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Industrial workplaces increasingly require end-users to create programs for embedded systems, but little expert scrutiny has been
devoted to studying this domain. As a result, industrial end-user programmers may rely on programming languages and development
environments that do not necessarily follow the state-of-the-art of software engineering. Consider Ladder Logic, the most popular
language used to program the most widely deployed type of industrial hardware, programmable logic controllers (PLCs). Ladder
Logic’s fundamental design is based on electric relay circuits that have long since disappeared from practice. Does Ladder Logic inhibit
the productivity of end-user programmers, slowing progress in industrial settings like manufacturing sites and scientific labs where it
is widely used? To better understand the usage of domain-specific languages in industrial practices, we conducted a survey with 175
technical employees from an international engineering conglomerate. This survey introduced participants to Ladder Logic and asked
them questions that all programmers, including novices, should answer with ease. Nearly 70% failed, including those with previous
Ladder Logic experience. We combined end-user performance with answers in an open-ended question, where many employees
complained about the programming language. The breadth and depth of these struggles suggest that outdated languages, which
industrial end users must increasingly use, could dramatically impact productivity and that further studies on these industrial end user
programmers be necessary to better support them in their increasingly complex workplaces.
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1 INTRODUCTION

Advances in technology make programming an essential everyday task in a growing number of industries [45]. To
keep up with this, organizations depend on more of their employees to be able to program instead of relying only on
dedicated software developers. These end-users require specific support by tools that are easy to learn and use, often
referred to as low-code environments, as they allow end-users to create software while writing little or no traditional
source code. This demand has led to a thriving market for domain-specific programming languages as part of the
low-code movement [73].

New low-code solutions appear rapidly for applications in industry [38, 75], business [72], computer science educa-
tion [43], and a wide array of end-users domains [54, 78, 94]. However, not all of these areas regularly face scrutiny and
methodological evaluation: While previous work has analyzed, categorized, and standardized educational (e.g., [64, 91])
and business (e.g., [1, 9, 40, 90]) languages to great extent, industrial end-user programming (e.g., [42, 86, 88]) remains
comparatively unexplored. Except for pioneering work on analyzing code smells in LabVIEW [17, 18], little work
has focused on industrial languages. Worse yet, there is little standardization: new, supposedly end-user friendly,
programming languages constantly enter the market, and once popular languages rarely disappear entirely [16].

Many industrial languages introduce new visual paradigms with the intent to be user-friendly [88] or relate to
domain-specific notation [85]. Some languages also use or combine existing paradigms like dataflow-based [36, 87, 88],
graph-based [80], block-based [52], or analogy-based programming [59]. Some of these paradigms been evaluated
empirically, showing great promise [10, 11]. However, most languages from the industrial realm that are used today
are Legacy Languages that were created by practitioners in their domain and have faced almost no scrutiny from
language designers, especially with respect to the challenges industrial end-users, in contrast to professional software
developers, experience using these languages. The few known studies of these languages were conducted decades after
their creation [28, 61] and have had no discernible impact on the languages or their programming environments. This
raises the question, have we accidentally created a two-class system for end-user programmers? As business-oriented
end-users enjoy huge leaps in productivity due to the innovations from academic research [66] and the low-code
movement [72], have we left industrial end-users, who traditionally program manufacturing lines and other embedded
systems, behind to languish in a 1970s programming purgatory?

This paper seeks to identify the challenges industrial end-user programmers face with the languages they must
use. Specifically, we focus on industrial end users programming the most widely used programmable hardware in
industry, Programmable Logic Controllers (PLCs), as determined by its 11.21 billion USD market in 2020 [39]. PLCs,
which are used to control small to medium scale industrial automation tasks, can be programmed using five different
languages, as defined in IEC-61131-3 [85]. Of these Languages Ladder Logic [60] is by far the most used and is therefore
the subject for this investigation. It is so popular that, while no other language from this standard is ranked in the
top 100 programming languages in use today, Ladder Logic is ranked as the 50th most used language, ranking above
CoffeeScript and Racket, among others [57], despite its domain-specific deployment.

Programs written in Ladder Logic, as shown in Figure 1, look similar to hard-wired circuit diagrams that were popular
in the 1970s. Originally, the popularity of these diagrams helped make Ladder Logic easy-to-learn and easy-to-use for
engineers without formal programming training [24, 85], but the prevalence of these domain-specific diagrams has
faded over time [4]. Because Ladder Logic originated from these diagrams instead of a well-understood programming
paradigm, no previous work has thoroughly investigated its learnability or usability, or its ultimate effect on end-user
productivity.
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Fig. 1. Example code for a recycling plant in Ladder Logic, explained in detail in Section 2.

In this paper we present an evaluation of Ladder Logic with several beginner-level programming tasks to asses their
programming competence (often referred to as a FizzBuzz tasks) that we conducted with 175 professional engineers from
a multi-national engineering conglomerate. FizzBuzz questions, made popular in technical job screening interviews, are
meant to test the most basic level of skill in a programming language [14]. If a job candidate could not answer a set of
given FizzBuzz questions with 100% accuracy they would not be considered competent in that language and likely fail
the job screening. Our test consisted of 10 questions that we designed with a similar goal in mind. Our study results
show that nearly 70% of users failed our FizzBuzz test for Ladder Logic, including users with previous Ladder
Logic experience. Furthermore, these results are not the result of a single difficult question—10% to 25% of participants
answered each individual question incorrectly—demonstrating a consistent failure rate across questions. Mirroring
their difficulties in a follow-up satisfaction survey, users rated Ladder Logic’s usability to be only “fair”.

To better contextualize their performance, we also collected 98 comments from participants about usability challenges
and concepts they considered particularly difficult. Multiple participants complained that Ladder Logic programs became
too large and found that data dependencies made programs too hard to read. This is remarkable since all of the programs
shown to participants were orders of magnitude smaller and less complex than real world programs. While experience,
both with programming and with PLC programming, helped users perform slightly better, many experienced users
argued that Ladder Logic was really only useful as a learning language. These findings, together with the high failure
rate, show that there is a measurable, negative impact on productivity caused by ignoring the hard-won lessons of
modern programming languages.

Unfortunately, incremental improvements may not be enough to redeem legacy languages like Ladder Logic. Even
with significant improvements to both the language and the supporting tooling fundamental challenges may remain,
and thus we believe the most promising way forward would be to replace this language entirely. However, as any
replacement language has the potential to become a legacy language itself in the future, we consider it crucial to learn
from the mistakes of Ladder Logic.

Does this happen? Consider this, the MORPHA language for the intuitive programming of robots was created in 2002.
Its primary innovation was its use of icons to represent robot instructions [12]. Even though it had the backing of two
major robot manufacturers it failed to gain traction in industry, primarily because users found it difficult to remember
the meaning of each icon [70]. Unfortunately, because this experience remains largely undocumented, industry was
doomed to repeat this mistake. In 2018 a new robot programming language was created for the Franka Emika robot [53].
As shown in Figure 3, other than superficial differences (e.g., horizontal vs vertical layout and improved graphics), this
new language’s use of iconography is nearly identical to MORPHA’s failed approach, which is shown in Figure 2.

Through our investigation of the challenges faced by industrial end-user programmers, we demonstrate that their
effectiveness programming embedded systems is hampered by their current programming languages. By examining the
industrial end-users feedback and task performance, we have identified a series of evidence-based language design
observations that could improve the software development experience for these users. We hope that this feedback can
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Fig. 2. MORPHA [12]

Fig. 3. Franka Emika[53], created 16 years after MORPHA, uses a similar approach to
iconography even though MORPHA’s iconography was a major contributor to its failure.

help provide evidence to inform future language design, enabling improved state-of-the-art programming tools and
languages for industrial end-users, ultimately increasing their productivity while performing these complex tasks.

The remainder of the paper provides the details necessary to understand and replicate our work. Section 2 provides
the necessary background to those unfamiliar with PLCs and Ladder Logic. Section 4 describes the research questions
and the survey used to investigate these questions. Section 5 provides the details of our results and Section 6 discusses
some of the implications of the results. Section 7 identifies the possible limitations of our research method and Section 3
places our work in the context of existing investigations on this topic.

2 PROGRAMMING PLCS WITH LADDER LOGIC

To illustrate a typical use case for Programmable Logic Controllers and Ladder Logic, consider the following industrial
process: A recycling center regularly receives a mix of metallic and plastic refuse that is dumped on a moving conveyor
belt. Before the plastic can be recycled, the metallic materials need to be sorted out. While the recycling center could
hire employees to manually identify and remove the metallic materials, this solution is not cost-effective and human
workers have a low accuracy at this type of task [48]. Instead, the recycling plant could use an inductive sensor that
detects metallic objects and a pneumatic piston that automatically pushes metallic items off the conveyor. This strategy
is cheaper and more effective than using human workers, but it requires some initial effort to set up and connect the
individual components.

Programmable Logic Controllers are digital computers that connect hardware components like the sensor, conveyor
and piston in our example[49]. Although similar to conventional computers in terms of architecture, PLCs were
designed to withstand to the adversities of industrial environments, including problems such as dirt, dust, variations
of temperature, humidity and noise [23, 25, 41]. Compared to just wiring all the components together directly, PLCs
reduce the effort to set up the system and, more importantly, make changes in the future. Since the inputs and outputs
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from all hardware flow through the PLC, the recycling plant could easily add more pistons or sensors and connect them
without re-wiring the existing hardware. Instead, all they have to do is re-program the PLC.

PLCs are usually programmed using software provided by the PLC manufacturer. This software is installed on
a conventional computer, and programmers only transfer their final, compiled code to the PLC for execution [81].
Although some PLC manufacturers support of traditional programming languages like C or Pascal, most PLCs follow the
standards defined by the International Electrotechnical Commission (IEC) [3, 34]. The IEC 61131-3 standard defines the
five programming languages for PLCs, which include: Ladder Logic (LD), Function Block Diagrams (FBD), Structured
Text (ST), Instruction Lists (IL) and Sequential Function Charts (SFL) [3, 46, 81]. Ladder Logic is the most popular of
these five languages [24, 26, 57].

Ladder Logic is a visual programming language designed to resemble the relay logic schemes used in hard-wired
circuits [65, 77, 79]. Ladder Logic visualizes programs as diagrams that use symbols representing input and output
devices such as buttons, switches or motors. These symbols are connected by vertical and horizontal lines that describe
the program logic as a circuit. Every diagram must at least have two vertical lines on opposite sides that are called
power rails [79]. Horizontal lines connect the two power rails and create the rungs of the ladder. Horizontal lines can
branch or merge and always connect one or more input and output symbols with each other.

Consider the industrial process of the recycling plant we presented earlier. Figure 1 shows a truth table for scenario
(left) that directly connects the inductive sensor and the pneumatic piston. The right side of the figure shows the
encoding of this program in Ladder Logic. The Sensor is represented as a normally open input contact, which means
that the circuit is only closed when the sensor is activated. The Piston is represented by an output contact. The overall
diagram can be read as follows: “When the inductive sensor is on, then the pneumatic piston is on.".

Ladder Logic can be used to represent a wide variety of concepts. For instance, Figure 4 shows three separate Ladder
Logic programs and their truth tables, representing the operators NOT, AND, and OR in boolean logic. These can be
used as building blocks for more complex programs. In the first diagram, the input contact labeled Input is a normally
closed contact, meaning that the circuit is only closed when it is not activated [71]. The other two diagrams use more
established circuit notation and can generally be read as follows: “Output are on when they lie on a closed circuit that

connects the two power rails.". The training video1 that we used in our survey can provide an additional understanding
of the Ladder Logic language.

3 RELATEDWORK

In this section we first discuss PLCs and their historical use of wiring as programs, and how that led to the ladder logic
language. We then describe the many educational languages that have been developed to make programming easier for
non-experts. Finally, we discuss recent uses of visual languages in industrial settings.

3.1 PLCs

As discussed in Section 2, PLCs were created to avoid the problem of constantly re-wiring relay logic. Instead, PLCs
allow engineers to re-program logic virtually, by making updates to the program. Modern PLCs have been in use since
the mid-1970s and standard programming languages, as defined by the IEC 61131-3 standard in 1993, have been in
widespread use since the 1980s [37, 56, 76]. This standard defines five different languages, three of which are graphical.
Ladder Logic, one of these languages, is perhaps the most popular language. It has been claimed that 50% of America’s

1https://www.youtube.com/watch?v=V3xTa2sw0bk

https://www.youtube.com/watch?v=V3xTa2sw0bk
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manufacturing capacity has been programmed in Ladder Logic [2] and it is the 50th most popular programming language
overall [57].

In spite of its popularity, many have pointed out problems with the Ladder Logic language: there are many issues with
race conditions [2] and bad actors can insert logic bombs into programs [30]. Researchers have suggested converting
Ladder Logic into other languages as part of the compilation process due to its shortcomings [27] and have suggested it
should be replaced with a Petri-net based programming approach [89].

3.2 Educational Languages

Educators have made immense steps forward in designing languages that are easy-to-learn and easy-to-use for beginning
programmers [43, 64]. One of the leading paradigms for making new end-user languages is block-based programming,
led by the popularity of tools like Scratch [66] and Alice [19]. Block-based programming uses a programming-command-
as-puzzle-piece metaphor to provide visual cues as to how, where, and when a given programming command can be
used. Writing programs in block-based environments takes the form of dragging-and-dropping commands together.
When two commands cannot be assembled to create a valid programming statement, the environment prevents these
commands from being snapped together, thus excluding syntax errors in the authoring of programs. Block-based
programming is also becoming an increasingly wide-spread approach to programming physical computing devices
and robotics systems. A new wave of robotics toolkits and environments are using the block-based modality, such as
OpenRoberta [44], CoBlox [91] and the Modkit [55] and Arduviz [62] environments for programming the Arduino
microcontroller.

Research has demonstrated the various ways that block-based tools support novice programmers [10, 11] and how
they can serve as an effective way to introduce novices to foundational programming practices and computer science
ideas [29, 33, 63, 93]. Particularly relevant to the work presented in this paper is the comparative research showing the
block-based programming approach to be effective for introducing novices to industrial robotics programming [13, 21].
Given its success in robotics, it raises the question of whether Ladder Logic should be improved or whether it should
be replaced entirely by this new paradigm. We believe that a careful analysis of both Ladder Logic and block-based
programming according to our design guidelines coupled with experimental comparisons may be the best way to
answer this open question.

3.3 Visual Languages in Industry

In the 1990s, when several visual programming languages were being introduced in industry, many blindly considered
them to be superior to text-based languages. This trend, dubbed superlativism, held that visual languages were superior
for all tasks, with no supporting evidence. Not surprisingly, researchers quickly showed that, while visual languages
like LabView were well-suited for certain tasks, the were not superior for all tasks [31]. Researchers have since created a
foundational set of cognitive dimensions to evaluate visual languages, allowing language designers to better understand
the tradeoffs that must be considered [32].

Since that time, many visual languages have been adopted for robotics, both in industry and academia [20]. Behavior-
trees, block languages, dataflow languages, state-flow languages, and even trigger-based languages have been used to
program robots. Beyond robotics, visual languages have been adopted in many different domains, and have even been
analyzed in these settings [47]. A recent survey shows that IoT devices are perhaps the next big focus, as they found
as many papers focusing on IoT as they did on education. One such approach, Smart Blocks, which uses block-based
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Fig. 4. NOT, AND, and OR operators encoded as Ladder Logic diagrams.

programming for smart home devices, uses program analysis to avoid common programming mistakes [6]. For IEC-
61131-3 languages researchers have even defined metrics to help measure and avoid overly complex programs [28].
For another common industrial language, LabVIEW, researchers have investigated code smells and their impact on
performance [17, 18]. The recent focus on these languages, the study of their complexity, and how to use tools like
program analysis to make them more usable reinforces our point that, without further help, end-users struggle to use
industrial languages.

4 RESEARCH METHOD

In the following subsections, we describe our approach and instrumentation. A replication package is available to
increase the reproducibility of our study and results.2

4.1 ResearchQuestions

In our study, we investigated the learnability and usability of Ladder Logic. We further aimed to identify aspects of the
language that are particularly problematic for end-users. For this purpose we conducted an interactive online survey
with engineering employees working for a large, multi-national engineering conglomerate.

We trained participants through a short video tutorial and then asked them to solve a series of comprehension tasks.
These tasks tested both the participants’ ability to correctly read and to write Ladder Logic programs. We focused on
toy-sized programs that could be read and understood quickly, making them appropriate for our survey-based approach.
We studied the performance of participants on these smaller problems and will discuss the implications of our findings
on larger programs later.

We further wanted to understand how participants perceive Ladder Logic, so we asked them to rate the usability of
Ladder Logic using a standardized System Usability Scale (SUS) questionnaire [15]. We further asked participants for

2Replication package: https://github.com/vcuse/industrial

https://github.com/vcuse/industrial
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open-ended comments on their experience with the language. Some of our participants had already used Ladder Logic
before our survey, so we asked them comment on issues they encountered in practice.

To guide our investigation, we focused on four research questions:

RQ1 Can engineers solve automation sub-problems (i.e., building blocks of full solutions) using Ladder Logic?
RQ2 What characteristics of Ladder Logic problems are most challenging for engineers?
RQ3 How easy-to-use and easy-to-learn did engineers rate Ladder Logic?
RQ4 What insights did engineers have concerning the use of Ladder Logic for automation?

We chose these questions to help us understand Ladder Logic’s strengths and weaknesses while providing insight to
help design future end-user programming languages.

4.2 Survey Design

We structured our survey as follows:

4.2.1 Demographic Questions. We provided participants with four multiple-choice questions in order to understand
the demographic composition of our respondents. The first question asked the participants for their current occupation
in industry. The second and third questions asked them for their respective experience, in years, with programming
and Programmable Logic Controllers. The fourth question asked the participants which programming languages (if
any) they used previously to write code for Programmable Logic Controllers.

4.2.2 Tutorial. After the demographic section, we provided participants with a short 4 min, 20 sec video tutorial.3

This video explained the concepts of Programmable Logic Controllers and Ladder Logic. The tutorial also included
examples of Ladder Logic diagrams, an explanation on how to read them, as well as examples of industrial input and
output devices.

4.2.3 Exercises. In the third part of our survey, respondents were asked to solve ten short tasks involving simple
automation problems. We divided exercises into two groups. The first group contained five exercises focused on writing
Ladder Logic diagrams while the second group contained five exercises on reading. We presented these exercises in a
fixed order, with alternating questions from each group.

Writing. The goal of the five exercises in the writing group was to identify if the respondents could correctly write
a Ladder Logic diagram for a given scenario. For each of the exercises, participants were given a truth table and an
animated illustration of a simple automation problem. We then asked the participant to select the diagram out of eight
options that correctly solves the proposed problem. To better evaluate the performance of our respondents, we made
specific changes in the seven wrong options: We changed the program’s structure, the position of labels and the position
of symbols. In Figure 5, we present one of the exercises of this group. The correct answer for this exercise is option “a”.

Reading. The goal of the five exercises in the reading group was to identify if the respondents could correctly read
and comprehend Ladder Logic diagrams. For each question participants were provided with a diagram and then asked
to identify in which cases the output symbol of the diagram would be turned on. We gave participants five possible
answers per exercise, each varying in the states for the input symbols that would trigger the output symbol to be turned
on. Figure 6 shows an example of a reading exercise. The correct answer is option “c”.

3https://www.youtube.com/watch?v=V3xTa2sw0bk

https://www.youtube.com/watch?v=V3xTa2sw0bk
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Fig. 5. Example of a writing exercise from the survey.

4.2.4 System Usability Scale. After the set of exercises, participants completed a System Usability Scale (SUS) question-
naire. The SUS is a standardized, straight-forward questionnaire that contains ten statements designed to measure the
perception of users on the usability of a system [15, 35]. Participants score their agreement with each statement from
one (strongly disagree) to five (strongly agree). The statements, adapted to contain the Ladder Logic as the respective
system under analysis, were shown to the respondents as follows:

• I think that I would like to use Ladder Logic frequently.
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Fig. 6. Example of a reading exercise from the survey.
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Fig. 7. Demographic composition of participants: Occupancy, programming experience, PLC programming experience and known
programming languages.

• I found Ladder Logic unnecessarily complex.

• I thought that Ladder Logic was easy to use.

• I think that I would need assistance to use Ladder Logic.

• I found the various functions in Ladder Logic were well integrated.

• I thought Ladder Logic was too inconsistent.

• I would imagine that most people would learn to use Ladder Logic very quickly.

• I found Ladder Logic very cumbersome/awkward to use.

• I felt very confident using Ladder Logic.

• I needed to learn a lot of things before I could get going with Ladder Logic.

4.2.5 Open-ended Question. In addition to the system usability scale questionnaire, and in order to obtain a more
comprehensive opinion from the participants about Ladder Logic, an open question limited to five thousand characters
was provided, asking the respondents: “What is your opinion about Ladder Logic? Feel free to provide any thoughts about

this language”.
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4.3 Survey Development

To develop our survey, we followed the three-stage process recommended by Dillman [22]. First, we had experts
review our initial survey to ensure clarity and avoid misunderstandings. Next, we discussed the survey with a larger
group of researchers and developers, focusing on clarity and motivation. Finally, we performed a pilot test with eleven
respondents, including nine researchers (in industrial automation), one developer and one engineering architect, all
with at least one year of programming experience. We asked the participants to provide feedback about the survey via
email and online meetings. These respondents were not included in the final results.

4.4 Survey Execution

The final version of the survey, which is available in its entirety in the replication package, was emailed to employees
of a multinational engineering conglomerate. We invited approximately 2,000 employees, including those from an
engineering facility in India and those with an engineering-related job title from all over the world.

4.5 Data Analysis

4.5.1 Overall Performance. Focusing on the ten Ladder Logic exercises in the survey, we analyzed the overall per-
formance of participants. We focused on the number of correct responses that each participant provided. We further
analyzed how participants’ experience, occupation, and programming experience affected their performance.

4.5.2 Performance per Question. Next we evaluated the difficulty of each individual question to see how it contributes
to participants’ performance. We also grouped questions based on their characteristics, such as the number of rungs,
number of symbols, and the type of symbols, to investigate the impact of these factors.

4.5.3 Usability Evaluation. We calculated each participant’s raw SUS score based on their responses to the standardized
questionnaire. SUS scores cannot be interpreted linearly [51]. We therefore mapped the average score that participants
gave Ladder Logic to the corresponding percentile of overall scores that other systems evaluated by the SUS received.

4.5.4 Analysis of Open-ended Responses. To analyze participants’ open-ended responses we employed a card sorting
approach [82]. Two researchers jointly analyzed and discussed two sets of 10 answers to establish common set of codes.
Then, each researcher analyzed the remaining answers independently and discussed the disagreements until reaching
consensus. We also employed continuous comparison [83] to ensure the consistency in our codes and results. Finally, a
third researcher and an experience engineer inspected the final code classification.

5 RESULTS

After a brief demographic overview of our participants, we structure the presentation of our results to follow our
research questions outlined in Section 4.1.

5.1 Demographics

In total we received 175 complete responses (approx. 9% response rate). Figure 7 shows the survey participants’ self-
reported occupation, programming experience, PLC experience, and known PLC programming languages. As expected
due to our targeted emails, most (123 of the 175) respondents were engineers. While there were also 25 respondents who
selected the “Other” option, these respondents’ often wrote in engineering-related jobs such as project managers and
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Fig. 8. Breakdown of participant performance (e.g., only about 30%, in green, answered all 10 questions correctly).

project lead engineers. There were also 9 software developers, 9 researchers, 6 technicians and 1 engineering student
who responded.

Nearly half of the respondents (100 of 175) claimed to have over 5 years of programming experience, and almost all
(153 of 175) claimed at least some experience. Note that while many engineers program as part of their job, it often
represents only a small percentage of their overall responsibilities. We therefore do not assume that their experience
is equivalent to that of a professional software developer that gave the same response. In addition to programming
experience, many respondents had experience programming PLCs directly, with 133 of 175 reporting at least some
experience and 67 reporting greater than five years of experience.

Respondents had experience with a variety of languages that are often used in PLC programming. The most popular
languages among the respondents were: Function Block Diagrams (FBD), used by 124, Structured Text (ST), used by
92, Ladder Logic (LD), used by 66, and Sequential Function Charts (SFC), used by 60 respondents. Besides the given
languages, which were defined by the IEC 61131-3, a few respondents used languages such as C, C++, Flow Code
and Control Module Diagrams to program PLCs. 12 respondents also defined themselves as with no experience with
programming languages commonly used for PLCs.

5.2 RQ1: Can engineers solve automation sub-problems using Ladder Logic?

To answer this question we investigated the performance of individuals across the entire survey. As Figure 8 shows,
only about 30% (52 of 175) are able to answer all ten questions correctly, with the average score being 8.5 (SD 1.8). The
majority of users (69%) answered at least one question incorrectly, with about 35% answering two or more incorrectly.
In Figure 10 we show the breakdown of correct (green) vs. incorrect (red) responses per question. Most questions had
a significant number of users who answered incorrectly (Mean 26.5, SD 15.8), indicating that there was not a single
hardest question that caused most participants to fail.

To investigate the influence of participants’ background on their performance, we studied the performance of different
participant groups. Figure 9 shows their performance according to each demographic characteristic. These characteristics
are experience with IEC-61131-3 languages (top), PLC programming experience (middle), and general programming
experience (bottom). As Figure 9 shows, users’ experience has some impact on their performance. To quantify this
impact, for each category we grouped users with no experience and users with any experience, and then compared
these two groups using the Mann Whitney U Test, a nonparametric test that is widely used to compare non-normal
distributions [92]. Using this approach, we saw a difference for all categories: known languages (𝑊 = 553, 𝑝 = 0.02596,
Cliff’s delta: -0.37 medium), PLC experience (𝑊 = 2068, 𝑝 = 0.01199, Cliff’s delta: -0.24 small), and programming
experience (𝑊 = 971, 𝑝 = 0.001099, Cliff’s delta: -0.41 medium).
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Fig. 9. Breakdown of performance, as effected by previous experience (e.g., only about 10% of those with no programming experience
answered all 10 questions correctly, as shown in green on the bottom third, bottom bar labeled “No Experience”).

*
Most participants failed the Ladder Logic competence test. Users with no experience in PLC or general
programming performed worse than those with at least some experience.

5.3 RQ2: What characteristics of Ladder Logic problems are most challenging for engineers?

To investigate this question we categorized each of our ten questions according to the characteristics of Ladder Logic
problems. For each characteristic under investigation, we grouped questions into two groups. We investigated many
characteristics, but we present only the most relevant comparisons: reading vs. writing-based questions, one-rung
vs. two-rung questions, and questions that contained closed-contact inputs vs. those that did not. We then compared
the percentage score for each group using the Wilcoxon Signed-Rank Test, where the hypothesis that two groups are
identical is rejected for p-values < 0.05. Finally, to measure the effect size we used Cliff’s Delta and interpreted the
values using accepted thresholds [69].

For the read vs. write comparison we grouped questions according to whether they required users to read Ladder
Logic diagrams or whether they required users to write diagrams. Based on the notion that mastery proceeds through
the use-modify-create spectrum [50] we expected user performance to be better for reading. The mean performance
for the five reading questions was 87.8 compared to 81.9 for the five writing questions, indicating that respondents
indeed performed better on reading questions (𝑊 = 17668, 𝑝 = 0.006181). The effect size between these two means was
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Fig. 10. Performance of respondents for each individual question. The number inside each bar indicates the absolute number of
respondents in each group.

small (delta estimate= 0.1538286), indicating that while it was harder for users to write Ladder Logic than to read it, the
difference was not large, likely because the same knowledge is required for both.

For the one-rung vs. two-rung comparison we grouped questions according to the number of rungs in the questions
(for reading problems) or in the correct solution (for writing problems). We expected user performance to be better
for one-rung questions because these programs are less complex, having no possibility for intermediate values and
being less complex overall. On the five questions with one rung, respondents had a mean score of 87.3 whereas on
two-rung questions they scored 82.4, indicating that there was some difference (𝑊 = 17122, 𝑝 = 0.03556). However, in
this case the effect size was negligible (Cliff’s delta: = 0.11), and thus further investigation, possibly with multiple-rung
programs, is needed to establish a clear difference.

When comparing questions with normally-closed contact inputs (i.e. boolean negation) vs. those without, we believed
that users would be more likely to struggle with the former because in our own experience this type of contact is
not as intuitive, and because previous work has shown that negation can be challenging for users [58]. On questions
with normally-closed contacts respondents had a mean score of 81.3 whereas otherwise they received scores of 93.2,
suggesting that normally-closed contacts were particularly difficult for users (𝑊 = 830, 𝑝 = 1.13𝑒 − 13). The effect size
was medium (delta estimate = −0.4075102), indicating that this type of input was the most influential characteristic of
Ladder Logic programs on user performance.

*
Participants performed slightly better when reading vs. writing programs, worse for more complex programs,
and particularly poorly on problems that involved negation.

5.4 RQ3: How easy-to-use and easy-to-learn did engineers rate Ladder Logic?

We measured participants’ preferences using a SUS questionnaire (see Section 4.2.4). Participants gave Ladder Logic a
mean score of 69 (SD: 18, max. 100, min. 12.5). Figure 11 shows the overall distribution of scores that participants gave
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Fig. 11. Distribution of SUS scores.

Ladder Logic. Considering the distribution of SUS ratings for other systems, Ladder Logic’s score is only slightly above
the average score of 66 [51], placing Ladder Logic in the 50th percentile of systems. According to a popular scale for
interpreting SUS scores, mapping scores to adjectives from “worst imaginable” to “best imaginable” Ladder Logic’s
score maps to “OK” [7]. Another technique for interpreting scores maps it to “marginal” [8]. In both cases both the raw
score and the interpreted score are not considered strong.

*
Participants rated the usability of Ladder Logic only as “OK” or “marginal”, putting the language in the 50th
percentile of usability ratings across all systems.

5.5 RQ4: What insights did engineers have concerning the use of Ladder Logic for automation?

For the open-ended question regarding Ladder Logic we received 98 non-blank answers. To curate the dataset we
filtered out 17 messages that did not expressed an opinion about Ladder Logic. For instance we filtered out such as
personal history (e.g., “Got training on LD in early days but never used in any project”; “never used before, but I will
give it a try in the future”), opinions about the survey (e.g “Very simple and useful teaching. Thumbs up.”; “These
examples are quite simple, I’d like to see some more complex examples”) or other programming language not evaluated
in the survey (e.g “I believe ST [structured text] will be future even in PLC world”). Our final dataset contained 79
comments which were, on average, 186 characters long. After performing open coding, several major themes emerged.
The top eight themes, in terms of number of occurrences, are listed in Table 1. As shown in this table, the most common
theme was that Ladder Logic is not well-suited for large or complex projects.

Ill-Suited for Complex Projects. 27 respondents indicated their agreement with one participants’ assessment that “for
understanding simple programs like turning [on] motor/lights, Ladder is ok but when we get into complex logics of
process control or some complex solution.. [Ladder Logic] is cumbersome & time consuming” or, more directly, “[Ladder
Logic is] not suited for complex tasks”. These 27 respondents often elaborated on why they believed Ladder Logic
did not work for complex situations. Several indicated that Ladder Logic programs quickly become too large, saying
“usability in more complex softwares isn’t that good as even with simple functions one ends up with huge number
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Comment Occurrences

Not well-suited for large/complex projects 27
Easy to use and understand 23
Less appropriate than other programming languages 17
Works well for small/simple projects 17
Easy to learn 9
Hard to debug 6
Difficult to use and understand 5
Bad user experience 5

Table 1. Most common open-ended comments.

of [rungs] which makes the general view of the code more challenging” and “..more complex functions are way too
crowded/complex in Ladder Logic”. Another elaborated that even to create a simple “..X-Or block I need to use 2 NC &
2 No contact [gates]” and a different respondent explained that “program length also increases due to limitations in the
NO/NC contacts in each rung, then in this case we need to do cascading of Rungs (this increases program length)”. One
respondent summarized the issue as “[Ladder diagrams] takes too much space to program therefore is only suitable for
very simple programs.”

Another issue that respondents regularly cited as to why Ladder Logic was not well-suited for complex projects is
that the data dependencies make programs difficult to understand. One explained: “[Ladder Logic] does not work as
well for sequential programming. Trying to write this style of programming often involves a lot intermediate of coils,
edge detections and latches, which can be hard for some to follow.” Others echoed these challenges, saying “..it gets
more complicated when an output function is dependent on another’s output function. Then reading the ladder top to
bottom becomes tricky in search for the dependable” and “..[it] becomes too difficult to follow for logic functions that
interact between each other”. In all but toy-sized projects these dependencies are unavoidable.

*
Participants stated that the language doesn’t scale well for larger programs, and that hidden dependencies
make complex diagrams hard to read.

Easy to Use and Learn. Interestingly, another popular theme in comments from respondents was that Ladder Logic
was easy to use and understand. For example, one respondent said “Ladder [logic] is simple & easy to learn”. However,
upon closer inspection, respondents’ comments were almost always qualified, such as Ladder Logic is easy to use
and learn, but it has key limitations. For instance, one respondent said “Ladder Logic is best for the beginners to
learn & understand PLC programming..” but then immediately continued “...it is difficult to build more complex PLC
programming logic using Ladder concept”. Similarly, another qualified when Ladder Logic should be used: “Ladder
Logic should be used for less complex solution in automation. In this case [it] is clear, readable and simple.” Another
echoed this, saying “Ladder Logic is good for simple motor run/stop, light on/off logic...[but] can’t be used for more
complex or coordinated control programming. The complexity of the logic will make the Ladder Logic complex or
rather useless.” While on its surface this theme appears in conflict with the first theme, supporting details show the
findings support each other, as they agree that Ladder Logic is not suited for complex solutions but can be easy to use
and easy to learn for simple solutions.
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Several respondents argue that Ladder Logic is only a learning language for programming PLCs. One said “..from
my point of view ladder diagram is the simplest method for learning PLC” and another “Ladder Logic is best for the
beginners to learn & understand PLC programming.” However, they seem to disregard it as a serious language. One
said: “..it was like basic programming that one learns in his academics ..but when there are more simplified and better
languages that can be used in current scenario, no one wants to look towards ladder.” Another claimed that “Ladder
Logic was designed to get electricians to learn PLC-programming in an easy way” and yet another dismissed it, saying
“..to teach the basics of PLC applications, it’s obsolete.”

*
Many participants said that Ladder Logic feels like a toy language that is good for beginners but not for
realistic tasks.

Other comments. In addition to the points already mentioned, a few respondents also stated the difficulty to identify
bugs in Ladder Logic, giving focus to the idea that such language is not appropriate for large and complex projects. One
respondent said: "Initially it is easy understand when for small programs... but when we enter in complex programs it is
very difficult to play around and find bugs". Two respondents also mentioned electrical circuits as a prerequisite for
understanding Ladder Logic diagrams. One said: "A programmer will need to have knowledge about electric circuits to
be able to digest this programming language". The second responded reaffirmed the view of the first one by saying: "If
you have experience with electrical diagrams, ladder it’s a straight forward language... for programmers without an
electrical background, it can get complicated or not so intuitive".

*
Some participants pointed out other issues of Ladder Logic, such as poor debugging capabilities or the usage
of notation that only electrical engineers can understand easily.

6 DISCUSSION

Ladder Logic is widely assumed to be easy-to-learn and easy-to-use for end-users [25]. Our study results do not support
this assumption for industrial end-user programmers: Not only did many participants fail the competence test, but
they also rated Ladder Logic’s usability as “OK” or “Fair” on the SUS scale. Some of the responses that we described
in Section 5.5 further indicate that participants would find Ladder Logic difficult to apply to real-world projects. In
this section we discuss some of the aspects of Ladder Logic that the 175 industrial end-user participants in our study
struggled with. We further present several language design observations derived from our participants performance
and feedback that could improve the programming effectiveness of these industrial end-users.

6.1 Using Domain-specific Notation

The first systems that used Ladder Logic as a visual programming language were introduced in the 1970s. At that
time, the language appealed to engineers and technicians due to its closeness to the domain-specific notation for
relay diagrams. This similarity reduced the learning effort for these user groups since they could apply their existing
knowledge of circuit design directly without having to learn a new notation.

Over the subsequent decades, the popularity of hard-wired relays has declined [4]. This has led to fewer engineers
being familiar with the specific notation that was used by relay diagrams. The consequences of this was apparent
throughout our study: multiple participants indicated that they found it difficult to read programs, particularly when
they use negation.
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Although Ladder Logic’s history may explain why its notation became obsolete, this raises the question: is it possible
to design languages to be more future-proof? Ladder Logic’s heavy reliance on symbols that only have a meaning for
users with domain-specific knowledge seems to be a particular weakness in this regard. We believe that a lesson that
can be learned from Ladder Logic is that designers of new languages should select symbols and notation with caution,
especially with an eye to those symbols that are unlikely to change or lose their meaning over time. If it is not possible
to find symbols that are universally known, it can further be useful to support domain-specific notation with text.

Previous work has established some best practices for designing block-based programming languages. Some of these
findings might be applicable to languages like Ladder Logic as well. For example, recent work has found that end-users
prefer text-based commands over icons, even if they can understand both notations equally well [67]. Some popular
block-based languages make programs look very similar to natural language [66]; some let users choose between a
more domain-specific notation or one that is closer to natural language [19]; many of them have in common that they
only use a small number of visual features that make them accessible to their target audience.

�
End-user languages with high usability ratings often combine a small number of carefully selected visual
features with text. In Ladder Logic, the reliance on a notation that fell out of favor has made the language
harder to understand and use.

6.2 Scalability

Many study participants with experience in Ladder Logic commented that programs quickly become too complex to
read. They specifically complained about the large number of rungs that even relatively simple programs require. We
identified two separate usability issues that users face as their programs grow: First, as each rung requires significant
vertical space, only a certain number of rungs fit on a single screen. While users can zoom out or scroll through the
rungs, it becomes increasingly hard to maintain an overview of the whole program. Second, because many rungs, or
lines of code, are similar due to the regularity of Ladder Logic programs, it becomes hard for users to identify the
specific part of a program that they want to edit.

Another observation is that, when a notation designed for another purpose, like detailing relay diagrams, is co-opted
as a programming notation, this adaptation can have drawbacks. For example, Ladder Logic’s lack of scalability only
became a problem when Ladder Logic was adopted as a programming language. When these diagrams were simply
printed (on paper), engineers could easily compare multiple diagrams by laying them out side-by-side. They could
organize sub-systems into separate binders, effectively creating modules. However, when used as a programming
language, Ladder Logic is missing these features.

We believe that Ladder Logic illustrates the importance of not just considering the design of a language itself but
also the context in which it is used. This can also benefit language designers, since development environments can
complement a language and overcome its weak points. For example, many integrated development environments for
professional programming languages aid visibility and navigation in ways that a language could not offer directly.
Ladder Logic, many other visual languages, could also benefit from a development environment that provides such
features.

�
Industrial end-user programmers may have different scalability needs than other users of similar nota-
tions. Development environments can fill this gap by providing additional aids that improve visibility and
navigation.
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6.3 Encapsulation and Code Reuse

When developers design a new end-user language, visibility should be ideally considered early-on. One reason why
Ladder Logic programs grow fast and become hard to read is that the language has limited support for encapsulation or
code reuse. While Ladder Logic supports add-on instructions that allow users to reuse code [5], our survey responses
show that many experienced Ladder Logic users are not aware of this possibility. We found that add-on instructions are
rarely covered in end-user manuals and tutorials, and are particularly not recommended as a way to structure code. We
therefore see them more as an after-thought in Ladder Logic’s design than a first-class feature.

When designing new languages for end-users, it might be challenging to find ways to reuse code that work for them.
For example, while the popular block-based language Scratch supports user-defined procedure blocks, only a small
percentage of programs use the feature [84]. Instead, many end-user programmers rely on code clones that are prone to
causing the same visibility issues that are found in Ladder Logic [68]. It is not well-understood why end-users rarely
use procedures in Scratch. One reason might be that they are not aware of the feature since many tutorials don’t cover
it sufficiently. Another explanation could be that the feature requires too much up-front effort to use while its benefits
only play out over time. It remains a challenge for designers to find ways to encourage end-users to reuse code in their
language.

�
Designers may need to consider encapsulation and code reuse early on and advertise them prominently
in their end-user languages. Otherwise, they might risk that users miss these features or do not see their
benefits.

6.4 Implicit Dependencies

Our survey results show that even small Ladder Logic programs can be difficult to read or write. Participants stated that
they find it difficult to understand programs where the output of one rung is used as an input in others. They described
that they frequently miss the implicit dependency between such rungs when reading programs. They further explained
that they find it hard to write programs with this type of dependencies since they do not have a good intuition for the
resulting behavior.

Unfortunately, the design of Ladder Logic makes it hard to avoid dependencies between rungs. In particular, re-using
any intermediate results in Ladder Logic requires users to connect them to an output and use it as an input in another
rung or, worse yet, store values in registers. Unlike variables in traditional programming languages, registers are always
accessible globally and can be read and written at any point. Therefore, when a user modifies one rung of a program,
any other part of the program might be potentially affected. Since Ladder Logic rungs are continuously evaluated,
cycling through the program hundreds of times per second, changes to registers (i.e., global variables) can even affect
previous rungs, or introduce unintended dependency cycles.

Programming environments can help users visualize and understand dependencies. As previously discussed, solutions
to make Ladder Logic more scalable, like highlighting rungs with the same elements, can also help to make dependencies
explicit. Marking cyclic dependencies and automated refactoring of rungs into dependency order may make programs
easier to read. However, programming environments can only fight the symptoms of underlying language design issues:
Ladder Logic has very limited support for scoping or modularity. As we know from the study of other languages, these
features are essential to program usability, and an end-user language should actively encourage the use of scoping
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and modularity. Designers of new languages that model dependencies or data flow need to incorporate features that
support end-users in structuring their programs.

�
Development environments can visualize implicit dependencies, but this aid has limitations. Languages can
therefore support industrial end-users by making dependencies explicit and allowing them to manually
structure their programs.

7 THREATS TO VALIDITY

As with most survey-based investigations, a primary threat to external validity is the appropriateness of the surveyed
population. Our hypothesis was that Ladder Logic programming should be understandable to any engineering employee
in an engineering company. To minimize this threat, we emailed surveys only to those with engineering-based jobs
(according to their official job titles) in a multi-national engineering conglomerate. As shown in Figure 7, all self-reported
job titles were explicitly engineering or another technical role.

Another threat to external validity is an ecological threat: can the results of studying this single industrial end-user
language generalize to other industrial end-user languages. Ladder Logic shares many characteristics with other
industrial end-user languages such as LabView and other IEC 61131-3 languages. It is a visual language, it was designed
to be easy-to-learn and easy-to-use by non-programmers, it was not designed or studied by programming language
experts, and it is in widespread industrial use. Because of these parallels, many findings are likely to generalize to other
languages; however, Ladder Logic-specific issues, such as its notation being familiar only to electrical engineers, will
not.

A threat to internal validity centers around the quality of our training. If our training video was unclear or confusing,
it could hinder our participants ability to answer Ladder Logic questions. We mitigated this threat by focusing only
on the most basic concepts in Ladder Logic in the training video and subsequent survey, in addition to piloting and
improving our survey and training prior to deployment. Data from our experiment suggests that our training was
effective. As we can see from Figure 9, those with prior knowledge of Ladder Logic (top row on top group) performed
only slightly better (analysis in Section 5.2) than those with no prior knowledge of Ladder Logic (all other rows in top
group), including those with no experience with PLCs.

One more threat to internal validity was found in the reliability of the questionnaire applied in this study. Using the
Cronbach’s Alpha test in our set of answers for the SUS questionnaire, we detected that the alpha value found was
slightly low (𝑎𝑙𝑝ℎ𝑎 = 0.327), suggesting some potential bias in our results. Since the SUS questionnaire is based on a set
of standard usability questions that are widely used by many other studies with great Cronbach’s Alpha scores [8], we
decided to keep such results as part of our study.

Fortunately, there are no large threats to the construct validity of this experiment. Our primary results measure the
performance of technical employees on reading and understanding Ladder Logic diagrams, which matches exactly the
construct we intended to measure. The use of multiple choice answers could introduce a minor threat, as it is difficult to
differentiate between respondents that answered randomly (and thus mainly incorrectly) and those that were answering
authentically, but simply performing poorly. Fortunately, almost all respondents answered three or more questions
correctly, which indicates that they did not select answers arbitrarily. Another threat is that users could accidentally
choose wrong answers (i.e., a mis-click). This threat was minimized by allowing respondents to revisit questions and
update their responses.
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Finally, there is a possible threat to our conclusion validity. One of our major conclusions posits that most respondents
fail our test, answering at least one of ten simple questions incorrectly. It is possible that this standard is too high, that
engineers are likely to make a mistake on one of ten questions on a survey, even if they known and understand the
material. We reject this threat, as engineers tend to be meticulous in their work and in their responses. Furthermore, if
engineers make one mistake for every ten Ladder Logic programs they read, then programming a realistic-sized system
would be impossible. Thus, we dismiss this threat.

8 CONCLUSION

In our study, we evaluated the Ladder Logic programming language by surveying industrial engineers. We found that
although popular among users of Programmable Logic Controllers, Ladder Logic represents the essence of what is
available in industrial end-user programming: a set of outdated and counter-intuitive visual programming languages
that have become popular due to a lack of alternatives rather than their high quality. In this paper we showed that
nearly 70% of end-user industrial engineers who answered our survey made substantive errors when trying to solve
simple automation problems using Ladder Logic, even if they had significant prior experience with that language.
Among the difficulties observed, we noticed that certain aspects of Ladder Logic are more challenging than others for
most users, such as the concept of negation.

We also investigated the usability of Ladder Logic via a system usability questionnaire, where we found that Ladder
Logic receives a “Fair” rating from users. Last but not least, we also asked our respondents to openly discuss their
concerns about Ladder Logic. The respondents pointed out key limitations of Ladder Logic, including difficulties in
scalability, dependency management, and modularity, summarizing Ladder Logic as a language that should be used
only for educational purposes.

Based on our findings and feedback from industrial end-user engineers, we identified four design observations
for future language and tool designers to consider when creating languages for industrial end-users. We hope these
observations can help improve the correctness of industrial end-user programs which could ultimately improve their
productivity in this increasingly important domain.

We see our findings as supplementing existing evidence of the shortcomings of industrial end-user languages. Adding
to the pioneering work analyzing LabVIEW [17, 18], another widely popular industrial end-user language, our work
shows that another major language is failing its users. In General Electric’s advertising campaign, “What’s the Matter
with Owen?”, the protagonist, a young computer scientist, is faced with convincing his friends that working for an
industrial company, one that produces our power, creates physical products, and treats our water, is just as important
as working for a FAANG company [74]. Unfortunately, his friend, who works for Zazzies, the mobile app which allows
users to put hats made of fruit on cute animals, steals the show from Owen, and receives all the attention from their
peers.4 Our work is driven by this fear, that software engineering research overlooks industrial end-users, focusing on
more traditional software development teams and tools. We hope that this work demonstrates that industrial end-users
face real problems, but that solutions can be found, and drives more research interest towards this important field.
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