1

𝑠𝑙𝑜𝑐

/(𝑃1
𝑀1

𝑠𝑙𝑜𝑐

+ 𝑃1
𝑀2

𝑠𝑙𝑜𝑐

+ 𝑃1
𝑀3

𝑠𝑙𝑜𝑐

) = 0.25

Similarly, 𝑃1
𝑀2

𝑤𝑒𝑖𝑔ℎ𝑡

= 0.5, 𝑃1
𝑀3

𝑤𝑒𝑖𝑔ℎ𝑡

= 0.25

Step 3 All methods with identical SLOC are grouped together. For
example, methods 𝑃𝑝

𝑀𝑖 , 𝑃
𝑝

𝑀 𝑗 and 𝑃
𝑝

𝑀𝑘
are grouped together if

𝑃
𝑝

𝑀𝑖
𝑠𝑙𝑜𝑐

= 𝑃
𝑝

𝑀
𝑗

𝑠𝑙𝑜𝑐

= 𝑃
𝑝

𝑀𝑘
𝑠𝑙𝑜𝑐

The entity aggregation of this method group

= 𝑃
𝑝

𝑀𝑖
𝑤𝑒𝑖𝑔ℎ𝑡

+ 𝑃
𝑝

𝑀
𝑗

𝑤𝑒𝑖𝑔ℎ𝑡

+ 𝑃
𝑝

𝑀𝑘
𝑤𝑒𝑖𝑔ℎ𝑡

In our case with 𝑃1, the entity aggregation for the first method
group with SLOC 10

Chowdhury et al.

= 𝑃1
𝑀1

𝑤𝑒𝑖𝑔ℎ𝑡

+ 𝑃1
𝑀3

𝑤𝑒𝑖𝑔ℎ𝑡

= 0.5

and for the second method group with SLOC 20= 𝑃1
𝑀2

𝑤𝑒𝑖𝑔ℎ𝑡

= 0.5

Each group’s SLOC value is added to a list called 𝑠𝑙𝑜𝑐𝑠 . The ag-
gregated value is added to another list called 𝑎𝑔𝑔𝑟 . So, we have
𝑠𝑙𝑜𝑐𝑠 = [10, 20], and 𝑎𝑔𝑔𝑟 = [0.5, 0.5]

Step 4 For each entry 𝑖 in 𝑎𝑔𝑔𝑟 , we calculate the normalized entity
aggregation 𝑎𝑔𝑔𝑟 𝑖/𝜙 , where𝜙 is the number of projects. We add this
normalized value to another list called 𝑛𝑜𝑟𝑚𝑠 . Therefore, 𝑛𝑜𝑟𝑚𝑠 =

[0.25, 0.25]

Step 5 For each project 𝑝 = 1, 2, .., 𝜙 , we repeat step 1 to 4. This
produces 𝜙 different lists of 𝑠𝑙𝑜𝑐𝑠 (called 𝑙𝑖𝑠𝑡_𝑠𝑙𝑜𝑐𝑠) and 𝑛𝑜𝑟𝑚𝑠

(called 𝑙𝑖𝑠𝑡_𝑛𝑜𝑟𝑚𝑠). In our case, 𝑙𝑖𝑠𝑡_𝑠𝑙𝑜𝑐𝑠 = [[10, 20], [20, 10]], and
𝑙𝑖𝑠𝑡_𝑛𝑜𝑟𝑚𝑠 = [[0.25, 0.25], [0.4, 0.1]]. We used this two lists, to
calculate another two lists called 𝑥_𝑎𝑥𝑖𝑠 and 𝑦_𝑎𝑥𝑖𝑠 , using an algo-
rithm suggested byAlves et al. [3]. For reproducibility, the algorithm
is shared with our dataset package (algorithm/algorithm.png).

Step 6 From the algorithm, 𝑥_𝑎𝑥𝑖𝑠 = [10, 20], 𝑦_𝑎𝑥𝑖𝑠 = [0.35, 0.65].
We now sort 𝑥_𝑎𝑥𝑖𝑠 in ascending order (and 𝑦_𝑎𝑥𝑖𝑠 accordingly) to
produce a cumulative line chart. Figure 3 shows the cumulative line
chart after following all the steps for all of the 49 projects. From
the line chart, we get three critical values to categorize a method
either as small, or medium, or large, or very large. According to the
Alves et al.’s approach, the first critical value in Figure 3 is 24 (from
the x-axis), because it covers 70% of the y-axis. The second and the
third values are 36 and 63, because they cover 80% and 90% of the
y-axis respectively.

Based on these three critical values, Table 3 explains how to
determine if a method is small, medium, large, or very large. For
example, if a method is 24 SLOC or fewer, it is a small method
while a method with 64 SLOC or more is a very large method. We
conclude that 24 SLOC is not only small but also realistic, because
majority of the methods can be written within 24 SLOC (Figure 3).
This observation is true even without getters/setters, because we
have removed them from our dataset, as explained in Section 3.5.

20 40 60 80 100
SLOC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Figure 3: Cumulative line chart from Alves et al.’s approach.

Table 3: Determining the size of a method after applying
Alves et al.’s approach in our dataset of 49 projects.

Size Lower-bound Upper-bound

Small – 24
Medium 25 36
Large 37 63

Very Large 64 –

4.2.2 Evaluating the upper bound for maintenance We found that 24
SLOC is a reasonable upper bound of method size, but we need to
evaluate if this bound makes any real difference with the other
method sizes (medium, large, and very large) when compared
against change- and bug-proneness. To understand how we eval-
uate this for the 49 different projects, let us consider Figure 4 as
a demonstration for the elasticsearch project. In the first group
of four box-plots, we compare the #revisions distributions, where
each box-plot contains all the #revisions for all the methods with a
specific size (e.g., the first box-plot shows the #revisions distribu-
tion for all the small methods with SLOC ≤ 24). Clearly, #revisions
increases with the increase in method sizes.

To observe if these differences in #revisions are statistically dif-
ferent and what are the effect sizes of those differences, we apply
three comparisons. These comparisons are between distributions
of #revisions for i) small methods and medium methods, ii) medium
methods and large methods, and iii) large methods and very large
methods. According to the Wilcoxon rank sum test, in all the three
cases, the differences are statistically different (𝑝 ≤ 0.05). The Cliff’s
Delta effect size is large between small and medium methods, and
small for the other two cases. These observations are true for the
other four maintenance indicators as well.

Are these observations generalizable? According to our compari-
son approach, for each indicator (e.g., #revisions) we have a total of
147 comparisons (3 comparisons per project × 49 projects). Table 4
shows that for #revisions, in 82.98% of cases the comparisons are sta-
tistically different. This percent is the highest for the EditDistance,
and the lowest for the #BuggyCommits. Many of our projects, how-
ever, do not have enough methods in each size category to make a
reliable comparison. Therefore, we also consider only the top 20
projects, after ranking all the projects based on their number of
methods. Table 4 shows that the percent of cases with significant
statistical differences are much higher for the top 20 projects.

We also calculated the effect sizes of the differences, as presented
and described in Table 5. For all the four change-proneness indi-
cators, no project exhibits negligible effect size when compared
small methods with medium size methods. In fact, most of the
cases are within medium to large effect sizes. For example, for
#revisions, 55.1% of the effect sizes are medium, and 34.69% are
large. This observation, however, is not true when compared for
the other size categories: Medium-Large, and Large-Very Large.
For these two groups, most of the effect sizes are within negligible
and small. These observations suggest that converting a medium
method to a large method, or a large method to a very large method
are not as harmful as converting a small method to mediummethod.
Consistent with the observation from RQ1, for the bug-proneness
indicator (i.e., #BuggyCommits), the observation is different than

An Empirical Study on Maintainable Method Size in Java

Figure 4: For the elasticsearch project, this graph compares the distributions of different maintenance indicators after grouping
them according to the four different method sizes.

Table 4: Wilcoxon rank sum test to show the percentage of cases where the SLOC categorization exhibit statistically significantly
different maintenance effort.

Sample Projects # Revisions Addition DiffSize EditDistance #BuggyCommits

All 82.98% 86.52% 87.23% 87.94% 77.30%
Top 20 96.67% 96.67% 96.67% 96.67% 91.67%

Table 5: Cliff’s Delta Effect sizes after comparing methods in different size categories (e.g., Small-Medium indicates comparison
between small and medium size methods). N refers to Negligble, S refers to Small, M refers to Medium, and L refers to Large
effect size. For example, the first column of the first row compares the #revisions distributions between small and medium size
methods and shows the percent of differences with negligible, small, medium, and large effect sizes.

Small-Medium Medium-Large Large-Very Large
Indicator N S M L N S M L N S M L

Revisions 0.00 10.20 55.10 34.69 35.42 58.33 2.08 4.17 29.55 59.09 6.82 4.55
Addition 0.00 6.12 20.41 73.47 29.17 60.42 8.33 2.08 27.27 59.09 11.36 2.27
DiffSize 0.00 6.12 6.12 87.76 22.92 66.67 4.17 6.25 20.45 52.27 22.73 4.55
EditDistance 0.00 4.08 6.12 89.8 18.75 60.42 16.67 4.17 22.73 45.45 25.0 6.82
#BuggyCommits 38.78 57.14 4.08 0.00 70.83 22.92 6.25 0.00 52.27 43.18 2.27 2.27

the observations with the four change-proneness indicators. Most
of the differences are now within negligible and small effect sizes.
And yet, the difference in the Small-Medium group is more mean-
ingful than the others, because it has the lowest percent (38.78%) of
negligible differences. We conclude that, a threshold < 24 would be
less achievable (Figure 3), whereas a threshold > 24 would incur
significantly higher maintenance effort (Table 5).
Summary: Methods of 24 SLOC or fewer exhibit less change-
and bug-proneness. Therefore, developers should strive to keep
their methods within 24 SLOC.

4.3 RQ3: Should developers decompose large
methods?

Some methods are inherently large, due to the complicated tasks
they implement. Would refactoring these complex methods into
smaller methods (≤ 24 SLOC) actually improve maintainability, or
just distribute it? This is important, because decomposing large

methods would increase dependency and coupling score (more
fan-in and fan-out) of a software project, which has been shown
harmful for software maintenance [56]. To investigate this issue,
we would require two versions of each software project. In one
version, method size was not controlled, and in the other each
method with SLOC > 24 was decomposed. Unfortunately, such a
project does not exist. Therefore, we consider that any group of small
methods that can easily be merged to a larger method are the result
of a large method decomposition. We then compare the change- and
bug-proneness of individual methods having SLOC > 24 with the
summation of change- and bug-proneness of small methods (SLOC
≤ 24) that are candidate for merging.

Rules for merging: any method B is a candidate to merge with any
method A, if and only if i) B is called only by method A, ii) both A and
B have SLOC ≤ 24, and iii) the SLOC limit for A will not apply if A is
a result of previous merging.

Chowdhury et al.

While the first two rules are intuitive, rule iii is to produce ar-
bitrarily large SLOC so that we can compare with similar sized
individual methods. To better understand the procedure, let us con-
sider the call graph in Figure 5. For simplicity, we show #revisions
as a method’s attribute, although the procedure is the same for the
other maintenance indicators. Here, methods M1, M2, M3, and M4
are candidate for decomposition, because their SLOCs are larger
than 24. On the other hand, with our rules for merging, method M6
is a candidate to merge with M5, producing a total SLOC 40, and
total #revisions 2. Similarly, we can merge M7 with M5, and M9
with M7. We can not merge M5 with M4, because M4 violates rule ii
(SLOC > 24). M8 can not be merged with any methods because it is
called by more than one methods (rule i). We, however, can merge
M9 with M7 and then the resulted method with M5, because none
of this methods has SLOC > 24 when considered individually (rule
iii). Table 6 shows the two groups of methods with their SLOCs
and #revisions. The Selected column is described later.

M-1
SLOC 40,

#rev 3

M-3
SLOC 28,

#rev 1

M-4
SLOC 80,

#rev 3

M-2
SLOC 36,

#rev 4

M-5
SLOC 20,

#rev 1 M-6
SLOC 20,

#rev 1

M-7
SLOC 8,

#rev 0

M-8
SLOC 20,

#rev 1

M-9
SLOC 8,

#rev 0

Figure 5: Example of a call graph.

Table 6: Groupingmethods from Figure 5 either as individual
or merged methods according to our rules for merging.

Individual Method SLOC #revisions Selected

M1 40 3 Yes
M2 36 4 Yes
M3 28 1 Yes
M4 80 3 No

Merged Methods Total SLOC Total #revisions Selected
M5, M6 40 2 Yes
M5, M7 28 1 Yes
M7, M9 16 0 No

M5, M7, M9 36 1 Yes

From Table 6, we can now compare the two distributions of #revi-
sions for deciding which group, between the individual and merged
methods, undergoes less #revisions. Unfortunately, the SLOC distri-
butions of this two groups are different. Therefore, the comparison
will not be accurate, as SLOC influences all the maintenance in-
dicators (RQ1, and RQ2). This problem is depicted in Figure 6 for
the commons-io project. The second group of box-plots suggests
that #revisions is higher for merged methods (i.e., decomposition is
harmful). The first group of box-plots, however, shows that merged

Figure 6: Comparing #revisions distributions between the
two groups for the commons-io project. Ind∼Individual,
rev∼#revisions.Here, SLOCdistributions are not similar, lead-
ing to inaccurate comparison of maintenance indicators.

methods SLOC distribution is much higher than individual methods,
leading to inaccurate comparison between the two distributions
of #revisions. We solve this problem by removing entries that do
not have a common SLOC, as presented in the selected column in
Table 6. For example, the M4 method is not selected because its
SLOC (80) does not match with any other methods in the second
group of merged methods. For the same reason, the merged method
M7, M9 is not selected. After removing these unmatched entries,
we can now accurately compare the maintenance indicators of the
individual and the merged methods.

We have used the JavaSymbolSolver [41] to produce the call
graphs of our 49 projects. Producing the call graphs for every com-
mits of a project is difficult and very time consuming. We will need
to produce∼25,000 call graphs for the hadoop project alone, because
of its ∼25,000 commits. As a result, we selected only one commit
per project for building the call graph and tracking the revision
history of the project from that commit. Therefore, each project
was checked out to two years before its current commit (current
commit is presented in Table 1). This 2 years provides enough time
to all the methods to undergo changes.

The JavaSymbolSolver, unfortunately, was not able to produce
call graphs for some of our projects including elasticsearch, flink
etc., mostly due to StackOverFlowError exceptions. From the issue
tracking system, we found this problem common for the JavaSym-
bolSolver [40]. Additionally, after removing entries with unmatched
SLOCs, projects with very small number of methods, such as junit4,
had too few samples to compare the maintenance indicators among
the individual and the merged methods. After filtering out these
two categories of projects from analysis, Table 7 shows the results
for the remaining projects. Most of the time the candidate for merge
methods were less expensive than the individual methods (i.e., more
deep-blue cells than purple cells). More specifically, out of 115 cells,
84 of them are blue (73%). If we consider cells with non-negligible
effect size, the percent of blue cell becomes 87%. This suggests that
decomposing large methods will not increase maintenance effort
of software systems.

An Empirical Study on Maintainable Method Size in Java

Table 7: Distribution of different maintenance indicators of individual methods and merged methods are compared using
the Cliff’s Delta. Effect sizes are N∼Negligible, and S∼Small. A deep-blue cell means merged method has lower value for that
specific indicator—suggesting decomposition is less expensive. For example, for hadoop, the cell for #revisions is deep-blue and
the value is N. It means, according to the Cliff’s Delta, #revisions is less for the merged methods with negligible effect size.

Project # Samples # Revisions # Additions DiffSize EditDistance Bugs

hadoop 1304 N N N N N
weka 1274 N N N N N
hibernate-orm 841 N N N N N
hbase 742 N N N N N
docx4j 498 N N N N N
hazelcast 493 N S S S N
netty 445 N N N N N
jgit 413 S S S S S
wicket 412 N N N N N
voldemort 184 N N N N N
openmrs-core 170 N N N N N
wildfly 163 N N N N N
mongo-java-driver 144 S S S S N
checkstyle 137 S S S S N
javaparser 105 N N N N N
hibernate-search 78 N N N N N
spring-boot 72 N N N N N
facebook-android-sdk 72 N N N N N
lombok 50 N N N N N
jna 45 S S S S N
hector 45 S S S S N
okhttp 41 S S S S S
commons-io 20 N N S N N

Summary: Developers should decompose large methods so that
none of the methods are larger than 24 SLOC. A group of small
methods, with sum SLOC x, are generally collectively less change-
and bug-prone than an individual large method with SLOC x.

4.4 RQ4: Does controlling for size controls other
quality metrics?

So far, we have studied the impact of size on change- and bug-
proneness. Change- and bug-proneness, however, are not sufficient
for understanding software maintenance as a whole. In this paper,
we consider three more code quality factors that could potentially
impact the maintenance of a software project. In particular, we
investigate, if controlling size (i.e., keeping method size within 24
SLOC) also controls these other three code quality metrics that
have been associated with software maintenance.

1) Testability: Developers and testers write test methods to eval-
uate whether a source method produces expected results. Writing
test methods can be difficult for source methods with too many
independent paths. Therefore, the popular McCabe metric is often
used as an indication of the testability of a source method [12, 92].
The McCabe metric counts the number of independent paths in a
code component with the formula: 1 + #𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 [52]. McCabe,
however, does not consider the number of control variables in a
predicate. This is a limitation, because a predicate with more control
variables should be considered more complex [43] and less testable

than a predicate with a single control variable. McClure [53], on
the other hand, considers all the control variables and comparisons
in a code metric, and can be used as an alternative of McCabe. We
consider both McCabe and McClure as indications of the testability
of a source method.

2) Readability: According to Martin Fowler, “Any fool can write
code that a computer can understand. Good programmers write
code that humans can understand.” One of the most frequent activi-
ties in software development and maintenance is code reading [72].
Readability is a measure of how easy (or difficult) it is to read and
understand a source code [13, 15, 42, 63], which has significant
impact on code maintenance. In this paper, we have used the pub-
licly available readability tool implemented by Buse et al. [15] to
examine the relationship between method size and readability. This
tool calculates a readability score for a given method from 0 (least
readable) to 1 (completely readable code).

3) Maintainability Index: We also include the maintainability
index (MI) metric, which is industrially popular as a measurement
of code quality. MI is calculated as:

171−5.2∗𝑙𝑛(𝐻𝑎𝑙𝑠𝑡𝑒𝑎𝑑 𝑉𝑜𝑙𝑢𝑚𝑒)−0.23∗(𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)−
16.2 ∗ 𝑙𝑛(𝐿𝑖𝑛𝑒𝑠 𝑜 𝑓 𝐶𝑜𝑑𝑒)

This is the evolved form of the original equation proposed by Oman
and Hagemeister [59], and different forms of it have been adopted

Chowdhury et al.

Figure 7: For the Elasticsearch project, this graph compares the distributions of different quality metrics after grouping them
according to the four different method sizes. A high value for McCabe (and McClure) indicates a high maintenance effort,
whereas a high readability (and maintenance index) value indicates low maintenance effort.

Table 8: Cliff’s Delta Effect sizes after comparing methods in different size categories (e.g., Small-Medium indicates comparison
between small and medium size methods). Effect sizes are N∼Negligible, S∼Small, M∼Medium, and L∼Large. For example,
the first column of the first row compares the McCabe distributions between small and medium size methods and shows the
percent of differences with different effect sizes.

Small-Medium Medium-Large Large-Very Large
Metrics N S M L N S M L N S M L

McCabe 0.00 2.04 0.00 97.96 6.12 4.08 16.33 73.47 0.00 2.22 8.89 88.89
McClure 0.00 2.04 0.00 97.96 2.04 4.08 59.18 34.69 0.00 8.89 17.78 73.33
Readability 0.00 2.04 0.00 97.96 0.00 14.29 40.82 44.9 44.44 44.44 8.89 2.22
MI 0.00 0.00 0.00 100.0 0.00 0.00 0.00 100.0 0.00 0.00 0.00 100.0

by popular tools such as Verifysoft technology [87], and Visual
Studio [55].

Considering the Elasticsearch project in Figure 7, we can see
that by controlling the method size, we can control the four above
mentioned code quality factors in most cases. Similar to the RQ2,
we compare these quality factors by grouping the method sizes. The
Cliff’s Delta effect size is large between all the compared method
groups, except for the readability metric. For the readability metric,
the effect sizes are large, small, and negligible between Small-
Medium,Medium-Large, and Large-Very Large method groups,
respectively. Table 8 shows the findings for all the 49 projects.
Similar to RQ2, the difference in the Small-Medium group is more
meaningful than the others; the effect size for all of the four quality
factors are large in at 97.96% to 100% of the projects.

Summary: By controlling size we can control other complex
code quality metrics, such as McCabe, McClure, Readability, and
Maintainability index.

5 Discussion
Understanding code metrics and their relation with software

maintenance is a forty years old problem [48]. While there is debate
about the effectiveness of many of the famous code metrics (e.g.,
C&K), the research community is in complete agreement about the
usefulness of size as an indicator of future maintenance. Therefore,
research about size and maintenance is not new. It is obvious from
all the previous studies that developers should keep the size of their
code unit small, similar to our observation in RQ1. Unfortunately,
there is no concrete evidence-based recommendations about how
small the size should be. Although Visser et al. [89] recommended
that developers should keep their method within 15 source lines
of code, this recommendation was from intuition only, not based
on evidence. Also, in RQ2, we have provided clear evidence that
keeping method size always within 15 SLOC is less realistic.

This paper is unique in that context, becausewe provide evidence-
based recommendation that developers should keep their method size
within 24 SLOC (RQ2). In RQ2, we also show that keeping method

An Empirical Study on Maintainable Method Size in Java

size < 24 SLOC is less realistic, whereas method with size > 24
SLOC is less maintainable. Therefore, this 24 SLOC bound can be
used for trade-offs between feasibility and maintainability. We also
provide evidence that inherently large methods should be refac-
tored to a group of helper methods, each within 24 SLOC (RQ3).
Encouragingly, controlling for size, in most cases, controls other
code quality factors, such as testability and readability (RQ4).

Our findings can be used for improving code metric tools such as
checkstyle. For example, the current default limit of method size in
checkstyle is 150 [17]. Our research shows that such a large method
would be extremely maintenance prone, and this limit should be set
to 24 only. Our methodology can be extended to find maintainable
and feasible limit for other popular code metrics, such as McCabe,
nested block depth, and maintainability index.

6 Threats to validity
Several threats, however, may impact the validity of our results.
External validity is hampered by our selection of software projects.

Our observations with open-source software may not be consistent
with closed-source projects. The selected 49 projects, however, are
popular and have been widely used by other code metrics studies.

Internal validity is hampered by the statistical approaches. For
example, the use of correlation coefficients might be inaccurate for
unknown confounding factors. For finding the three critical values,
we have relied on the Alves et al.’s approach. Other critical values
may produce more useful results.

Construct validity is affected by our approach to define bug-
proneness. Capturing bug related keywords from the commit mes-
sages for measuring bug-proneness is only∼80% accurate [78]. Also,
the CodeShovel tool[28] we used for capturing method history is
accurate only for 90% of the methods [29].

Conclusion validity is affected by the selected maintenance and
quality indicators. Change-/bug-proneness, and the quality metrics
we used may not be sufficient to understand software maintenance.

7 Conclusion
Significant research has been done to understand code metrics

impact on software maintenance for building accurate predictive
models. This paper investigated the relationship between method
size and maintenance effort, because size has been frequently re-
ported as themost common, easy-to-measure, and themost effective
code metric for understanding maintenance. We established that
developers should be careful about their method size for reducing
maintenance effort, such as change- and bug-proneness. We also
showed that controlling for method size, in most cases, controls
other code quality metrics, such as testability, and readability. In
general, developers should aim to keep their Java method within
24 source lines of code. They should also refactor inherently large
methods to group of smaller methods, even if it increases the overall
coupling of a system.

The methodology of our study can be extended for other pro-
gramming languages, and for other metrics (e.g., McCabe, and C&K).
Studies can also investigate other granularity, such as class/file and
module levels. We hope such studies can help us better understand
the relationship between codemetrics andmaintenance for building
ever more accurate maintenance models.

8 Acknowledgments
Shaiful Chowdhury was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC, PDF-533056-
2019). Gias Uddin was supported by an NSERC Discovery Grant
(RGPIN-2021-02575).
References
[1] Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I.

Maletic. 2019. Developer Reading Behavior While Summarizing Java Methods:
Size and Context Matters. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada). 384–395.

[2] Fernando Brito Abreu and Rogério Carapuça. 1994. Object-oriented software
engineering: Measuring and controlling the development process. In Proceedings
of the 4th international conference on software quality, Vol. 186.

[3] T. L. Alves, C. Ypma, and J. Visser. 2010. Deriving metric thresholds from
benchmark data. In IEEE International Conference on Software Maintenance. 1–
10.

[4] Mauricio Finavaro Aniche, Christoph Treude, Andy Zaidman, Arie van Deursen,
and Marco Aurélio Gerosa. 2016. SATT: Tailoring Code Metric Thresholds for
Different Software Architectures. In 16th IEEE International Working Conference
on Source Code Analysis and Manipulation,2016, Raleigh, NC, USA, October 2-3,
2016. 41–50.

[5] V. Antinyan, M. Staron, J. Derehag, M. Runsten, E. Wikström, W. Meding, A. Hen-
riksson, and J. Hansson. 2015. Identifying complex functions: By investigating
various aspects of code complexity. In 2015 Science and Information Conference
(SAI). 879–888.

[6] V. Antinyan, M. Staron, W. Meding, P. Österström, E. Wikstrom, J. Wranker,
A. Henriksson, and J. Hansson. 2014. Identifying risky areas of software code
in Agile/Lean software development: An industrial experience report. In IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering.
154–163.

[7] Vard Antinyan, Miroslaw Staron, and Anna Sandberg. 2017. Evaluating Code
Complexity Triggers, Use of Complexity Measures and the Influence of Code
Complexity on Maintenance Time. Empirical Softw. Engg. 22, 6 (Dec. 2017),
3057–3087.

[8] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Yamashita.
2015. Automatic Metric Thresholds Derivation for Code Smell Detection. In 2015
IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics.
44–53.

[9] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.
Test Code Quality and Its Relation to Issue Handling Performance. IEEE Trans.
Software Eng. 40, 11 (2014), 1100–1125.

[10] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. 2003. Predicting maintenance
performance using object-oriented design complexity metrics. IEEE Transactions
on Software Engineering 29, 1 (2003), 77–87.

[11] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes CHofmeister, and Sven
Apel. 2019. Indentation: simply a matter of style or support for program compre-
hension?. In IEEE/ACM 27th International Conference on Program Comprehension.
154–164.

[12] Armin Beer and Michael Felderer. 2018. Measuring and Improving Testability of
System Requirements in an Industrial Context by Applying the Goal Question
Metric Approach. In Proceedings of the 5th International Workshop on Require-
ments Engineering and Testing (Gothenburg, Sweden) (RET ’18). 25–32.

[13] J. Börstler and B. Paech. 2016. The Role of Method Chains and Comments in
Software Readability and Comprehension—An Experiment. IEEE Transactions
on Software Engineering 42, 9 (2016), 886–898.

[14] J. M. Brittain. 1982. Pitfalls of user research, and some neglected areas. Social
Science Information Studies 2, 3 (1982), 139–148.

[15] Raymond P. L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Trans. Softw. Eng. 36, 4 (July 2010), 546–558.

[16] Gemma Catolino, Fabio Palomba, Andrea De Lucia, Filomena Ferrucci, and Andy
Zaidman. 2018. Enhancing change prediction models using developer-related
factors. Journal of Systems and Software 143 (2018), 14–28.

[17] Checkstyle. 2022. Properties, Method Length. https://checkstyle.sourceforge.io/
config.html. [Online; last accessed 06-Jan-2022].

[18] S. R. Chidamber and C. F. Kemerer. 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20, 6 (1994), 476–493.

[19] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hindle.
2019. GreenScaler: training software energy models with automatic test gen-
eration. Empirical software engineering : an international journal 24, 4 (2019),
1649–1692.

[20] L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia. 2019. Do Energy-Oriented Changes
Hinder Maintainability?. In 2019 IEEE International Conference on Software Main-
tenance and Evolution. 29–40.

[21] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. 1979. Measuring
the Psychological Complexity of Software Maintenance Tasks with the Halstead

https://checkstyle.sourceforge.io/config.html
https://checkstyle.sourceforge.io/config.html

Chowdhury et al.

and McCabe Metrics. IEEE Transactions on Software Engineering SE-5, 2 (1979),
96–104.

[22] D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko. 2005. The structural
complexity of software an experimental test. IEEE Transactions on Software
Engineering 31, 11 (2005), 982–995.

[23] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. 2001. The confounding effect
of class size on the validity of object-oriented metrics. IEEE Transactions on
Software Engineering 27, 7 (2001), 630–650.

[24] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C. Gall. 2012.
Method-Level Bug Prediction. In Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (Lund, Sweden)
(ESEM ’12). 171–180.

[25] Yossi Gil and Gal Lalouche. 2016. When do Software Complexity Metrics Mean
Nothing? – When Examined out of Context. Journal of Object Technology 15, 1
(Feb. 2016), 2:1–25.

[26] Yossi Gil and Gal Lalouche. 2017. On the Correlation between Size and Metric
Validity. Empirical Software Engineering 22, 5 (Oct. 2017), 2585–2611.

[27] G.K. Gill and C.F. Kemerer. 1991. Cyclomatic complexity density and software
maintenance productivity. IEEE Transactions on Software Engineering 17, 12
(1991), 1284–1288.

[28] Felix Grund, Shaiful Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes.
2021. CodeShovel: A Reusable and Available Tool for Extracting Source Code His-
tories. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 221–222.

[29] Felix Grund, Shaiful Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes.
2021. CodeShovel: Constructing Method-Level Source Code Histories. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1510–
1522.

[30] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some Code Smells Have
a Significant but Small Effect on Faults. ACM Trans. Softw. Eng. Methodol. 23, 4
(sep 2014).

[31] Ilja Heitlager, Tobias Kuipers, and Joost Visser. 2007. A Practical Model for
Measuring Maintainability. In Proceedings of the 6th International Conference on
Quality of Information and Communications Technology. 30–39.

[32] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. 2007. Towards a Theoretical
Model for Software Growth. In Fourth International Workshop on Mining Software
Repositories. 21–21.

[33] K. Herzig and A. Zeller. 2013. The impact of tangled code changes. In 2013 10th
Working Conference on Mining Software Repositories. 121–130.

[34] M. Hess and J. Kromrey. 2004. Robust Confidence Intervals for Effect Sizes: A
Comparative Study of Cohen’s d and Cliff’s Delta Under Non-normality and
Heterogeneous Variances.

[35] A. Hindle, M. W. Godfrey, and R. C. Holt. 2008. Reading Beside the Lines: Inden-
tation as a Proxy for Complexity Metric. In 16th IEEE International Conference on
Program Comprehension. 133–142.

[36] J. Hofmeister, J. Siegmund, and D. V. Holt. 2017. Shorter identifier names take
longer to comprehend. In IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering. 217–227.

[37] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India). 435–445.

[38] Md Rakibul Islam and Minhaz F. Zibran. 2020. How Bugs Are Fixed: Exposing
Bug-Fix Patterns with Edits and Nesting Levels. In Proceedings of the 35th Annual
ACM Symposium on Applied Computing (Brno, Czech Republic). 1523–1531.

[39] Javaparser. 2022. Java 1-15 Parser and Abstract Syntax Tree for Java. https:
//github.com/javaparser/javaparser. [Online; last accessed 06-Jan-2022].

[40] JavaSymbolSolver. 2022. Issues. https://github.com/javaparser/javaparser/issues?
q=stackoverflow. [Online; last accessed 06-Jan-2022].

[41] JavaSymbolSolver. 2022. Java 1-15 Parser and Abstract Syntax Tree for Java.
https://github.com/javaparser/javasymbolsolver. [Online; last accessed 06-Jan-
2022].

[42] J. Johnson, S. Lubo, N. Yedla, J. Aponte, and B. Sharif. 2019. An Empirical Study
Assessing Source Code Readability in Comprehension. In 2019 IEEE International
Conference on Software Maintenance and Evolution. 513–523.

[43] D. Kafura and G. R. Reddy. 1987. The Use of Software Complexity Metrics in
Software Maintenance. IEEE Transactions on Software Engineering SE-13, 3 (1987),
335–343.

[44] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An Exploratory Study of the Impact of Antipatterns on Class
Change- and Fault-Proneness. Empirical Softw. Engg. 17, 3 (jun 2012), 243–275.

[45] Masanari Kondo, Daniel M. German, Osamu Mizuno, and Eun-Hye Choi. 2020.
The impact of context metrics on just-in-time defect prediction. Empirical
software engineering 25, 1 (2020), 890–939.

[46] Al Lake and Curtis R. Cook. 1994. Use of Factor Analysis to Develop OOP Software
Complexity Metrics. Technical Report. USA.

[47] D. Landman, A. Serebrenik, and J. Vinju. 2014. Empirical Analysis of the Re-
lationship between CC and SLOC in a Large Corpus of Java Methods. In IEEE
International Conference on Software Maintenance and Evolution. 221–230.

[48] V. Lenarduzzi, A. Sillitti, and D. Taibi. 2017. Analyzing Forty Years of Soft-
ware Maintenance Models. In International Conference on Software Engineering
Companion (ICSE-C). 146–148.

[49] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[50] Huihui Liu, Xufang Gong, Li Liao, and Bixin Li. 2018. Evaluate How Cyclomatic
Complexity Changes in the Context of Software Evolution. In 2018 IEEE 42nd
Annual Computer Software and Applications Conference (COMPSAC), Vol. 02.
756–761.

[51] D. Matter, A. Kuhn, and O. Nierstrasz. 2009. Assigning bug reports using a
vocabulary-based expertise model of developers. In 2009 6th IEEE International
Working Conference on Mining Software Repositories. 131–140.

[52] T. J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308–320.

[53] Carma L. McClure. 1978. A Model for Program Complexity Analysis. In Proceed-
ings of the 3rd International Conference on Software Engineering (Atlanta, Georgia,
USA). 149–157.

[54] T. Menzies, J. Greenwald, and A. Frank. 2007. Data Mining Static Code Attributes
to Learn Defect Predictors. IEEE Transactions on Software Engineering 33, 1 (2007),
2–13.

[55] Microsoft. 2022. Code Metrics Maintainability Index. https://docs.microsoft.
com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-
range-and-meaning?view=vs-2022. [Online; last accessed 06-Jan-2022].

[56] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. 2016. Decoupling Level: A
New Metric for Architectural Maintenance Complexity. In 2016 IEEE/ACM 38th
International Conference on Software Engineering. 499–510.

[57] Audris Mocku and Lawrence G. Votta. 2000. Identifying reasons for software
changes using historic databases. In Proceedings 2000 International Conference on
Software Maintenance. 120–130.

[58] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. 2002. Software
quality analysis by code clones in industrial legacy software. In Proceedings IEEE
Symposium on Software Metrics. 87–94.

[59] P. Oman and J. Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In Proceedings Conference on Software Maintenance 1992. 337–
344.

[60] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An
Exploratory Study on the Relationship between Changes and Refactoring. In Pro-
ceedings of the 25th International Conference on Program Comprehension (Buenos
Aires, Argentina). 176–185.

[61] J. Pantiuchina, M. Lanza, and G. Bavota. 2018. Improving Code: The (Mis)
Perception of Quality Metrics. In IEEE International Conference on Software
Maintenance and Evolution. 80–91.

[62] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2020. On the performance
of method-level bug prediction: A negative result. Journal of Systems and Software
161 (2020).

[63] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A Simpler Model
of Software Readability. In Proceedings of the 8th Working Conference on Mining
Software Repositories (Waikiki, Honolulu, HI, USA). 73–82.

[64] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013.
Software fault prediction metrics: A systematic literature review. Information
and Software Technology 55, 8 (2013), 1397 – 1418.

[65] Md Saidur Rahman and Chanchal K. Roy. 2017. On the Relationships Between
Stability and Bug-Proneness of Code Clones: An Empirical Study. In 2017 IEEE
17th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 131–140.

[66] Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering
Research and SoftwareMetrics. In Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018 (Christchurch, New
Zealand). 13–23.

[67] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the "Naturalness" of Buggy Code.
In Proceedings of the 38th International Conference on Software Engineering (Austin,
Texas) (ICSE ’16). 428–439.

[68] Baggen Robert, José P. Correia, Katrin Schill, and Joost Visser. 2012. Standardized
code quality benchmarking for improving software maintainability. Software
Quality Journal 20 (2012), 287–307.

[69] D. Romano and M. Pinzger. 2011. Using source code metrics to predict change-
prone Java interfaces. In 2011 27th IEEE International Conference on Software
Maintenance. 303–312.

[70] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. 2012. An-
alyzing the Impact of Antipatterns on Change-Proneness Using Fine-Grained
Source Code Changes. In 2012 19th Working Conference on Reverse Engineering.
437–446.

[71] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and R.
Oliveto. 2017. Automatically assessing code understandability: How far are we?.
In 32nd IEEE/ACM International Conference on Automated Software Engineering.
417–427.

https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser/issues?q=stackoverflow
https://github.com/javaparser/javaparser/issues?q=stackoverflow
https://github.com/javaparser/javasymbolsolver
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022

An Empirical Study on Maintainable Method Size in Java

[72] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. 2016. Im-
proving code readability models with textual features. In IEEE 24th International
Conference on Program Comprehension. 1–10.

[73] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. 2016. From Aristotle
to Ringelmann: a large-scale analysis of team productivity and coordination in
Open Source Software projects. Empirical software engineering : an international
journal 21, 2 (2016), 642–683.

[74] M. Shepperd. 1988. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal 3, 2 (1988), 30–36.

[75] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An
Industrial Study on the Risk of Software Changes. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering
(Cary, North Carolina).

[76] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. 2011. Evaluating Com-
plexity, Code Churn, and Developer Activity Metrics as Indicators of Software
Vulnerabilities. IEEE Transactions on Software Engineering 37, 6 (2011), 772–787.

[77] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå. 2013.
Quantifying the Effect of Code Smells on Maintenance Effort. IEEE Transactions
on Software Engineering 39, 8 (2013), 1144–1156.

[78] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On
the Relation of Test Smells to Software Code Quality. In 2018 IEEE International
Conference on Software Maintenance and Evolution. 1–12.

[79] D. Ståhl, A. Martini, and T. Mårtensson. 2019. Big Bangs and Small Pops: On
Critical Cyclomatic Complexity and Developer Integration Behavior. In 2019
IEEE/ACM 41st International Conference on Software Engineering: (ICSE-SEIP).
81–90.

[80] StackExchange. 2022. What is the ideal length of a method for
you? https://softwareengineering.stackexchange.com/questions/133404/what-
is-the-ideal-length-of-a-method-for-you. [Online; last accessed 06-Jan-2022].

[81] Chakkrit Tantithamthavorn and Ahmed E. Hassan. 2018. An Experience Report
on Defect Modelling in Practice: Pitfalls and Challenges. In Proceedings of the
40th International Conference on Software Engineering: Software Engineering in
Practice (Gothenburg, Sweden). 286–295.

[82] A. Terceiro, L. R. Rios, and C. Chavez. 2010. An Empirical Study on the Structural
Complexity Introduced by Core and Peripheral Developers in Free Software
Projects. In Brazilian Symposium on Software Engineering. 21–29.

[83] Henry C Thode. 2002. Testing for normality. Vol. 164. CRC press.
[84] Umesh Tiwari and Santosh Kumar. 2014. Cyclomatic Complexity Metric for

Component Based Software. SIGSOFT Softw. Eng. Notes 39, 1 (Feb. 2014), 1–6.
[85] Ayşe Tosun, Ayşe Bener, Burak Turhan, and Tim Menzies. 2010. Practical con-

siderations in deploying statistical methods for defect prediction: A case study
within the Turkish telecommunications industry. Information and Software
Technology 52, 11 (2010), 1242 – 1257.

[86] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Static source
code metrics and static analysis warnings for fine-grained just-in-time defect
prediction. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 127–138.

[87] VerifySoft. 2022. VerifySoft Maintainability Index. https://verifysoft.com/en_
maintainability.html. [Online; last accessed 06-Jan-2022].

[88] Markos Viggiato, Johnatan Oliveira, Eduardo Figueiredo, Pooyan Jamshidi, and
Christian Kästner. 2019. How Do Code Changes Evolve in Different Platforms?
A Mining-based Investigation. In 2019 IEEE International Conference on Software
Maintenance and Evolution. 218–222.

[89] Joost Visser, Sylvan Rigal, Gijs Wijnholds, Pascal Van Eck, and Rob van der Leek.
2016. Building Maintainable Software, C# Edition: Ten Guidelines for Future-Proof
Code. " O’Reilly Media, Inc.".

[90] Qingye Wang, Xin Xia, David Lo, and Shanping Li. 2019. Why is my code change
abandoned? Information and Software Technology 110 (2019), 108 – 120.

[91] Kazuhiro Yamashita, Changyun Huang, Meiyappan Nagappan, Yasutaka Kamei,
Audris Mockus, Ahmed E. Hassan, and Naoyasu Ubayashi. 2016. Thresholds
for Size and Complexity Metrics: A Case Study from the Perspective of Defect
Density. In 2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS). 191–201.

[92] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan. 2013. How Does
Context Affect the Distribution of Software Maintainability Metrics?. In IEEE
International Conference on Software Maintenance. 350–359.

[93] Yuming Zhou, Baowen Xu, and Hareton Leung. 2010. On the ability of complexity
metrics to predict fault-prone classes in object-oriented systems. Journal of
Systems and Software 83, 4 (2010), 660 – 674.

[94] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting
Defects for Eclipse. In Proceedings of the Third International Workshop on Predictor
Models in Software Engineering. 9.

https://softwareengineering.stackexchange.com/questions/133404/what-is-the-ideal-length-of-a-method-for-you
https://softwareengineering.stackexchange.com/questions/133404/what-is-the-ideal-length-of-a-method-for-you
https://verifysoft.com/en_maintainability.html
https://verifysoft.com/en_maintainability.html

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Project Selection
	3.2 Data Collection
	3.3 Maintenance Effort Indicators
	3.4 Size Calculation
	3.5 Preprocessing
	3.6 Statistical Tests

	4 Results
	4.1 RQ1: Is SLOC correlated with change- and bug-proneness at method-level?
	4.2 RQ2: What is the maintainable method size?
	4.3 RQ3: Should developers decompose large methods?
	4.4 RQ4: Does controlling for size controls other quality metrics?

	5 Discussion
	6 Threats to validity
	7 Conclusion
	8 Acknowledgments
	References

