
Do Onboarding Programs Work?
Adriaan Labuschagne and Reid Holmes

School of Computer Science
University of Waterloo
Waterloo, ON, Canada

alabusch,rtholmes@cs.uwaterloo.ca

Abstract—Open source software systems rely on community
source code contributions to fix bugs and develop new features.
Unfortunately, it is often difficult to become an effective con-
tributor on open-source projects due to the complexity of the
tools required to develop and test new patches and the challenge
of breaking into an already-formed social organization. To help
new contributors learn their development practices, OSS projects
have created onboarding programs that, for example, identify
easy ‘first bugs’ and mentor new developers’ contributions.
However, we found that developers who join an organization
through these programs are half as likely to transition into long-
term community members than developers who do not use these
programs. Measuring the impact of these programs is important,
as coordinating and staffing onboarding projects is expensive.
This paper examines onboarding programs employed by Mozilla
and demonstrates that they are not as effective at transitioning
new developers into long-term contributors as might be hoped,
although developers who do succeed through these programs find
them valuable.

I. INTRODUCTION

Open Source Software (OSS) projects need a constant
stream of newcomers to help fix defects and build new
features [1]. Unfortunately, there are many social and technical
barriers that make joining OSS projects daunting. In a litera-
ture survey, Steinmacher et al. found 15 barriers to entering
OSS projects [2]. Others have also found that developers have
difficulties finding appropriate tasks to start with [1], [3]–[5],
and finding mentors or experts to help if needed [6]–[8].

The Mozilla Corporation depends on volunteer contributions
for its continued success and is aware of the problems faced
by new contributors. Mozilla has created several long-running
onboarding programs to help ease developers into their de-
velopment tools and processes. The primary two onboarding
programs are called Good First Bugs (GFB) and mentored
bugs [9]. GFBs are bugs that have been identified as easy to
fix by current developers, often requiring a change to a single
line of code. These make ideal first contributions as they are
small isolated changes that minimize the effort needed to make
the change while still requiring the contributor to set up a
complete development environment. Mentored bugs may be
more challenging but have been sponsored by an experienced
developer to help guide newcomers through the process of
fixing the bug. These bugs can be found by searching Bugzilla
(Mozilla’s bug tracker) as well as through two sites dedicated

to helping surface these kinds of issues in a way that considers
the expertise and interests of potential contributors.1

While tagging ‘easy’ bugs and providing mentorship pro-
grams are widely-adopted strategies for improving the on-
boarding processes, the effectiveness of these strategies in
aiding new contributors has not been evaluated. Only one
past study has evaluated the effectiveness of onboarding pro-
grams in OSS; this study involved graduate students receiving
extensive mentoring (a one week mentored hackathon with
continued support thereafter) during a 16 week university
course [10]. Due to the nature of the onboarding support and
the extrinsic motivation of completing a course requirement,
these newcomers cannot be compared to the more typical
volunteer contributors OSS projects are trying to attract.

In this paper we investigate the effectiveness of onboarding
programs through the following research questions:
RQ1 Are new developers who make use of onboarding pro-

grams more likely to have a successful first contribution
than those who do not use these programs?

RQ2 Are developers who use onboarding programs more
likely to continue contributing after their initial attempt?

RQ3 How do successful OSS contributors whose first ex-
perience was an onboarding program reflect on the
onboarding process?

To validate these questions, we performed a quantitative
study of 13 years of Mozilla contributions. During this time, 75
new contributors entered (i.e., made their first contribution at-
tempt) the Mozilla community through the GFB program, 193
through mentored programs, and 220 through bugs assigned to
both programs, while 3,070 developers entered through issues
that were not involved in onboarding programs. In general,
we found that onboarding programs do not seem to increase
the likelihood of newcomers becoming frequent committers,
although some committers who enter through these programs
do end up being successful over the long term.

To gain further insight into these successes, we surveyed 35
developers who made 10 or more contributions after starting
in a program about their onboarding experience. We found that
newcomers truly appreciate positive feedback and that making
a first contribution is hard, even for bugs that are marked
as GFB or are mentored. This suggests that these programs
are valuable, even if they do not seem to be increasing
the likelihood of developers becoming long-term contributors.

1http://codefirefox.com/, http://www.joshmatthews.net/bugsahoy/



While these developers did find aspects of the onboarding
process beneficial to their success, we cannot know whether
they would have been successful even without the program.

Section II quantitatively examines the impact of onboarding
programs. Section III describes a survey that looked into suc-
cessful developers’ perceptions of these programs. Section IV
discusses the threats to our study and possible explanations
for the unexpected outcome of our quantitative study, while
Section V concludes.

II. QUANTITATIVE STUDY

We chose to study Mozilla’s onboarding programs because
of the importance they place on volunteer contributions.2

Mozilla is also the only organization we found that has
multiple onboarding programs (both GFB and mentored bug
programs) with publicly available data. While Gnome has a
mentorship program, they do not assign mentors to bugs in
their issue tracker.

We studied three of the most active Mozilla products: Core,
Firefox, and Firefox OS. The Core product is made up of
a number of shared components that are used by Firefox
and other Mozilla products. Firefox bugs related to the user
interface, bookmarks, and developer tools are filed against
the Firefox product in Bugzilla. Firefox OS is an operating
system based on the Linux kernel and is one of Mozilla’s
most quickly growing products. We downloaded the bugs and
attachment data of these products using the Bugzilla REST
API; the characteristics of this dataset are shown in Table I.

TABLE I
NUMBERS OF BUGS STUDIED FROM EACH ONBOARDING PROGRAM FOR
THE THREE EXAMINED MOZILLA PRODUCTS BETWEEN MAY 23, 2001

AND JUNE 13, 2014.

Core Firefox FirefoxOS Combined

GFB 229 124 32 385
Mentored 560 202 208 970
Mentored & GFB 440 324 127 891
No Program 216,992 137,925 38,184 393,101

Combined 218,221 138,575 38,551 395,347

We define a ‘contribution attempt’ as attaching a patch to
a bug in Bugzilla. Attaching multiple patches to one bug
is considered a single attempt. A contribution is considered
successful if at least one of the author’s patches for a particular
bug is not marked obsolete, the bug resolution is FIXED,
and the bug status is VERIFIED or RESOLVED. If multiple
authors have successful patches on a single bug all authors
are considered to have made a successful contribution. A failed
contribution occurs when an author has submitted one or more
patches to a bug whose resolution is FIXED, has a status of
VERIFIED or RESOLVED, and all of the patches are obsolete.
Bugs with other statuses (e.g. WONTFIX, INVALID) were not
counted as contribution failures since the newcomer may not
be to blame. OPEN bugs were also excluded.

2https://wiki.mozilla.org/Contribute

We excluded contributors with email addresses containing
the string @mozilla from the study, as these individuals are
already Mozilla contributors. A surge of contributors joined
the onboarding programs during 2014. To allow newcomers
sufficient time to become effective contributors, we excluded
those developers who made their first contribution near the
end of our study. From the data, we found that newcomers
who make 10 contributions take an average of 203 days to
complete this work; as such, we excluded any developer whose
first contribution occurred during the last 203 days of our
study. We identified a GFB by the presence of the string good
first bug in the whiteboard field3 and a mentored bug by
the string mentor in the whiteboard field (or by a mentor
being assigned to the mentors field); this is the standard
mechanism Mozilla uses for labelling such bugs.

To examine RQ1 (do onboarding programs increase the
likelihood of success for the first contribution?), we examined
the number of contributors who made their first contribution
attempt through an onboarding program, as well as their
success rate; this data is shown in Figure 1. We found that
a newcomer’s first attempt is more likely to succeed if it is
on a bug that is mentored or on a bug that is both mentored
and a GFB than on bugs that are not in any program. On the
other hand, first attempts on bugs that are only labeled as GFB
are less likely to succeed than attempts on bugs that are not
in any program. We also examined bugs that are mentored or
labeled GFB (i.e., inclusive or), but do not include the results
because they did not provide additional insights.

Fig. 1. RQ1: The likelihood that a developer’s first contribution is successful
for each of the four measured conditions.

To answer RQ2 (are developers more likely to continue
contributing if they start through an onboarding program?), we
analyzed the attrition rate of contributors who started through
an onboarding program with those contributors that did not;
these results are shown in Figure 2.

A large percentage of contributors whose first attempt is
on a mentored bug (or a bug in both programs) succeed
(80.1% and 85.7% respectively). However a much smaller

3A text field for adding notes and tags to a bug.



Fig. 2. The percentage of successful contributors (i.e., those who made at least one successful contribution), who made x or more contributions

percentage of successful contributors who start in this context,
regardless of their success on the first attempt, make two or
more contributions (47.2% and 48.4% for mentored bugs and
bugs in both programs respectively). This stands in contrast
with the large percentage of GFB starters (61.2%) that make
two or more contributions, despite their lower success rate on
the first attempt (67.1%).

The dropout rate for program participants is much higher
than for developers that did not start in a program (i.e., the gap
between participants and non-participants continues to widen.
For example, fewer than 15% of participants make 10 or more
contributions while more than 20% of non-participants make
10 or more contributions).

In summary, the data suggests that while developers in
onboarding programs are more likely to succeed with their
first attempts they are generally less likely to become long-
term contributors.

It is important to note that we identified 35 contributors
who made more than 10 contributions after starting with an
onboarding program; these are clearly the kinds of developers
these programs want to engage. To better understand the role
of onboarding programs in these individuals’ success, we con-
tacted them to gain insight into their onboarding experience.

III. QUALITATIVE STUDY

While the quantitative study casts a shadow on the influence
of onboarding programs on long-term participation, we sought
feedback from successful long-term contributors who joined
Mozilla through these programs to gain insight from their
experience. In this survey we focused on developers who
ended up being successful; prior research has focused on
reasons why developers drop out of OSS projects finding that
inadequate answers to questions and difficulty finding a place
to start may influence their decision to abandon a project [11].

Our questionnaire included three questions:
1) Your first patch was on a bug tagged as ‘Good First Bug’

(GFB) or ‘mentored’; do you recall how you selected
this bug?

2) Did starting with a GFB/mentored bug influence your
perception of the contribution you were making?

3) Do you have any other recollection of your onboarding
experience, or any reflections about why you have cho-
sen to make so many valuable contributions to Mozilla?

11 of the 35 (31%) contributors surveyed responded. We
performed an open-coding card sort with the survey responses;
each card consisted of a single sentence. The two coders
achieved an intercoder reliability score (percent agreement)
of 96%. Four main categories emerged from the data: Men-
torship, Motivation, Starting Points, and Complaints.

The primary subcategories under Mentorship were guidance
(“[mentorship] certainly helped me not get lost”), positive
feedback (“small words like ‘great’, ‘please’, ‘thanks’ etc. are
really motivating for first timer”), and comfort (“I think [men-
torship] certainly made the process less scary”). In general, it
was clear that mentors played an important role in helping the
developers feel like they were making valued contributions.

Respondents revealed that they were motivated in three dif-
ferent ways: Mozilla’s values (“I contribute to Mozilla because
I value a free and open internet”), learning Mozilla’s processes
(“The point wasn’t to make a valuable contribution but to set
up my development environment”), and gaining development
experience (“I wanted some programming experience on a
big project”). While it was clear that many developers were
motivated to contribute specifically to Mozilla, several respon-
dents made it clear that they just wanted to improve their
development experience by working on a large project.

Determining where to start is more challenging when con-
sidering an initial contribution than for subsequent tasks.
Developers referenced BugsAhoy, Bugzilla search, IRC, Code-



Firefox, and Bugmail as sources they used to plan their first
contribution.

Developers faced several challenges working on their first
contribution. The first of these could be considered barriers:
these include a lack of documentation and problems finding
a place to start (e.g., “Most of the bugs [on BugsAhoy]
are assigned to people, though many have stalled”). Another
challenge was dealing with the perception of contribution size
(“Sometimes, you even get frustrated by getting such a simple
patch wrong”); it was clear from several respondents that the
ratio of the effort required to fix a GFB compared to its size
and overall impact on the Mozilla project was much larger
than new contributors expected.

IV. DISCUSSION

In this Section we discuss possible threats to our analysis
and offer some reasonable scenarios that may be relevant to
our results.

A. Threats to Validity

There are several threats that may have influenced the validity
of our quantitative study as well as the analysis of the
responses to our survey.

Internal validity refers to the extent to which the causal
relationships described in the study are accurate, in other
words, the extent to which the confounding variables are
controlled. We identified two such threats. The first is that
contributors were identified by the email address recorded
with their patch submissions. It is possible that an experienced
contributor changed their email address and could therefore
have been erroneously counted as making a first contribution
in an onboarding program. This would likely bias our results
in favour of onboarding programs. The opposite effect is also
possible where a contributor who started in a program changes
their email address after making one contribution and then
continues to make contributions under this new email outside
of an onboarding program. The future contributions of this
individual can no longer be tied to an individual who entered
through an onboarding program. The second confounding
factor is that some developers may have been paid for their
work. Of the 11 developers who responded to our survey, two
were paid, one joined Mozilla after making some unknown
number of contributions, and one started an internship after
making more than ten contributions.

External validity refers to the extent to which the results
of a study can be generalized. We only studied onboarding
programs of the Mozilla Corporation and gathered data from
three of their products. This may not be a representative
sample of mentoring and good first bug programs in general
and could limit the generalizability of our results.

Construct validity is the degree to which our analysis mea-
sures what it claims to measure. It may be that newcomers that
enter through the studied onboarding programs continue to be
actively involved in the project in other ways, such as reporting
bugs, and that the programs therefore have great value in
unexpected ways. As the main purpose of the onboarding

programs we studied is to encourage code contributions, this
informed the definitions we used for contributions and success
in our study.

B. Contribution Scenarios

Our quantitative results reveal that although onboarding
programs increase the chance that a new contributors’ first
attempt succeeds, they do not increase their chances of mak-
ing subsequent contributions. This section explores possible
reasons for this phenomenon.

One possible reason for the relatively steep dropout curve
from mentored programs might be that these programs attract
individuals who would not otherwise have attempted to make
a contribution at all. In other words, while assisting these
developers certainly increases their odds of succeeding with
an initial contribution, they may be less equipped to transition
into long-term contributors. In contrast, developers who enter
through other means may have a strong intrinsic motivation to
fix the bugs they select instead of relying on mentorship.

One concern is that some GFB entrants seem to be shocked
and discouraged by how difficult it is to fix even the simplest
of bugs. From the responses to our survey, we gathered that
successful contributors also found the development process
difficult and possibly felt self conscious “at first, it felt really
odd to contribute by changing a single line of code.” This
suggests that downplaying the difficulty of tackling a GFB may
in fact increase the chances of failure since the expectation
may be that these bugs should be ‘easy’.

The final surprising point is that although contributors who
start with GFBs are more likely to fail on their first attempt,
they are the most likely of all newcomers to make a second
contribution. We speculate that this is because fixing a GFB
is in fact much harder than fixing a mentored issue since the
developers are more self-reliant; this initial filter decreases
their chances of a successful first contribution but creates a
survival bias for subsequent contributions. That said, by the
fifth contribution developers who did not enter through an
onboarding program are more likely to continue contributing
than even those who were successful on their first GFB.

V. CONCLUSION

OSS onboarding programs aim to make it easier for new
developers to become long-term contributors. Our analysis of
several years of Mozilla onboarding shows that developers
whose initial contribution is on a GFB or mentored bug are
less likely to become long-term contributors; however, some
of these developers do end up making a significant number
of contributions. While it is unclear whether these successful
contributors would have started contributing without these
programs, this paper provides quantitative evidence that these
programs alone do not automatically improve the odds of a
new developer becoming a long-term contributor.

ACKNOWLEDGMENT

The authors would like to thank the anonymous survey
respondents for their view of their onboarding experience.



REFERENCES

[1] Y. Park and C. Jensen, “Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers,” in Proceedings of the
International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), 2009, pp. 3–10.

[2] I. Steinmacher, M. A. G. Silva, and M. A. Gerosa, “Barriers faced by
newcomers to open source projects: a systematic review,” in Open Source
Software: Mobile Open Source Technologies. Springer, 2014, pp. 153–
163.

[3] X. Ben, S. Beijun, and Y. Weicheng, “Mining developer contribution
in open source software using visualization techniques,” in Proceedings
of the International Conference on Intelligent System Design and Engi-
neering Applications, 2013, pp. 934–937.

[4] A. Capiluppi and M. Michlmayr, “From the cathedral to the bazaar: An
empirical study of the lifecycle of volunteer community projects,” in
Open Source Development, Adoption and Innovation. Springer, 2007,
pp. 31–44.

[5] G. V. Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining,
and specialization in open source software innovation: A case study,”
Research Policy, vol. 32, no. 7, pp. 1217–1241, 2003.

[6] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going
to mentor newcomers in open source projects?” in Proceedings of the
International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 44:1–44:11.

[7] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on
Software Engineering (TSE), vol. 31, no. 6, pp. 446–465, 2005.

[8] I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending men-
tors to software project newcomers,” in Proceedings of the Interna-
tional Workshop on Recommendation Systems for Software Engineering
(RSSE), 2012, pp. 63–67.

[9] “Contributing to the mozilla codebase,” [https://developer.mozilla.org/
en/docs/Introduction, accessed: 2015-02-09.

[10] F. Fagerholm, A. S. Guinea, J. Münch, and J. Borenstein, “The role
of mentoring and project characteristics for onboarding in open source
software projects,” in Proceedings of the International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2014, p. 55.

[11] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why do
newcomers abandon open source software projects?” in Proceedings of
the International Workshop on the Cooperative and Human Aspects of
Software Engineering (CHASE), 2013, pp. 25–32.


