AJRCMB Articles in Press. Published on June 29, 2006 as doi:10.1165/rcmb.2006-0056OC

Identification of novel lung genes in bronchial epithelium by serial analysis of gene expression

Kim M. Lonergan^{*1}, Raj Chari¹, Ronald J. deLeeuw¹, Ashleen Shadeo¹, Bryan Chi¹, Ming-Sound Tsao², Steven Jones³, Marco Marra³, Victor Ling¹, Raymond Ng^{1,4}, Calum MacAulay⁵, Stephen Lam⁵ and Wan L. Lam¹

¹Cancer Genetics & Developmental Biology, ⁵Department of Cancer Imaging, ³Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada, ²Ontario Cancer Institute / Princess Margaret Hospital, Toronto, ON, Canada, ⁴Computer Science, University of British Columbia, Vancouver, BC, Canada

Running Title: Bronchial epithelium gene expression profiles

Funding: This work was supported by funds from Genome Canada/Genome British Columbia and the National Cancer Institute of Canada.

*Correspondence: Kim Lonergan British Columbia Cancer Research Centre 675 West 10th Avenue, Vancouver, BC Canada V5Z 1L3 Tel. 604-675-8111 Fax. 604-675-8232 E-mail: klonergan@bccrc.ca

*This article has an online supplement, which is accessible from this issue's table of content online at www.atsjournals.org

ABSTRACT

A description of the transcriptome of human bronchial epithelium should provide a basis for studying lung diseases including cancer. We have deduced global gene expression profiles of bronchial epithelium and lung parenchyma, based upon a vast data set of nearly two million sequence tags from 21 serial analysis of gene expression (SAGE) libraries from individuals with a history of smoking. Our analysis suggests that the transcriptome of the bronchial epithelium is distinct from that of lung parenchyma and other tissue types. Moreover, our analysis has identified novel bronchial-enriched genes such as MS4A8B, and has demonstrated the utility of SAGE for the discovery of novel transcript variants. Significantly, gene expression associated with ciliogenesis is evident in bronchial epithelium, and includes the expression of transcripts specifying axonemal proteins DNAI2, SPAG6, ASP, and FOXJ1 transcription factor. Moreover, expression of potential regulators of ciliogenesis such as MDAC1, NYD-SP29, ARMC3 and ARMC4 were also identified. This study represents a comprehensive delineation of the bronchial and parenchyma transcriptomes, identifying more than 20,000 known and hypothetical genes expressed in the human lung, and constitutes one of the largest human SAGE studies reported to date.

Key words: bronchial epithelial, lung parenchyma, SAGE, expression profile, ciliogenesis

INTRODUCTION

The bronchial epithelium is a pseudo-stratified structure, consisting of specialized cell types including basal cells, goblet cells, and ciliated columnar cells, and plays an active role in airway defense by protecting the respiratory tract from infection and damage induced by environmental toxins. Moreover, maintenance of tissue architecture and cellular polarity is crucial for proper lung function. Disorders such as cystic fibrosis and primary ciliary dyskinesia, originate from impaired ionic transport across the bronchial epithelium and impaired ciliary function, respectively (1-3).

Several large-scale gene expression studies have been published that describe disease states of the lung such as chronic obstructive pulmonary disease (COPD), emphysema, and non-small cell lung cancer (NSCLC), as well as response to microbial exposure in bronchial epithelial primary cell cultures (4-11). In a recent study, 2,382 genes were identified to be consistently expressed in large-airway epithelial cells of healthy never smokers, as were 97 genes induced by smoking (12). Despite these informative studies, knowledge of gene expression in the bronchial epithelium remains limited.

An improved understanding of the bronchial epithelium transcriptome, specifically that exposed to tobacco smoke and therefore at an increased risk of malignant transformation and other lung pathologies, should serve as a baseline to facilitate an understanding of molecular mechanisms underlying central airway disorders of diverse etiologies. In this study, we have determined the gene expression profile of 19 bronchial epithelial samples from current or former smokers by serial analysis of gene expression (SAGE) (13), constituting one of the largest human expression studies reported to date. Significantly, we were successful in constructing SAGE libraries from human bronchial epithelial cells isolated by endoscopic brushing of the central airways. This was achieved without the need for either cell culturing or linear amplification of RNA. SAGE profile comparisons defined bronchial gene expression relative to that of lung parenchyma, and offered the potential for discovery of alternate transcript variants in known lung genes. Further comparison with profiles derived from various normal human tissues, revealed novel bronchial-enriched genes, including those associated with innate defense and ciliogenesis.

MATERIALS AND METHODS

Specimens

Bronchial epithelial specimens used in this study were obtained from segmental and subsegmental bronchi by brushing with a 3 mm teflon brush with a sheath (Hobbs Medical, Stafford Springs, CT) during autofloresent bronchoscopy. The areas brushed were without abnormalities for moderate dysplasia or worse pathology as determined by combined autoflouresent and white light bronchoscopy using the LIFE-Lung device (14). The brush (with adhering tissue) was immediately immersed in RNA*later* (Ambion, Austin, Texas) and stored at -85°C. Cytologic examination indicated that on average, specimens consisted of over 90% bronchial epithelial cells with the remainder consisting of leukocytes and alveolar macrophages. All individuals were Caucasians ranging in age from 54 to 72 years, and were either current or former smokers, with smoking exposure ranging from 30 to 100 pack years (Table 1). No individuals were known to be asthmatic based on clinical history and lung function testing. This study was approved by the Review of Ethics Board of the Ministry of British Columbia. Parenchyma was obtained from lung resections from former or current smokers diagnosed with squamous cell carcinoma, and ranging in age from 54 to 84 years. Lung parenchyma is typically comprised of various cell types including Type I and Type II alveolar cells, bronchiolar cells that include Clara cells, endothelial cells, stromal material, and to a lesser extent alveolar macrophages and leukocytes.

SAGE Library Construction and Sequence Processing

Bronchial brushing specimens in RNA*later* were diluted 2-fold with phosphate buffered saline and cells were collected by centrifugation and homogenized in lysis/binding solution (100 mM Tris-HCl, pH 7.5, 500 mM LiCl, 10 mM EDTA, pH 8.0, 1 % LiDS, 5 mM dithiothreitol). The resultant lysate was used directly for bronchial epithelial (BE) SAGE library construction.

For the lung parenchyma (LP) libraries, RNA was isolated from 8 individuals by guanidium isothiocyanate and phenol/chloroform extraction (15). Each of 2 libraries was constructed from RNA pooled from four specimens in equal amounts; ~19 μ g of total RNA were used in constructing each library.

All SAGE libraries were constructed according to the MicroSAGE protocol, using Nla III as the anchoring enzyme and Bsm FI as the tagging enzyme [(13); detailed at www.sagenet.org]. Reagents, primers and restriction enzymes were purchased from Dynal Biotech (Brown Deer, Wisconsin), Integrated DNA Technologies (Toronto, Ontario), Fisher Scientific (Nepean, Ontario), and New England Biolabs (Pickering, Ontario). The I-SAGE kit and Platinum Taq polymerase were purchased from Invitrogen Life Technologies (Burlington, Ontario).

On average, 10^5 SAGE tags, excluding linker and duplicate ditags, were sequenced per library (Table 1). For normalization, tag counts were scaled to 10^6 tags/library and presented as

tags per million (TPM). Tag-to-gene mapping was according to the SAGE Genie database [(16); cgap.nci.nih.gov/SAGE], with reference to SAGEmap.

Cluster Analysis

To evaluate the degree of similarity of the lung libraries to those generated from multiple tissue types, the 19 BE and the 2 LP libraries from this study were compared with 14 libraries derived from normal lung, brain, colon, breast and prostate tissue selected from the GEO (Gene Expression Omnibus) data repository at SAGEmap (17). For cluster analysis, the 300 most abundant tags (representing ~1/3 of the total tag count) were retained from each library, yielding a merged list of 1610 unique tags. A correlation coefficient matrix between all pairs of libraries was generated, processed through the statistical software package R (18), and then clustered based on the single-link hierarchical clustering algorithm.

Identification of Bronchial-enriched Genes

To identify genes preferentially expressed in bronchial epithelium, we compared the 19 BE libraries with those generated from a variety of normal tissue types including brain, breast, colon, prostate, kidney, leukocyte, skin, peritoneum, liver, heart and spinal cord, all retrieved from the GEO data repository at SAGEmap.

All 19 BE libraries were grouped together, and the mean and standard deviation were computed for each tag. For some tags, the SD may be considerable relative to the mean. Thus, a simple fold change may be misleading. One improvement is to use the standard deviation-adjusted ratio (SD-Adj Ratio), which in this case is defined as (bronchial mean - bronchial SD) / (non-lung mean + non-lung SD). This ratio, by design, is conservative because it always gives a

value no greater than the simple fold change. Bronchial-enriched tags were identified according to their SD-Adj Ratio, and the results were sorted in descending order.

RT-PCR Analysis

RNA was isolated from bronchial brushing specimens using Trizol reagent (Invitrogen) and treated with DNase I (Roche Diagnostics, Laval, Quebec) prior to cDNA synthesis. Forty nanograms of total RNA was converted into cDNA using SuperScript II reverse transcriptase and oligo dT₂₀ primer according to manufacture's recommendations (Invitrogen). Control reactions were set up in parallel, omitting the reverse transcriptase. For validation of lung-specificity of expression, human MTC Multiple Tissue cDNA Panels I and II (cat# 636742; 636743, Clontech, Mississauga, Ontario) were used in addition-to bronchial epithelial cDNA. PCR was performed for 30 cycles using Platinum Taq DNA Polymerase (Invitrogen) and gene-specific primers (Alpha DNA, Montreal, Quebec). Primers were selected from sequence close to the SAGE tag and designed to generate 100 to 200 bp amplicons (Supplemental Table 2). PCR products were resolved by agarose gel electrophoresis, and visualized by ethidium bromide staining.

For quantitative RT-PCR, total RNA was converted into cDNA using the High-Capacity cDNA Archive kit (cat# 4322171, Applied Biosystems), and gene-specific quantitative PCR was performed using TaqMan Universal PCR Master Mix and TaqMan primers (cat# 4326708, Applied Biosystems), according to manufacturer's recommendation. *Beta-actin* was used as an endogenous control (primer product code 4352935E). Primer product codes for test genes: ARMC3, Hs00330456_ml; Blu, Hs00210720_ml; MDAC1, Hs00373644_ml. The reactions were run on an iCycler iQ Real-Time PCR Detection System (Bio-Rad), and method of analysis was the delta-delta CT.

SFTPB transcript variant 2-short: cloning and cDNA sequencing

The 3'-terminal region of SFTPB (surfactant, pulmonary-associated protein B) transcript variant 2-short was identified by differential display (DD), based on a previously described method (19). Briefly, poly $(A)^+$ RNA isolated from lung parenchyma was primed and amplified using Canchored oligo dT with a Hind III site at the 5'-end (5'-TGCCGAAGCTTTTTTTTTTC-3') and arbitrary primer encoding an Eco RI site (5'-CCGTGAATTCGCTGGGAT-3'). Full-length SFTPB transcript variant 2-short was amplified from a Human Lung Marathon-ReadyTM cDNA library (cat# 7408-1, Clontech), using the Marathon Adaptor Primer 1 (AP1), and an antisense primer designed according the sequence of the DD product (5'to GCTAAGGCTTGTTTGGCTTTTTGTT-3'). The primary PCR product was reamplified using the primer. but including an *EcoR*I site the 5'-end (5'same at CGGAATTCGCTAAGGCTTGTTTGGCTTTTTGTT-3'). The 5'-RACE product (~1.8 kb) was cloned into Not I/Eco RI-digested pBluescript II KS (+/-) vector (Stratagene).

Northern hybridization

RNA was extracted from frozen lung parenchyma using Trizol reagent. Three to 5 μ g of total RNA were resolved by 2.2 M formaldehyle/1 % agarose gel electrophoresis, and transferred to nylon membrane. *SFTPB* transcript variant 2-short 3'-UTR oligonucleotide probe (5'-TCCTCATGACCTAACCTCATCCCAGT-3') was labeled with α -³²P dATP using terminal deoxynucleotidyl transferase (Promega), and allowed to hybridize at a concentration of 0.1 pmol/ml of hybridization solution (50 mM NaPO4, pH 7.2, 0.65 M NaCl, 7 % SDS, 1 % BSA) containing 10 μ g/ml poly (A)+ RNA as blocker, at 60°C for 7 hours. The probed blot was

washed repeatedly in 2x SSC, 0.5 % SDS at room temperature, with a final wash in 0.5x SSC, 0.1 % SDS at 44°C for 2 minutes, and exposed to autoradiographic film. The SFTPB codingregion probe (spans nucleotides 1 through 644, Fig. 4A) was labeled by random priming in the presence of α -³²P dATP, and hybridization was at 62°C for 19 hours in hybridization solution (as above) containing 0.1 mg /ml salmon sperm DNA as blocker. The probed blot was washed repeatedly in 2x SSC, 1 % SDS at room temperature, with a final wash in 0.2x SSC, 0.5 % SDS at 55°C for 30 minutes, and exposed to autoradiographic film.

Tissue Dot Blot hybridization

Human RNA Master BlotTM (cat# 7770-1, Clontech) containing poly (A)⁺ RNA from 50 different tissues, was probed with SFTPB transcript variant 2-short 3'-UTR oligonucleotide probe as described above, at 58°C for 7 hours. The probed blot was washed repeatedly in 2x SSC, 1 % SDS at room temperature, with a final wash in the same solution at 41°C for 2 minutes, and exposed to autoradiographic film.

RESULTS AND DISCUSSION

Enumeration of sequence tags expressed in bronchial epithelium by SAGE

This study describes large-scale gene expression profiling of smoke-damaged bronchial epithelium and lung parenchyma, through generation and analysis of 21 SAGE libraries, sampling nearly 2 million sequence tags (Table 1). Even with the precautionary exclusion of singleton sequence tags (some of which potentially contain sequencing errors) >80,000 unique tags were identified from the 19 bronchial epithelial (BE) libraries collectively, and >10,000

unique tags from the 2 lung parenchyma (LP) libraries (pooled from 4 individuals each). However, only 70 % of the unique tags from the BE dataset (55,869/80,183) mapped to a UniGene cluster according to SAGE Genie tag-to-gene mapping. Remarkably, the fact that 24,314 unique tags do not match a UniGene cluster, suggests that many genes expressed in bronchial epithelium are not represented in the current databases of expressed sequence tags (ESTs). This interpretation is consistent with findings that the majority of unmatched SAGE tags represent novel transcript variants and/or novel genes (20). Moreover, as multiple SAGE tags frequently map to the same gene, the number of unique tags with UniGene mappings may not necessarily reflect the number of genes expressed. Accordingly, the 55,869 mapped unique SAGE tags converged to 22,822 unique UniGene clusters, presumably reflecting an abundance of transcript variants [alternative splicing and/or alternate poly (A^+) adenylation site usage], and antisense transcripts (Fig. 1). Our tag-to-gene ratio of 2.45:1 is close to that calculated for the entire publicly available SAGE database (2.25:1), which at the time of analysis consisted of 101 human libraries (20).

Notably, ~30 % of the unique 22,822 UniGene clusters, have non-annotated (i.e., no associated gene symbol) mapping assignments. More than one-half of these map to transcribed loci, while others map to hypothetical genes/loci and cDNA clones. Of the 15,680 annotated UniGene clusters identified, a significant portion map to uncharacterized transcripts classified as chromosomal open reading frames (~5%), hypothetical proteins (~6%), and KIAA proteins (~3%). Hence, the sequencing of nearly two million SAGE tags not only yielded expressional information on ~13,000 known genes, but also from a large number of uncharacterized genes. Continuing cDNA sequencing efforts (e.g. RefSeq, Mammalian Gene Collection) will improve prospective annotation of more UniGene clusters as well as the accuracy of tag-to-gene mapping.

Relatedness of epithelium and parenchyma expression profiles

Cluster analysis indicate that bronchial epithelium and lung parenchyma are distinguishable based upon gene expression profiles. The 19 BE libraries cluster as one clade distinct from both lung parenchyma libraries and select non-lung libraries in GEO; while the two lung parenchyma libraries from this study (LP-1, LP-2) and an additional lung library (Lung_762) from SAGEmap database, cluster together (Fig. 2).

In addition, linear regression analysis of all possible pairings between the individual BE libraries and the LP libraries, was used as a measure of relatedness. The linear regression data is provided in Supplemental Table 1. With the exception of library pair BE-8A/8B, the bronchial epithelial libraries are all very similar to one another, with an average R value of 0.9 (SD = 0.06). Likewise, the two LP libraries are also similar to each other (R = 0.93). In contrast, comparison of the LP with the BE libraries yielded a low concordance (average R= 0.58), indicating a significant difference between these two tissue types (p < 0.005). Thus, both cluster and linear regression analysis illustrate the striking distinctiveness of these 2 lung tissue types.

Repeatability of SAGE

To test the repeatability of the SAGE protocol, we generated duplicate libraries (BE-4A/4B) from a single tissue lysate of a bronchial brushing. According to the clustering analysis, these duplicate libraries group together (Fig. 2). Similarly, linear regression scores indicate that duplicate libraries BE-4A/4B are more closely related to one another (R = 0.99) than either is to any other library in the dataset. For reference, the average R value for BE-4A versus the other

bronchial libraries (excluding BE-4B, and BE-8A/8B) is 0.9; the average R value for BE-4B versus the other bronchial libraries (excluding BE-4A, and BE-8A/8B) is 0.89.

Reproducibility of bronchial brushings

To evaluate the reproducibility of bronchial brushings in terms of gene expression profile, two pairs of libraries (BE-8A/8B and BE-11A/11B) were constructed from brushings attained from the same individuals, taken approximately one month apart. According to cluster analysis, BE-11A and BE-11B group together (Fig. 2). Similarly, linear regression data supports a strong relatedness between libraries 11A and 11B [R = 0.97; compared with average R values to the other brushing libraries of 0.86 for BE-11A (excluding BE-11B and BE-8A/B) and 0.91 for BE-11B (excluding BE-11A and BE-8A/B)].

Conversely, although BE-8A and BE-8B (libraries originating from the same individual) cluster within the bronchial epithelial clad (Fig. 2), linear regression data suggests that these two libraries are distantly related to the other BE libraries (average R = 0.75 and 0.74, respectively), and moreover have a relatively low similarity score to each other (R = 0.69). It is noted that the presence of red blood cells was atypically evident within the lysate used to generate library BE-8A; this is consistent with a relatively high abundance of SAGE tags specifying hemoglobin transcripts in this library. Whether or not this contributes to the disparity observed between libraries BE-8A and BE-8B is not known. Although BE-11A/11B strongly supports the reproducibility of bronchial brushings, BE-8A/8B illustrates that care must be taken at the time of sample acquisition.

Expression profile of bronchial epithelial SAGE libraries

The complete data for the 19 BE libraries has been deposited in the GEO database under GenBank accession number GSE3707. Tag-to-gene mapping classifications of the 50 most abundant SAGE tags from the average of these libraries are summarized in Fig. 3A. Twenty-one of these tags map to nuclear-encoded, non-ribosomal transcripts, 8 of which show enriched expression in the bronchial epithelium libraries relative to other tissue-specific SAGE libraries (per SAGE Anatomic Viewer, SAGE Genie), and are described in Table 2. At least four of these bronchial-enriched proteins are associated with defense of the bronchial epithelium against susceptibility to infection, protection from cytotoxic effects of pro-inflammatory reactants, or modulation of inflammatory responses: MUC5B (mucin 5B), a major component of respiratory tract mucus associated with mucociliary transport and clearance (21); LPLUNC1 (long palate, lung and nasal epithelium carcinoma-associated 1), one of seven members belonging to the PLUNC family of proteins postulated to play a role in innate immune defense (22); SCGB1A1 (secretoglobin family 1A, member 1; also known as Clara-cell specific 10-kD protein; uteroglobin), which is the most abundantly expressed transcript in the bronchial epithelium libraries, associated with immunoregulatory and anti-inflammatory activities (23); SLPI (secretory leukocyte proteinase inhibitor), a protease-inhibitor associated with protection against proteolytic damage during inflammatory responses; also exhibiting anti-microbial and woundhealing activities (24, 25).

Genes associated with basic cellular processes such as protein biosynthesis, nucleotide metabolism, and cytoskeletal structure, are also highly expressed in the bronchial epithelial libraries. We emphasize that all expression profiles presented in this study have been derived from either current or former smokers, and thus the relative high expression of some of the genes identified in Table 2 may be a consequence of smoke-damage to the bronchial epithelium. In

this regard, it is noted that expression of three of the genes identified in Table 2, *MSMB* (microseminoprotein, beta), *FTHI* (ferritin heavy polypeptide 1), and *MUC5B*, were found to be significantly elevated in current smokers relative to never smokers (12).

Expression profile of lung parenchyma SAGE libraries and novel transcript discovery

The complete data for the 2 LP libraries has been deposited in the GEO database under GenBank accession number GSE3708. Tag-to-gene mapping classifications of the 50 most abundant SAGE tags from the average of the 2 libraries are described in Fig. 3B. Twenty-five of these tags map to nuclear-encoded, non-ribosomal proteins and are described in Table 2. Surfactant-associated protein (SFTP) gene tags, including those mapping to *SFTPA2*, *SFTPB*, and *SFTPC*, are prominent within this dataset. Surfactant is an extracellular phospholipid-protein complex that plays an essential role in normal respiration by lowering surface tension at air-liquid interfaces in the alveoli, and also plays an important role in innate immune defense within the lung (26, 27). Notably, tags mapping to genes associated with humoral immune response are also prominent within the LP dataset.

Detailed investigation into tag-to-gene mapping has resulted in discovery of a novel transcript variant in lung parenchyma. The most abundant SAGE tag identified in the parenchyma libraries for SFTPB has an internal localization within the 3'-UTR of transcript variant 2 (tag position 3 spanning nt 1703-1716, GenBank Accession Number NM_198843) and consequently has a low tag-to-gene mapping reliability score of 54%. This, in combination with the finding that the most reliable SAGE tag mapping to transcript variant 2 (tag position 1 spanning nt 2378-2391; 92% reliability) is not prominent within the LP libraries, prompted us to further investigate possible transcript variants of SFTPB within lung parenchyma. Using

differential display, we identified a transcript from lung parenchyma that terminates within the 3'-UTR of SFTPB transcript variant 2; more specifically, just downstream of the low reliability SAGE tag described above. We refer to this transcript as SFTPB transcript variant 2-short. Significantly, a potential poly $(A)^+$ addition signal can be identified just upstream of the experimentally determined 3'-terminus of transcript variant 2-short (Fig. 4A). Northern hybridization of normal lung RNA using a probe specific to the 3'-UTR of transcript variant 2, detects 2 transcripts measuring ~2.6 and ~1.9 kb in length. Rehybridization of the same blot to a SFTPB coding-region probe, suggests the ~1.9 kb species represents SFTPB transcript variant 2short. Although the ~ 2.6 kb species is similar in size to that predicted for full-length transcript variant 2, the absence of detectable hybridization to the SFTPB coding-region-specific probe, leaves the exact identity of this species unresolved (Fig. 4B). In addition, the SFTPB codingregion probe also detects a second relatively abundant species within the 1.5 to 2 kb size range, which may correspond to SFTPB transcript variant 1 (GenBank Accession Number NM 000542), gene-specific tags for which are also prominent within our SAGE database. In accordance with surfactant gene expression, SFTPB transcript variant 2-short shows tissuespecific expression in lung (Fig. 4C). It is noted that the 3'-terminus of cDNA clone from library NCI CGAP D10 (Genbank Accession Number CA439044), generated from lung tissue RNA primed with oligo (dT), matches that of SFTPB transcript variant 2-short reported here. These data demonstrate the utility of SAGE for the identification of novel transcript variants, even for well-studied genes such as the SFTPs.

Comparison of bronchial epithelial and lung parenchyma abundant transcripts

Remarkably, comparison of the BE and LP libraries, revealed that 28 of the 50 most highly expressed tags are common to both datasets. These include 6 of the most abundant mitochondrial-derived tags, 11 tags mapping to ribosomal protein-coding genes, and 7 tags mapping to nuclear-encoded (non-ribosomal protein) transcripts described in Table 2. Among those common to both bronchial epithelium and lung parenchyma, as well as to most major tissue types in general, are tags mapping to *LAMR1* (laminin receptor 1), *TPT1* (tumor protein translationally controlled), *FTH1*, and *NT5C* (5', 3'-nucleotidase, cytosolic). Additionally, genes involved in the synthesis and assembly of MHC (major histocompatibility complex), class 1 and class II proteins, including–*B2M* (beta-2-microglobulin), and *CD74* (invariant polypeptide of MHC, class II, antigen-associated) are also commonly expressed.

On the other hand, many of the most highly expressed genes differ when comparing bronchial epithelium with lung parenchyma. Tags enriched in bronchial epithelium relative to most major tissue types including lung parenchyma, include those mapping to MSMB (also highly expressed in prostate), MUC5B, LPLUNC1, AGR2 (anterior gradient homolog 2, also highly expressed in stomach), TFF3 (trefoil factor 3, a mucosal peptide also highly expressed in thymus and colon), CAPS (calcyphosine), CGI-38 (compararaive gene identification-38), TUBB2 (tubulin, beta 2), and SLPI (Table 2). The most abundant tag in the bronchial dataset maps to SCGB1A1, and is also detected in the parenchyma libraries, albeit at ~10-fold lower abundance. Conversely, tags mapping to transcripts encoding surfactant-associated proteins and NAPSA (napsin A aspartic peptidase), a protease involved in posttranslational processing of the proSFTPB precursor (28), are enriched in lung parenchyma relative to most tissue types including bronchial epithelium. Additionally, tags mapping to a number of transcripts including G1m (immunoglobulin heavy constant gamma 1), SPARC (osteonectin), RNASE1 (ribonuclease,

RNase A family 1, also highly expressed in pancreas), *EGR1* (early growth response 1), *APOC1* (apolipoprotein C-I, also highly expressed in liver), *TMSB4X* (thymosin, beta 4, X chromosome), and *FTL* (ferritin, light polypeptide) are highly represented in lung parenchyma and unrelated tissue types relative to the bronchial epithelium (Table 2). These observations illustrate that, despite similarities in expression profiles between bronchial epithelium and lung parenchyma, significant differences exist reflecting regional distinctions in cellular composition and biological function. These data, taken in conjunction with the cluster and linear regression profiles.

Identification of bronchial-enriched genes

Genes whose expression is enriched in bronchial epithelium relative to other tissue types were identified by first comparing our data with normal non-lung libraries in the SAGEmap database, and secondly by validating tissue specificity of expression for select genes by RT-PCR experimentation. Through this approach, we have discovered the expression pattern of genes previously unknown to be expressed in bronchial epithelium. Tag-to-gene mapping classifications of the top 100 bronchial-enriched tags are summarized in Fig. 5. A description of the top 30 tags with 70% or greater mapping reliabilities to defined transcripts is presented in Table 3.

SCGB1A1 is the most highly expressed transcript within the BE SAGE dataset (see above). Although *SCGB1A1* expression is highly enriched in both bronchial epithelium and lung parenchyma relative to all other tissue types studied here, RT-PCR analysis reveals relatively moderate levels of expression in prostate, with lower levels in a minimal number of other tissues.

This is in accordance with literature reports that *SCGB1A1* shows highest expression in lung, but with significant expression in prostate (29).

KCNE1 (potassium voltage-gated channel, Isk-related family, member 1) is a member of the KCNE family of accessory protein subunits, and in complex with the pore-forming channel protein KCNQ1, is involved in the regulation of potassium (K+) channel activity in the heart (30). Expression profiling reveals that *KCNQ1* is expressed in many human tissues in addition to heart, highlighting the relevance of voltage-gated K+ channels for normal physiology of many tissues including lung (31). Enriched expression of *KCNE1* in BE SAGE libraries reported here, suggests that KCNQ1/KCNE1 complexes play a significant role in K+ conductance within the bronchial epithelium.

ABCA13 (ATP binding cassette gene, subfamily A, member 13) is a recently identified member of the ABC transporter superfamily of proteins. Highest expression levels in human tissue is found in trachea, testis, and bone marrow (32). The data reported here, suggests that *ABCA13* is predominantly expressed in the bronchial epithelium, with lower levels of expression observed in testis, pancreas, and lung parenchyma.

Expression of *MS4A8B* (membrane-spanning 4-domains, subfamily A, member 8B) has not previously been reported in bronchus, and appears to be relatively specific to bronchus. MS4A8B is a member of the MS4A family of transmembrane proteins structurally related to and including the cell surface hematopoietic proteins CD20, the high affinity IgE receptor beta chain, and HTm4 (hematopoietic cell 4 transmembrane protein). These proteins have been proposed to function as ligand-gated ion channels with signal transduction activity (33). Multiple members of the *MS4A* gene family (including member 8B) are clustered within an approximately 600 kb region on chromosomal region 11q12, one of multiple genetic loci (11q12-q13) linked to asthma development (34). Considering the highly enriched expression in bronchial epithelium, and the chromosomal location, it is suggested that MS4A8B may play an important role in respiratory function.

Discovery of genes associated with ciliary function in bronchial epithelium

Unexpectedly, many of the novel bronchial-enriched genes identified by library comparisons were also found, according to the RT-PCR validation, to be prominently expressed in testis (Table 3; Fig. 6). This reflects the absence of a testis library in the SAGEmap database at the time of our analysis; hence those genes predominantly expressed in bronchus and testis were included in our collection of bronchial-enriched tags. Coincidentally, these two tissues share a common structural feature, the axoneme: instrumental to flagellar-mediated sperm motility in testis and cilia-mediated mucociliary clearance in lung; thus accounting for many shared transcripts. For example, DNAI2 (axonemal dynein intermediate polypeptide 2) belongs to a family of dynein polypeptides localized to ciliary and flagellar axonemes and functions as a component of a multi-subunit motor complex in association with microtubules to facilitate ciliary/flagellar motility (35). In contrast to axonemal dyneins, expression of cytoplasmic dynein polypeptides is evident within both bronchus and lung parenchyma, consistent with functional expectation. Other examples of genes preferentially expressed in bronchial epithelium and testis with known roles in flagellar/ciliary activity include: SPAG6 (sperm-associated antigen 6), encoding an axonemal component of sperm flagella (36, 37); ASP (AKAP-associated sperm protein), encoding a protein which binds to the A-kinase anchoring protein 110 from sperm flagella (38) and FOXJ1 (forkhead transcription factor J1), required for developmental stages of ciliogenesis (39). These findings concur with the fact that over 200 potential ciliary axonemal

proteins were detected in human bronchial epithelial cells using a proteomic approach (40). Furthermore, the abundance of adenylate kinase 7 gene-specific tags in the bronchial epithelium libraries is also consistent with ciliary function, as adenylate kinase activity has been associated with axonemes in protozoa and green algae (41-43).

Other genes preferentially expressed in bronchial epithelium and testis, but with unknown functions, include BLu (Zinc finger with MYND domain 10), MDAC1, ARMC3 and ARMC4 (armadillo repeat containing 3 and 4), CASC1 (cancer susceptibility candidate 1), and NYD-SP29 (testis development protein). Notably, expression of ARMC3, ARMC4, MDAC1 and NYD-SP29 has not previously been reported in lung. The preferential expression of BLu, MDAC1 and ARMC3 in bronchial epithelium versus parenchyma was verified by quantitative real-time RT-PCR in a separate cohort (Supplemental Table 6). Some or all of these genes may represent previously unrecognized components or regulators of ciliogenesis. NYD-SP29 shares high sequence similarity with dynein intermediate chain IC140, believed to mediate anchoring of inner dynein arms to axonemal microtubules within the flagella of Chlamydomonas reinhardtii (44). CASCI has been identified as a putative homolog to a protein from rat, "similar to axonemal p83.9", and was initially identified as the Lasl gene, encoded within the murine pulmonary adenoma susceptibility locus (Pas1) (45). These data suggest that an investigation into the role of ciliary activity in maintenance of normal growth control within the lung may be warranted.

A significant proportion of tags enriched in bronchial epithelium map to undefined transcripts including chromosomal open reading frames and hypothetical proteins (Fig. 5). We have further investigated the expression of 6 such transcripts (Table 3). Chromosomal open reading frames *C9orf117* and *C6orf118*, and hypothetical proteins *DKFZp434I099* and

FLJ32884 were all found to be preferentially expressed in bronchus and testis, while expression of hypothetical protein *MGC48998* appeared to be specific to bronchus, and that of hypothetical protein *FLJ40919* was found to be highly enriched in bronchus, with minimal expression detected in heart. Sequence similarity search results support a role in ciliogenesis for *C9orf117* and *FLJ32884*.

Interestingly, tags specifying proteins assigned either an established (e.g., DNAI2) or a potential (e.g., ARMC3) role in ciliogenesis, are frequently detected at notable levels in ependymoma SAGE libraries in SAGEmap. And since ependymoma constitutes a cancer originating within a ciliated region of the brain, ciliary proteins could potentially serve as markers to detect clonal expansion originating from this cell type.

Correlation of gene expression in the bronchial epithelium with smoking status

We determined genes differentially expressed between current and former smokers in our bronchial epithelium SAGE dataset, which was comprised of 5 current and 11 former smokers. 349 tags showed at least a three-fold difference -- of which 149 tags were higher in the current smoker category (Supplemental Table 7), and 200 tags were higher in the former smoker category (Supplemental Table 8). Despite the small sample size in this comparison, many of the reported smoke induced gene expression changes were captured in our analysis (12, 46).

Classical phase I and phase II xenobiotic metabolizing enzymes known to be induced by smoking such as subfamilies A and B of cytochrome P450, family 1 (*CYP1A1*, *CYP1B1*), and glutathione S-transferase A2 (*GSTA2*), as well as antioxidants including glutathione peroxidase 2 (*GPX2*), thioredoxin (*TXN*), and sulfiredoxin 1 homolog (*SRXN1*) (47) were among those showing the highest differential expression in our current-smoker dataset. Additionally, tags

mapping to oxidoreductases (associated with redox balance) including various members of the aldo-keto reductase family of proteins (*AKR1B10*, *AKR1C2*, and *AKR1C3*), *carbonyl reductase 1* (*CBR1*), alcohol dehydrogenase 7 (*ADH7*), *aldehyde dehydrogenase 3 family, memberA1* (*ALDH3A1*), and *NAD(P)H dehydrogenase, quinone 1* (*NQO1*), were also detected at higher levels in the current smoker SAGE dataset relative to the former smoker dataset. Carbonyl reductase 1 activity mediates inactivation of tobacco-derived carcinogens (48); expression of *NQO1* has been shown in a previous study to be induced by acrolein, a component of cigarette smoke (49).

Conclusions

In this study, we have deduced the transcriptome of smoke-damaged bronchial epithelium by analyzing 1,866,725 sequence tags from 19 SAGE libraries, representing one of the largest human SAGE studies reported to date. We have detected the expression of at least 22,822 genes in the bronchial epithelium and identified 24,314 sequence tags without matches to known UniGene Clusters -- cautioning our current understanding of the transcriptome.

Our analysis emphasizes the distinctiveness of the bronchial epithelium from the lung parenchyma at the gene expression level (Table 2, Fig. 6). Abundantly expressed genes from the bronchial epithelium dataset are frequently associated with innate defense and protection of the central airways, while those from the parenchyma dataset are frequently associated with respiration and humoral immune response.

Additionally, we have identified genes preferentially expressed in bronchial epithelium, some of which were previously unknown to be expressed in lung._ Many of these genes are also prominently expressed in testis, where they are associated with flagella-mediated sperm motility,

and likely play a role in mucociliary clearance in the lung. It is noted that the majority of tags most highly enriched in bronchial epithelium (63%) map to undefined transcripts including chromosomal open reading frames and cDNAs._ Further investigation of these transcripts will potentially identify additional genes associated with ciliogenesis, and other bronchial-specialized functions. Furthermore, correlation of bronchial epithelium SAGE profiles to smoking status identified a list of 349 differentially expressed gene tags. The detection of genes known to be deregulated by tobacco smoke in this gene list suggests the potential biological relevance of the genes previously unassociated with smoking.

The expression data of smoke-damaged bronchial epithelium generated in this study is available as a public resource serving as a baseline for the benefit of future expression studies pertaining to the bronchial epithelium and lung function. Improvements in tag-to-gene mapping strategies, in conjunction with this comprehensive dataset, will continue to further our understanding of the bronchial epithelial transcriptome and molecular biology of the upper respiratory tract, potentially bringing us closer to the ultimate goal of enhanced understanding and improved management of lung pathologies, most notably those associated with dysfunctional cilia.

ACKNOWLEDGEMENTS

The author wish to thank Jin-Hee Kim, Shaminder Sandhu, Sandra Henderson, Andrea Pusic, Sukhinder Atkar-Khattra, George Yang and Jeff Stott for their expert assistance.

Supplemental materials are available online. The following data have been deposited at GEO: bronchial epithelial and lung parenchyma series of SAGE libraries (GSE3754), profile of bronchial epithelial (GSE3707), profile of lung parenchyma (GSE3708), sequence of *SFTPB* transcript variant 2-short (DQ317589)

REFERENCES

- 1 Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. *Eur Respir J* 2004;23:146-158
- 2 Chodhari R, Mitchison HM and Meeks M. Cilia, primary ciliary dyskinesia and molecular genetics. *Paediatr Respir Rev* 2004;5:69-76
- 3 Mall M, Grubb BR, Harkema JR, O'Neal WK and Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004;10:487-493
- 4 Fujii T, Dracheva T, Player A, Chacko S, Clifford R, Strausberg RL, Buetow K, Azumi N, Travis WD and Jen J. A preliminary transcriptome map of non-small cell lung cancer. *Cancer Res* 2002;62:3340-3346
- 5 Hibi K, Liu Q, Beaudry GA, Madden SL, Westra WH, Wehage SL, Yang SC, Heitmiller RF, Bertelsen AH, Sidransky D and Jen J. Serial analysis of gene expression in non-small cell lung cancer. *Cancer Res* 1998;58:5690-5694.
- 6 Nacht M, Dracheva T, Gao Y, Fujii T, Chen Y, Player A, Akmaev V, Cook B, Dufault M, Zhang M, Zhang W, Guo M, Curran J, Han S, Sidransky D, Buetow K, Madden SL and Jen J. Molecular characteristics of non-small cell lung cancer. *Proc Natl Acad Sci USA* 2001;98:15203-15208.
- 7 Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, Di YP, Otterbein SL, Song R, Hayashi S, Zhou Z, Pinsky DJ, Watkins SC, Pilewski JM, Sciurba FC, Peters DG, Hogg JC and Choi AM. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. *Proc Natl Acad Sci U S A* 2004;101:14895-14900
- 8 Powell CA, Spira A, Derti A, DeLisi C, Liu G, Borczuk A, Busch S, Sahasrabudhe S, Chen Y, Sugarbaker D, Bueno R, Richards WG and Brody JS. Gene expression in lung adenocarcinomas of smokers and nonsmokers. *Am J Respir Cell Mol Biol* 2003;29:157-162
- 9 Spira A, Beane J, Pinto-Plata V, Kadar A, Liu G, Shah V, Celli B and Brody JS. Gene expression profiling of human lung tissue from smokers with severe emphysema. Am J Respir Cell Mol Biol 2004;31:601-610
- 10 Vos JB, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS and Datson NA. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense. *Physiol Genomics* 2005;21:324-336
- 11 Vos JB, Datson NA, van Kampen AH, Luyf AC, Verhoosel RM, Zeeuwen PL, Olthuis D, Rabe KF, Schalkwijk J and Hiemstra PS. A molecular signature of epithelial host defense: comparative gene expression analysis of cultured bronchial epithelial cells and keratinocytes. *BMC Genomics* 2006;7:9
- 12 Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J and Brody JS. Effects of cigarette smoke on the human airway epithelial cell transcriptome. *Proc Natl Acad Sci U S A* 2004;101:10143-10148
- 13 Velculescu VE, Zhang L, Vogelstein B and Kinzler KW. Serial analysis of gene expression. *Science* 1995;270:484-487.
- 14 Lam S, Kennedy T, Unger M, Miller YE, Gelmont D, Rusch V, Gipe B, Howard D, LeRiche JC, Coldman A and Gazdar AF. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. *Chest* 1998;113:696-702

- 15 Chomczynski P and Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate phenol-chloroform extraction. *Anal. Biochem.* 1987;162:156-159
- 16 Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De Souza SJ and Riggins GJ. An anatomy of normal and malignant gene expression. *Proc Natl Acad Sci U S A* 2002;99:11287-11292
- 17 Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W and Edgar R. NCBI GEO: mining millions of expression profiles--database and tools. *Nucleic Acids Res* 2005;33:D562-566
- 18 Ihaka R and Gentleman R. R: A language for data analysis and graphics. *Journal of Computational and Graphical Statistics* 1996;5:299-314
- 19 Liang P and Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science* 1992;257:967-971
- 20 Chen J, Sun M, Lee S, Zhou G, Rowley JD and Wang SM. Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. *Proc Natl Acad Sci U S A* 2002;99:12257-12262
- 21 Thornton DJ and Sheehan JK. From mucins to mucus: toward a more coherent understanding of this essential barrier. *Proc Am Thorac Soc* 2004;1:54-61
- 22 Bingle CD and Craven CJ. PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. *Hum Mol Genet* 2002;11:937-943
- 23 Singh G and Katyal SL. Clara cell proteins. Ann N Y Acad Sci 2000;923:43-58
- 24 Ashcroft GS, Lei K, Jin W, Longenecker G, Kulkarni AB, Greenwell-Wild T, Hale-Donze H, McGrady G, Song XY and Wahl SM. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. *Nat Med* 2000;6:1147-1153
- 25 Sallenave JM. Antimicrobial activity of antiproteinases. *Biochem Soc Trans* 2002;30:111-115
- 26 Johansson J and Curstedt T. Molecular structures and interactions of pulmonary surfactant components. *Eur J Biochem* 1997;244:675-693
- 27 Wright JR. Immunoregulatory functions of surfactant proteins. *Nat Rev Immunol* 2005;5:58-68
- 28 Brasch F, Ochs M, Kahne T, Guttentag S, Schauer-Vukasinovic V, Derrick M, Johnen G, Kapp N, Muller KM, Richter J, Giller T, Hawgood S and Buhling F. Involvement of napsin A in the C- and N-terminal processing of surfactant protein B in type-II pneumocytes of the human lung. *J Biol Chem* 2003;278:49006-49014
- 29 Peri A, Cordella-Miele E, Miele L and Mukherjee AB. Tissue-specific expression of the gene coding for human Clara cell 10-kD protein, a phospholipase A2-inhibitory protein. J Clin Invest 1993;92:2099-2109
- 30 Melman YF, Um SY, Krumerman A, Kagan A and McDonald TV. KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity. *Neuron* 2004;42:927-937
- 31 Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY and Blanar MA. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. *Proc Natl* Acad Sci US A 1997;94:4017-4021
- 32 Prades C, Arnould I, Annilo T, Shulenin S, Chen ZQ, Orosco L, Triunfol M, Devaud C, Maintoux-Larois C, Lafargue C, Lemoine C, Denefle P, Rosier M and Dean M. The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a

5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon. *Cytogenet Genome Res* 2002;98:160-168

- 33 Liang Y and Tedder TF. Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. *Genomics* 2001;72:119-127
- 34 Adra CN, Mao XQ, Kawada H, Gao PS, Korzycka B, Donate JL, Shaldon SR, Coull P, Dubowitz M, Enomoto T, Ozawa A, Syed SA, Horiuchi T, Khaeraja R, Khan R, Lin SR, Flinter F, Beales P, Hagihara A, Inoko H, Shirakawa T and Hopkin JM. Chromosome 11q13 and atopic asthma. *Clin Genet* 1999;55:431-437
- 35 Inaba K. Molecular architecture of the sperm flagella: molecules for motility and signaling. *Zoolog Sci* 2003;20:1043-1056
- 36 Neilson LI, Schneider PA, Van Deerlin PG, Kiriakidou M, Driscoll DA, Pellegrini MC, Millinder S, Yamamoto KK, French CK and Strauss JF, 3rd. cDNA cloning and characterization of a human sperm antigen (SPAG6) with homology to the product of the Chlamydomonas PF16 locus. *Genomics* 1999;60:272-280
- 37 Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL and Strauss IJ. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. *Mol Cell Biol* 2002;22:6298-6305
- 38 Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE and Narumiya S. Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA. *J Biol Chem* 2001;276:17332-17338
- 39 You Y, Huang T, Richer EJ, Schmidt JE, Zabner J, Borok Z and Brody SL. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. *Am J Physiol Lung Cell Mol Physiol* 2004;286:L650-657
- 40 Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A and Boucher RC. A proteomic analysis of human cilia: identification of novel components. *Mol Cell Proteomics* 2002;1:451-465
- 41 Nakamura K, Iitsuka K and Fujii T. Adenylate kinase is tightly bound to axonemes of Tetrahymena cilia. *Comp Biochem Physiol B Biochem Mol Biol* 1999;124:195-199
- 42 Pullen TJ, Ginger ML, Gaskell SJ and Gull K. Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. *Mol Biol Cell* 2004;15:3257-3265
- 43 Zhang H and Mitchell DR. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. *J Cell Sci* 2004;117:4179-4188
- 44 Yang P and Sale WS. The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring. *Mol Biol Cell* 1998;9:3335-3349
- 45 Zhang Z, Futamura M, Vikis HG, Wang M, Li J, Wang Y, Guan KL and You M. Positional cloning of the major quantitative trait locus underlying lung tumor susceptibility in mice. *Proc Natl Acad Sci U S A* 2003;100:12642-12647
- 46 Hackett NR, Heguy A, Harvey BG, O'Connor TP, Luettich K, Flieder DB, Kaplan R and Crystal RG. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. *Am J Respir Cell Mol Biol* 2003;29:331-343
- 47 Jonsson TJ, Murray MS, Johnson LC, Poole LB and Lowther WT. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. *Biochemistry* 2005;44:8634-8642

- 48 Finckh C, Atalla A, Nagel G, Stinner B and Maser E. Expression and NNK reducing activities of carbonyl reductase and 11beta-hydroxysteroid dehydrogenase type 1 in human lung. *Chem Biol Interact* 2001;130-132:761-773
- 49 Tirumalai R, Rajesh Kumar T, Mai KH and Biswal S. Acrolein causes transcriptional induction of phase II genes by activation of Nrf2 in human lung type II epithelial (A549) cells. *Toxicol Lett* 2002;132:27-36

Lung Library	Age	Smoking Status ⁴	Pack Years	Sex	Tags Sequenced ¹	Unique Tags
Bronchial Epithelium						
BE-1	68	CS	81	Μ	81,964	23,987
BE-2	64	CS	45	Μ	123,995	32,808
BE-3	68	FS	33	Μ	61,701	20,935
BE-4A	69	FS	100	Μ	114,669	31,731
BE-4B	69	FS	100	Μ	107,726	31,343
BE-5	70	FS	75	Μ	82,048	23,680
BE-6	67	FS	55	Μ	91,571	27,931
BE-7	56	CS	62	Μ	81,309	23,275
BE-8A	72	FS	63	Μ	83,683	25,546
BE-8B	72	FS	63	Μ	80,057	23,343
BE-9	68	FS	30	Μ	79,218	24,975
BE-10	65	FS	82	Μ	86,725	26,843
BE-11A	56	FS	64	F	89,622	26,280
BE-11B	56	FS	64	F	92,950	27,719
BE-12	63	CS	44	F	88,186	26,010
BE-13	63	CS	40	F	91,425	26,327
BE-14	63	FS	45	F	155,462	38,184
BE-15	72	FS	40	М	143,129	36,802
BE-16	71	FS	56	F	131,285	34,664
					Sum =1,866,725	$182,528^2$
Lung Parenchyma Pool	ls					
LP-1	54, 64, 75, 84			1M/3F	66,214	17,846
LP-2	65, 69, 74, 77			4 M	64,434	20,003
					Sum =130,648	$30,682^3$
Total libraries = 21					Total tags = 1,997,373	

Table 1. Summary of SAGE libraries generated in this study

¹Excluding duplicate ditags; ²80,183 excluding singletons; ³10,052 excluding singletons; ⁴CS, current smoker; FS, former smoker

19 bronchial epithelium libraries (BE-1 through BE-16; constructed from bronchial brushing specimens acquired from 16 individuals), and two lung parenchyma libraries (LP-1, LP-2; constructed from specimens acquired from two pools of four individuals each) were generated and sequenced to a minimum of 60,000 tags each. Libraries BE-4A/4B were generated from the same tissue lysate to evaluate the repeatability of SAGE; libraries BE-8A/8B and BE-11A/11B were generated from repeated brushings acquired from the same individual to evaluate the reproducibility of bronchial brushings at the gene expression level. Unique tags are defined by the 10 bp nucleotide sequence, and represent the maximum number of unique transcripts present within the respective SAGE dataset. Singletons are defined as sequence tags having a raw tag count of one in the corresponding SAGE dataset. All subjects contributing to both the bronchial epithelial and the lung parenchymal datasets were either former or current smokers. The SAGE profiles for all 21 libraries have been deposited in the GEO database under GenBank accession number GSE3754.

Table 2. Normalized tag counts expressed as tags per million (TPM), are presented for the most abundant, unique tags mapping to nuclear-encoded (non-ribosomal) transcripts from the average of the 19 bronchial epithelial libraries constructed from specimens acquired from 16 individuals (BE), and from the average of the two lung parenchyma libraries, constructed from 2 pools of 4 individuals each (LP).

Tag	Gene	Gene Name	Abun	dance	Expression
р 1.1 г. ч. н	Symbol		(11) DE	M)	Katio DE/LD
Bronchial Epitheli	al Enriched	Compared at the family 14 member 1	BE 20155	LP 2420	BE/LP
CITIGAGICC	MEMD	Miser anning TA, member T	72(2	20	101
CTTCTCCTTA	MSMB	Data 2 migraalahulin	/202	58 5774	191
TACCTTCTCT		Transportation translationally controlled 1	4250	5774	1
	IPII CD74	CD74 antigan	4330	2200	0.8
ACCTCCCCC	CD/4	CD/4 antigen	2200	12629	0.5
AAGUIUGUUG	SCGBSAI	Secretoglobin, family 5A, member 1	2212	185	18
TIGGGGIIIC		Ferriun, neavy polypepide I	2004	0239	0.5
IGIGGGAAAI	SLP1 TEE2	Secretory leukocyte protease innibitor	2884	/43	3.9
CTCCACCCGA		Trefoil factor 3 (intestinal)	2789	200	31
TOTOTTCAGAC	IUBB2	I ubulin, beta, 2	2523	398	6.3
IGIGIIGAGA		Eukaryotic translation elongation factor $1\alpha I$	2503	1822	1.4
CTAAGGIGGC	LPLUNCI	Long parate, lung & nasal epithelium carcinoma associated-1	2449	38	64 70
GIGATCAGCI	MUC3B	Mucin 5B (tracheobronchiai)	2110	30	/0
GAAATACAGT	NISC	5',3'-nucleotidase, cytosolic	1950	5357	0.4
GCTAACCCCT	CGI-38	Brain specific protein	1810	138	13
CIGACCAGAG	CAPS	Calcyphosine	1/89	84	21
TICACIGIGA	LGALS3	Galectin 3	1751	1274	1.4
ATTICIAAA	AGR2	Anterior gradient 2 homolog (X. laevis)	16/8	46	36
GAAAAATGGT	LAMRI	Laminin Rc1 (ribosomal protein SA)	1662	2842	0.6
AAIGCIIIGI	TUBA3	Tubulin, alpha 3	1524	753	2
CAATTAAAAG	XBP1	X-box binding protein 1	1486	935	1.6
Lung Parenchyma	l Enriched		BE	LP	LP/BE
CTCCCAGCCA	SFTPA2	Surfactant, pulmonary-associated protein A2	1041	20330	19
GTTCACATTA	CD74	CD74 antigen	3613	12829	3.5
GAAATAAAGC	IGHG1 [*]	Immunoglobulin heavy constant gamma 1	132	8946	68
GCCGTGAGCA	SFTPC	Surfactant, pulmonary-associated protein C	329	7435	23
TTGGGGTTTC	FTH1	Ferritin, heavy polypeptide 1	3313	6259	1.9
GCCGTGAACA	SFTPC	Surfactant, pulmonary-associated protein C	354	5932	17
GTTGTGGTTA	B2M	Beta-2-microglobulin	6047	5774	0.9
TAGGTTGTCT	TPT1	Tumor protein, translationally-controlled 1	4356	5506	1.3
GAAATACAGT	$NT5C^*$	5',3'-nucleotidase, cytosolic	1950	5357	2.7
CGCAGCGGGT	NAPSA	Napsin A aspartic peptidase	140	4315	31
GGGCATCTCT	HLA-DRA	MHC complex, class II, DR alpha	916	4144	4.5
TTGGTGAAGG	TMSB4X	Thymosin, beta 4, X-linked	904	3702	4.1
CTTTGAGTCC	SCGB1A1	Secretoglobin, family 1A, member 1	39155	3426	0.1
AAGGGAGCAC	IGLC2	Immunoglobulin lambda joining 3	46	3155	69
GAAAAATGGT	LAMR1	Laminin receptor 1 (ribosomal protein SA)	1662	2842	1.7
CCCTGGGTTC	FTL	Ferritin, light polypeptide	722	2794	3.9
CTGACCTGTG	$HLA-B^*$	Major histocompatibility complex, class I, B	552	2488	4.5
GTGCACTGAG	$HLA-A^*$	Major histocompatibility complex, class I, A	823	2428	2.9
TGGCCCCAGG	APOC1	Apolipoprotein C-I	302	2239	7.4
AGGACACCAA	$SFTPB^*$	surfactant, pulmonary-associated protein B	110	2201	20
ATGTGAAGAG	SPARC	Secreted protein, acidic, cysteine-rich	37	2123	57
AGCACCTCCA	EEF2	Eukaryotic translation elongation factor 2	1088	2074	1.9
GGATATGTGG	EGR1	Early growth response 1	127	2027	16
GTGCTGAATG	MYL6	Myosin, light polypeptide 6, alkali, smooth muscle & non-muscle	800	1993	2.5
TTAACCCCTC	RNASE1	Ribonuclease, RNase A family, 1	101	1901	19

*Possibility of alternate tag-to-gene mapping noted.

⁺Tag-to-gene mapping was according to SAGE Genie, Aug., 2005, with reference to SAGEmap.

Table 3. Thirty out of the top ranking 100 bronchial-enriched tags with mapping reliabilities to defined transcripts of 70 % or greater, and six bronchial-enriched tags mapping to hypothetical proteins are described. Selected genes were evaluated for tissue-specific expression by RT-PCR using gene-specific primers.

Tag	Gene Symbol ⁺	SDAdj Ratio [#]	Expression in Tissue Types [*]	Gene Name
CTTTGAGTCC	SCGB1A1	16587	(Brc, Lg), Pr, Pc	Secretoglobin, 1A1
TCCAAGTCCG	MDAC1	296	Brc, T, Lg	MDAC1
GATAGTGTGG	TUBA4	176	Brc, multiple	Tubulin, alpha 4
CCAAGGGAAT	ZMYND10 (Blu)	164	T, Brc, Lg, Pc	Zinc finger, with MYND domain 10
CCAAGGTGGC	LPLUNC1	150	ND	Long palate, lung and nasal carcinoma-associated 1
CAAGACCAGT	GSTA2	139	(Lv, K, Pc), multiple	Glutathione S-transferase A2
AAAGTTATTT	FOXJ1	91	ND	Forkhead box J1
CAGAGCGAAC	LRRC48	80	ND	Leucine rich repeat containing 48
TGATAAGATG	ARMC4	68	T, Brc, (Lg, Pr)	Armadillo repeat containing 4
ATAAACATTT	LRRC50	68	ND	Leucine rich repeat containing 50
ATCGACCCTC	DNAI2	55	T, Brc, Lg	Dynein, axonemal, intermed. polypeptide 2
TGAGCTTGTG	MS4A8B	54	Brc, Lg	Membrane-spanning 4-domains, A8B
TTCCATCCAG	ARMC3	51	T, Brc, (Lg, Pc)	Armadillo repeat containing 3
CTGGCCGGCC	TRIB3	50	ND	Tribbles homolog 3 (Drosphilia)
GAGGATTCCA	SKB1	49	ND	SKB1 homolog (S. pombe)
GTGAAAGACA	CASC1	47	T, Brc, (Lg, K, Pc)	Cancer susceptibility candidate 1
GTTATGGCTG	CYP4B1	47	ND	Cytochrome P450, 4B1
GTGATCAGCT	MUC5B	46	Brc, Lg	Mucin 5B, tracheobronchial
CATTTTTACT	SPAG6	42	T, Brc, (Pr, Lg), Pc	Sperm associated antigen 6
ACTTGTTATC	AK7	36	Brc, T, multiple	Adenylate kinase 7
AAATTATATT	ZNF214	35	(multiple)	Zinc finger protein 214
ATAGGTCTTT	ASP (ROPN1L)	32	T, Brc, multiple	AKAP-associated sperm protein
TGATTCTGAA	ZNF140	32	Pc, (Lv, Pr), multiple	Zinc finger protein 140
TACTGTTCTA	KCNE1	30	Brc, (multiple)	Potassium voltage-gated channel, Isk-related family, member 1
CTGAACATAT	NYD-SP29	28	T, Brc	Testis development protein NYD-SP29
TGTTATTTGA	SPAG16	28	Brc, Pc, Pr, multiple	Sperm associated antigen 16
CAGTCTGATT	LRRC46	26	ND	Leucine rich repeat containing 46
CTGACCAGAG	CAPS	24	Brc, (Pc, Pr), multiple	Calcyphosine
AATGTGTTTA	ABCA13	24	Brc, (T, Pc, Lg)	ATP binding cassette gene, A13
TTCTGACATT	CCDC17	22	ND	Coiled-coil domain containing 17
CTTCTGAGGG	C9orf117	95	(Brc, Lg, T)	Chromosome 9 ORF 117
ATTTTCCTGT	DKFZp4341099	82	T, Brc, Lg, Pc, (K, Lv)	Hypothetical protein
ATTGTAAAGA	FLJ40919	53	Brc, Lg, H	Hypothetical protein
GTCTATAAAG	MGC48998	47	Brc, Lg	Hypothetical protein
GCATTCTTCC	FLJ32884	42	T, Brc, Lg	Hypothetical protein
ATTAGTTTCT	C6orf118	36	Brc, T, Lg, (K, Pr)	Chromosome 6 ORF 118

+Tag-to-gene mapping was according to SAGE Genie, Aug., 2005, with reference to SAGEmap #SDAdjRatio = (bronchial mean - bronchial SD) / (non-lung mean + non-lung SD) *Listed in descending order of signal intensity after 30 cycles of PCR (see Fig. 6), except with

equal intensities given in parenthesis. Expression detected in 5 or more tissue types is indicated as "multiple". (Brc, bronchus; H, heart; Bn, brain; Pl, placenta; Lg, lung; Lv, liver; M, muscle; K, kidney; Pc, pancreas; Sp, spleen; Ty, thymus; Pr, prostate; T, testies; Ov, ovary; Int, intestine; C, colon; Lk, leukocyte)

FIGURE LEGENDS

Figure 1. Number of expressed genes detected within the bronchial epithelium by SAGE. Singleton tags are defined as sequence tags having a raw tag count of one within the entire bronchial epithelial SAGE dataset. Tag-to-gene mapping was per SAGE Genie, Oct., 2004. Non-annotated refers to no associated Gene Symbol assigned to the mapping.

Figure 2. Relatedness of bronchial epithelial SAGE libraries (BE-1 through BE-16) and lung parenchymal SAGE libraries (LP-1, LP-2). All 21 SAGE libraries generated in this study, along with 14 libraries from the GEO data repository at SAGEmap, were analyzed by cluster analysis using a single-link hierarchical algorithm. In the resultant dendrogram, branch length (height) represents distance. SAGE libraries retrieved for analysis from the GEO data resposiory at SAGEmap include:

- 729_NT_ColonicEpithelium2; 739_NT_Prostate_M;
- 760_NT_LuminarMammaryEpitheliumAntibodyPurified_F; 761_NT_Cerebellum_F;
- 763_NT_Brain_Pooled_M; 780_NT_Breast_GestationalHyperplasia_F;
- 781_NT_Breast_Myoepithelial_F; 786_NT_Brain_PediatricFrontalCortex_M; 762_Lung.

⁶⁷⁶_NT_Brain_M; 677_NT_Breast_LuminarMammaryEpithelium_BerEp4;

⁶⁸⁵_NT_Prostate_M; 695_NT_Brain_Cerebellum; 728_NT_ColonicEpithelium1;

Figure 3. Pie chart depicting tag-to-gene mapping classifications of the 50 most abundant, unique tags from A). the average of the 19 bronchial epithelial SAGE libraries, and B). the average of the two lung parenchymal SAGE libraries. Data in A corresponds with that presented in Supplemental Table 3; data in B corresponds with that presented in Supplemental Table 3; data in B corresponds with that presented in Supplemental Table 4. Tag-to-gene mapping was per SAGE Genie, Aug., 2005, with reference to SAGEmap. Repetitive tags map with equally high reliabilities to multiple transcripts, which presumably contribute to the cumulative tag counts

Figure 4. Expression analysis of SFTPB transcript variant 2-short. A, cDNA sequence of SFTPB transcript variant 2-short. Nucleotide positions of the 3'-UTR, the SAGE tag, the putative poly $(A)^+$ -addition signal, and the positions of probes used for hybridizations, are indicated. It is noted that the entire sequence presented here is contained within GenBank accession number NM 198843 (SFTPB transcript variant 2), spanning nts 18-1772, but with several nucleotide differences identified (GenBank accession number DQ317589). Linear representation comparing SFTPB transcript variant 2 (NM 198843) and SFTPB transcript variant 2-short (DQ317589) is shown below. SAGE tag position refers to the location of the *Nla*III site relative to the 3'-terminus of the given transcript, as defined by SAGEGenie nomenclature. B, Northern hybridization of SFTPB transcript variant 2-short in lung. Two hybridizing species are detected in normal lung parenchyma by the 3'-UTR probe (see above), measuring roughly 2.6 and 1.9 kb in length (lanes 1 and 2, filled-in arrows). Hybridization of the same blot to a probe specific to the coding region of SFTPB (see A above), detects two species within the 1.5 to 2 kb size-range, but without detection of the 2.6 kb species detected by the 3'-UTR oligonucleotide probe (lanes 3 and 4, open arrows). Migration positions for the 28S and 18S ribosomal RNAs are indicated by the open arrow-heads on the left. C, Tissue dot blot illustrating expression of SFTPB transcript variant 2-short specific to lung (F2) and fetal lung (G7). Oligonucleotide 3'-UTR was used as hybridization probe; thus hybridizing signals reflect expression of two species (as shown in *B*).

Figure 5. Tag-to-gene mapping classifications of the top ranking 100 bronchial-enriched SAGE tags. Data here corresponds with that presented in Supplemental Table 5. Tag-to-gene mapping was per SAGE Genie, Aug., 2005. In addition to the non-lung libraries used in the cluster analysis, the following libraries retrieved from the GEO data repository at SAGEmap were included for identification of bronchial-enriched genes: 708_NT_Kidney_F; 709 NT Leukocyte F; 727 NT Skin PrimaryMesothelioma;

738_NT_Peritoneum_Mesothelial; 785_NT_Liver_M; 1499_NT_Heart_M; 2386 NT SpinalCord.

Figure 6. RT-PCR verification of bronchial-enriched expression. Select genes presented in Table 3 were evaluated experimentally for bronchial-enriched expression. Gene-specific PCR products generated from cDNA representing 17 tissue types (15 non-lung) are presented above. Amplicon length was typically 100 to 200 bp. RT-PCR from beta-actin (*ACTB*) specific primers was used as a loading control. Minus-RT controls using bronchial epithelial cDNA as template were negative for PCR product (not shown). These data are summarized in Table 3. To verify differential expression between bronchial epithelium and lung parenchyma, three genes were selected for real-time quantitative RT-PCR analysis (indicated by asterisks), Differential expression for all three genes were confirmed at a *p*-value of less than 0.001 by Mann-Whitney U-Test (Supplemental Table 6). Brc, bronchus; H, heart; Bn, brain; Pl, placenta; Lg, lung; Lv, liver; M, muscle; K, kidney; Pc, pancreas; Sp, spleen; Ty, thymus; Pr, prostate; T, testies; Ov, ovary; Int, intestine; C, colon; Lk, leukocyte.

Figure 1

Figure 2

Figure 3

SFTPB coding-region probe

Α

Figure 5

Brc H Bn Pl Lg Lv M K Pc Sp Ty Pr T Ov Int C Lk

Figure 6

Identification of novel lung genes in bronchial epithelium by serial analysis of gene expression

Kim M. Lonergan^{*1}, Raj Chari¹, Ronald J. deLeeuw¹, Ashleen Shadeo¹, Bryan Chi¹, Ming-Sound Tsao², Steven Jones³, Marco Marra³, Victor Ling¹, Raymond Ng^{1,4}, Calum MacAulay⁵, Stephen Lam⁵ and Wan L. Lam¹

¹Cancer Genetics & Developmental Biology, ⁵Department of Cancer Imaging, ³Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada, ²Ontario Cancer Institute / Princess Margaret Hospital, Toronto, ON, Canada, ⁴Computer Science, University of British Columbia, Vancouver, BC, Canada

Running Title: Bronchial epithelium gene expression profiles

ONLINE DATA SUPPLEMENT

Funding: This work was supported by funds from Genome Canada/Genome British Columbia and the National Cancer Institute of Canada.

*Correspondence: Kim Lonergan British Columbia Cancer Research Centre 675 West 10th Avenue, Vancouver, BC Canada V5Z 1L3 Tel. 604-675-8111 Fax. 604-675-8232 E-mail: klonergan@bccrc.ca **Supplemental Table E1.** Linear regression data comparing bronchial epithelial SAGE libraries (BE-1 to BE-16) and lung parenchymal SAGE libraries (LP-1, LP-2)

SAGE Library	BE-1	BE-2	BE-3	BE-4A	BE-4B	BE-5	BE-9	BE-6	BE-10	BE-13	BE-7	BE-11A	BE-12	BE-14	BE-15	BE-16	BE-8A	BE-8B	BE-11B	NLP-1	NLP-2	Average R (BE:BE)
BE-1		0.9242	0.9235	0.9258	0.9205	0.8939	0.8916	0.8933	0.9042	0.8385	0.8627	0.8046	0.9426	0.9387	0.9427	0.8807	0.728	0.773	0.8492	0.6393	0.7351	0.8799
BE-2			0.8708	0.886	0.8792	0.8903	0.851	0.8538	0.8323	0.9072	0.8564	0 6935	0.9412	0.9083	0.896	0.8397	0 7217	0 7215	0.8309	0.5388	0 6772	0.8502
BE-3				0.9393	0.9283	0.9521	0.9818	0.9679	0.9688	0.788	0.9801	0.9322	0.959	0.9494	0.9464	0.8945	0.8703	0.7838	0.9572	0.6204	0.6052	0.9219
BE-4A					0.9912	0.9089	0.9181	0.9271	0.8687	0.8819	0.8486	0.8514	0.8515	0.9444	0.9237	0.8808	0.8175	0.7783	0.894	0.6577	0.7776	0.8910
BE-4B						0.9018	0.917	0.9205	0.882	0.8938	0.8492	0.8472	0.8384	0.9408	0.9127	0.8473	0.8094	0.7576	0.8807	0.6641	0.7427	0.8843
BE-5							0.9426	0.9915	0.9006	0.847	0.9261	0.9911	0.9051	0.939	0.9193	0.8243	0.6081	0.7105	0.9947	0.4053	0.4545	0.8915
BE-9								0.9674	0.9782	0.8011	0.9632	0.9326	0.9319	0.9522	0.9583	0.8777	0.7964	0.7485	0.9369	0.5312	0.7538	0.9081
BE-6									0.8704	0.7874	0.9357	0.9918	0.9285	0.9452	0.942	0.9053	0.8933	0.7702	0.994	0.4674	0.5528	0.9159
BE-10										0.8605	0.8907	0.8112	0.875	0.93	0.9779	0.809	0.6758	0.6355	0.8817	0.5816	0.6059	0.8640
BE-13											0.8037	0.7281	0.8906	0.8651	0.8238	0.7054	0.6453	0.7052	0.7483	0.5602	0.6523	0.8067
BE-7												0.9061	0.9368	0.9185	0.9318	0.801	0.6952	0.7068	0.9158	0.4461	0.5138	0.8738
BE-11A													0.8522	0.9089	0.9102	0.8214	0.6382	0.6733	0.9662	0.431	0.4993	0.8478
BE-12														0.9771	0.9576	0.8227	0.7484	0.7177	0.9212	0.4905	0.5209	0.8888
BE-14															0.9861	0.8693	0.7611	0.71	0.9269	0.5462	0.6312	0.9095
BE-15																0.9056	0.7651	0.7974	0.9462	0.5221	0.6303	0.9135
BE-16																	0.8198	0.9367	0.9171	0.5113	0.6609	0.8532
BE-8A																		0.6947	0.9107	0.5968	0.7243	0.7555
BE-8B																			0.7626	0.3941	0.5609	0.7435
BE-11B																				0.5439	0.526	0.9019
NLP-1																					0.9288	Mean BE:BE
NLP-2																						0.8685
Average R (NLP:	BE)																			0.5341	0.6224	Mean NLP:BE
																						0.5782
T-test	15.46785	5.019961	0.202836	6.041375	11.08928	10.30592	1.74421	0.61573	14.34895	0.06238	20.95885	7.390633	9.69851	1.689362	0.66039	4.685038	0.000621	1.5329E-06	3.285954	3.57245E-14	3.34808E-09	

For each pairwise comparison, only those tags common to both pairs were used; since this test to sensitive to outliers, the 0.05 % of tags with the largest disagreement was excluded from analysis. Regression value R, is given for each pairwise comparison. Average R (BE:BE) describes the relatedness of each individual BE library to the other 18 BE libraries collectively; the mean value is highlighted. Average R (LP:BE) describes the relatedness of each individual LP library to the 19 BE libraries collectively; the mean value is highlighted.

Genbank Amplicon Gene Symbol Accession Forward Primer (5' to 3') Reverse Primer (5' to 3') length (bp) Number ABCA13 NM 152701 CCAGTCAGACATTTCTGAGTTCAG CCGGTACTCAACGTTAGTGTTG 131 X00351 J00074 GTCCACCGCAAATGCTTC CCATGCCAATCTCATCTTG 100 ACTB M10278 NM 152327 GTGCATAGCTCATGAGACAAATAC GGGGCGATAACAAGTCATG 179 AK7 NM 173081 GGCTCTGGCTGATAGAATTG CGTCTGATGGCTTAAATGAATC 222 ARMC3 NM 018076 GAAGCTGCAGCTGGTTGTATAT GGGAGTGACATGTCCTGTGT 130 ARMC4 ASP BC014607 CCGCTACTTGGCCAGATTAG GACCTATCATGCCGTTCTTC 107 Blu NM 015896 CCCTGAACCTCAAGATCAC CAGGAAGTCTCGAGCCTT 130 C6orf118 BC026278 GGCCAGTGGAAATTCTTAACTTC GCAGCGCTGAATTCCTTATTC 291 C9orf117 AL833241 TCGTGTTGCCAACTGTTTG CTCCCAACCGAAGGTCAAG 200 CAPS NM 004058 CTGGACAACTTCGACTCCTCT ATGGCCACGAACTCCTCAT 113 CASC1 NM 018272 CTGAGGAAGCAATGGAGAAAG GAGGTTAGGAGTAGCTGAGCAATC 102 DKFZp4341099 BC036667 GCCTCAATCGACACAAGGAAC GAGGCCAGGTGTCTGTGTAAAC 218 DNAI2 NM 023036 CCTCAACCAGACTTGCAT GCCTGGAAAGGTATTTTCA 145 FLJ32884 BC033790 GCCACAGTGCAGTATCAGATG CCTCATCCTCCCTGAGTTTG 181 FLJ40919 NM 182508 CACCATGAGCCAGCAATTC GACACATGAGCTGACACCATATG 250 GSTA2 NM 000846 CCAGCCATAGAGGTCAAGAA AGCTTCACAACAGGCACAAT 97 KCNE1 BC036452 GAGATCCCTATGGCGTTAGTCTTC CATGGTGCATAGCAAAGACTCTG 208 NM 139172 GTCCGTGTGACATGTCCAAG CCACATCCCTGGACTCTTTG 114 MDAC1 BC040018 GTCCCTGAAAGCAAGACTGTTAC 121 MGC48998 GGAGAGGAAGAATGAATCTTCTG 103 NM_031457 MS4A8B CCTAGGGCACATGCATCA TCCTCTAACCCACAAGCTCA NM_002443 CACCTGTGGGTTATGACAAAG GGCATGGCTACACAATCATTG 205 **MSMB** CACCTGAGGGTCTCAGGAAT MUC5 U06711 CAACAGATTGGCCGTGTACT 129 NYD-SP29 AY049724 GGCCTAATCAAAGTCACAGAGA CATGCCAGTTCACCTGACATA 119 DKFZp666P1710 AL832962 GGCACTTCTTTGGCCTCTATC CTGGAGGACCTAGACAAAGCAC 469 (SPAG16-related) SCGB1A1 NM 003357 GCCCAGAGAAAGCATCATTAAG GCGTGGACTCAAAGCATG 125 SPAG6 NM 012443 GATCCTTGTCCTAACGTCACTTTC ACCCTCTTTCACCCGTTTAC 140 TUB4A NM 025019 CGCCTGGACCACAAGTTTG CATGCCCACCTCCTTGTAATC 144 ZNF140 NM 003440 CCTCATTCCGCATCTGTCAAC GGCATTCCCAAATCACTGTG 131 NM 013249 CTGGTTGGCCAACTGTTAAAC GGTGGCTTTTGTCCATAAAC **ZNF214** 138

Supplemental Table E2. Nucleotide sequence of gene-specific oligonucleotide primers used for validation of bronchial-enriched expression by RT-PCR

Supplemental Table E3. Normalized tag counts expressed as tags per million (TPM), reflect relative transcript levels corresponding to the 50 most abundant, unique tags from the average of the 19 bronchial epithelial libraries, constructed from specimens acquired from 16 individuals. Tag-to-gene mapping was per SAGE Genie, Aug., 2005, with reference to SAGEmap.

Tag	Gene Symbol	Gene Name	Abundance (TPM)
CTTTGAGTCC	SCGB1A1	secretoglobin, family 1A, member 1	39155
ACTTTTTCAA	tRNA	transfer RNA (mitochondrial)	12774
CCTATCAGTA	MSMB	microseminoprotein, beta-	7262
TTCATACACC	NADH4	NADH dehydrogenase subunit 4 (mitochondrial)	6630
CACCTAATTG	ATPase6	ATP synthase F0 subunit 6 (mitochondrial)	6370
GTTGTGGTTA	B2M	beta-2-microglobulin	6047
CCCATCGTCC	COX2	cytochrome c oxidase, subunit II (mitochondrial)	5470
AAAAAAAAAA		mutiple mappings ¹	5138
TAGGTTGTCT	TPT1	tumor protein, translationally-controlled 1	4356
AGCCCTACAA	NADH3	NADH dehydrogenase subunit 3 (mitochondrial)	4231
GTTCACATTA	CD74	CD74 antigen (invariant polypeptide of major histocompatibility complex class II antigen-associated)	3613
ΤΤΟΔΑΤΔΔΔΔ	RPI P1 ²	ribosomal protein Jarge P1	3581
AAGCTCGCCG	SCGB341	secretoglobin family 3A member 1	3386
TTGGGGTTTC	ETH1	ferritin heavy polypentide 1	3313
	PPS20	ribosomal protein \$20	3306
GTGAAACCCC	KI 527	mutinle mannings ¹	3301
CCACTGCACT		mutiple mappings ¹	3153
CTAAGACTTC	168 PNA	ribosomal RNA (mitochondrial)	3004
TTGGTCCTCT	$\frac{105 \text{ KNA}}{\text{RPL} 11^3}$	ribosomal protein L/1	29/6
TGTGGGAAAT	SI PI	secretory leukocyte protease inhibitor	2940
CTCCACCCGA	TEF3	trefoil factor 3 (intestinal)	2789
TGATTTCACT	COX3	cytochrome c oxidase subunit III (mitochondrial)	2766
CTGTACAGAC	TUBR2	tubulin beta 2	2523
TGTGTTGAGA	FFF141	eukaryotic translation elongation factor 1 alpha 1	2503
TAATAAAGGT	RPS8	ribosomal protein S8	2305
ACTAACACCC	NADH2	NADH dehydrogenase subunit 2 (mitochondrial)	2457
CCAAGGTGGC	LPLUNCI	long palate lung and pasal epithelium carcinoma-associated 1	2437
CCTGTAATCC	Li Lonoi	mutiple mappings ¹	2404
TCTCCATACC	NADH1 (likely)	NADH dehydrogenase subunit 1 (mitochondrial)	2381
GAGGGAGTTT	RPL27A	ribosomal protein L27a	2365
TCAGATCTTT	RPS4X	ribosomal protein S4. X-linked	2174
AAAACATTCT	16S RNA	ribosomal RNA (mitochondrial)	2141
GCATAATAGG	RPL21	ribosomal protein L21	2129
GTGATCAGCT	$MUC5B^4$	mucin 5, subtype B, tracheobronchial	2116
GAAATACAGT	$NT5C^5$	5',3'-nucleotidase, cytosolic	1950
GTGAAACCCT		mutiple mappings ¹	1854
GCTAACCCCT	CGI-38	brain specific protein	1810
CTGACCAGAG	CAPS	calcyphosine	1789
TTCACTGTGA	LGALS3	lectin, galactoside-binding, soluble, 3 (galectin 3)	1751
CTGGGTTAAT	RPS19	ribosomal protein S19	1742
CCTCAGGATA	NADH6	NADH dehydrogenase subunit 6 (mitochondrial)	1697
ATTTTCTAAA	AGR2	anterior gradient 2 homolog (Xenepus laevis)	1678
GAAAAATGGT	LAMR1	laminin Rc1/ribosomal protein SA, 67 kDa	1662
GGATTTGGCC	RPLP2	ribosomal protein, large P2	1608
TAAAAAAAAA		mutiple mappings ¹	1579
TGCACGTTTT	RPL32	ribosomal protein L32	1538
AATGCTTTGT	TUBA3	tubulin, alpha 3	1524
CTCATAAGGA	16S RNA	ribosomal RNA (mitochondrial)	1491
CAATTAAAAG	XBP1	X-box binding protein 1	1486
CAATAAATGT	RPL37	ribosomal protein L37	1471

¹Repetitive tag has multiple, equally high reliability mappings; ²Other high reliability mapping to *TCN1* (transcobalamin 1); ³Other high reliability mapping to *DKGI* (diacylglycerol kinase, iota) ⁴High reliability mapping to Accession number U06711; ⁵Other high reliability mapping to *CTSD* (cathepsin D)

Supplemental Table E4. Normalized tag counts expressed as tags per million (TPM), reflect relative transcript levels corresponding to the 50 most abundant, unique tags from the average of the two lung parenchyma libraries, constructed from specimens acquired from two pools of four individuals each. Tag-to-gene mapping was per SAGE Genie, Aug., 2005, with reference to SAGEmap.

Tag	Gene Symbol	Gene Name	Abundance (TPM)
CTCCCAGCCA	SFTPA2*	surfactant, pulmonary-associated protein A2	20330
GTTCACATTA	CD74	CD74 antigen (invariant polypeptide of major histocompatibility	12829
<u></u>	101101*	complex, class II antigen-associated)	0016
GAAATAAAGC	IGHG1	immunoglobulin heavy constant gamma I (GIm marker)	8946
GCCGTGAGCA	SFTPC	surfactant, pulmonary-associated protein C	7435
ATAATTCTTT	RPS29	ribosomal protein S29	7210
CCCATCGTCC	COX2	cytochrome c oxidase, subunit II (mitochondrial)	6743
TTGGGGTTTC	FTH1	ferritin, heavy polypeptide 1	6259
GCCGTGAACA	SFTPC	surfactant, pulmonary-associated protein C	5932
GTTGTGGTTA	B2M	beta-2-microglobulin	5774
TAGGTTGTCT	TPT1	tumor protein, translationally-controlled 1	5506
TTCATACACC	NADH4	NADH dehydrogenase subunit 4 (mitochondrial)	5365
GAAATACAGT	NT5C*	5',3'-nucleotidase, cytosolic	5357
ACTTTTTCAA	tRNA	transfer RNA (mitochondrial)	5306
CACCTAATTG	ATPase6	ATP synthase F0 subunit 6 (mitochondrial)	5088
TTCAATAAAA	RPLP1*	ribosomal protein, large P1	4906
CCACTGCACT		multiple mappings ⁺	4523
GGATTTGGCC	RPLP2	ribosomal protein, large P2	4335
TAATAAAGGT	RPS8	ribosomal protein S8	4315
CGCAGCGGGT	NAPSA	napsin A aspartic peptide	4315
GGGCATCTCT	HLA-DRA	major histocompatibility complex, class II, DR alpha	4144
CTGGGTTAAT	RPS19	ribosomal protein S19	4124
GAGGGAGTTT	RPL27A	ribosomal protein L27a	3784
TTGGTGAAGG	TMSB4X	thymosin beta 4 X chromosome	3702
CACAAACGGT	RPS27	ribosomal protein \$27 (metallonanstimulin 1)	3465
GTGAAACCCC		multiple mappings ⁺	3438
CTTTGAGTCC	SCGR141	secretoglobin family 1A member 1	3426
AGCCCTACAA	NADH3	NADH dehydrogenase subunit 3 (mitochondrial)	3237
AAGGGAGCAC	IGLC2	immunoglobulin lambda joining 3	3155
TCAGATCTTT	RPS/1Y	ribosomal protein S4. X-linked (utvronhilin-like 9)	2852
GAAAATGGT	L 4MR 1	laminin recentor 1 (ribosomal protein SA 67kDa)	2832
CCCTGGGTTC	EAWKI	ferritin light polypentide	2042
	I'IL	multiple mappings ⁺	2794
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	 PDI 374	ribosomal protein L 37a	2792
TTCGTCCTCT	DDI 41	ribosomal protein L 41	2/07
CTAAGACTTC	16S DNA	ribesomal PNA (mitashandrial)	2020
CTCACCTCTC	III A D*	moior histocommotibility commlex, class L D	2343
CLATAAATCT	DDL 27	riharan major mistocompanying complex, class I, B	2488
CAATAAATGI	KPL3/	noosoniai pioteni LS7	2481
GIGCACIGAG	HLA-A	major histocompatibility complex, class I, A	2428
GGGCTGGGGG	RPL29	ribosomai protein L29	2266
IGGCCCCAGG	ApoCI	apolipoprotein C-1	2239
AGGACACCAA	SFIPB	surfactant, pulmonary-associated protein B	2201
AIGIGAAGAG	SPARC	secreted protein, acidic, cysteine-rich (osteonectin)	2123
CCTGTAATCC		multiple mappings	2098
GCATAATAGG	RPL21	ribosomal protein L21	2085
TGCACGTTTT	RPL32	ribosomal protein L32	2081
AGCACCTCCA	EEF2	eukaryotic translation elongation factor 2	2074
GGATATGTGG	EGR1	early growth response 1	2027
GTGACCACGG		ambiguous	1994
GTGCTGAATG	MYL6	myosin, light polypeptide 6, alkali, smooth muscle and non-muscle	1993
TTAACCCCTC	RNASE1	ribonuclease, RNase A family, 1 (pancreatic)	1901

* Possibility of alternate tag-to-gene mappings noted

+ Repetitive tag has multiple, equally high reliability mappings

Supplemental Table E5. Top 100 bronchial-enriched SAGE tags. Tags are sorted according to standard deviation-adjusted ratio (SDAdjRatio) of bronchus versus non-lung. Tag-to-gene mapping was per SAGE Genie, Aug., 2005.

Tag	BE Mean TPM ¹	BE SD	Non Lung Mean TPM ²	Non Lung SD	SDAdj Ratio ³	T-Value	Gene Symbol	Mapping Reliability (%)	Gene Name
CTTTGAGTCC	45562	28975	0	0	16587	7	SCGB1A1	96	secretoglobin, family 1A, member 1 (uteroglobin)
CAACATAATA	483	115	0	0	367	18	DKFZp666G057	78	hypothetical protein DKFZp666G057
GGATGTTGCA	550	190	0	0	360	12	C20orf85	73	chromosome 20 open reading frame 85
AGCTTAATGA	1402	1058	0	0	343	6	Hs.460176	41 (internal tag)	transcribed locus
CATTTGTCAA	443	145	0	0	298	13	100 - 01	56	cDNA clone IMAGE: 2134382
TCCAAGTCCG	502	206	0	0	296	10	MDAC1	72	MDAC1
GGCIGIAITI	361	118	0	0	242	13	Hs.363312	48	similar to mouse fat 1 cadherin
GATAGTGTGG	242	67	0	0	176	12	TUBAA	48	tubulin_alpha4
CTAGGAAAAT	257	84	0	0	173	13	EPHA3	48	EPH receptor A3
CCAAGGGAAT	270	106	0	0	164	11	ZMYND10 (Blu)	89	zinc finger, MYND domain containing 10
CCAAGGTGGC	2834	1418	2	7	150	8	20orf114 (LPLUNC1)	94	chromosome 20 open reading frame
CAAGACCAGT	770	631	0	0	139	5	GSTA2	94	glutathione S-transferase A2
GCCAGGACTC	203	80	0	0	123	11	Hs.343383	58	similar to hypothetical protein FLJ25955
TATACAGTCC	201	80	0	0	122	11	C6orf97	92	chromosome 6 open reading frame 97
GCAGCGGCAG	1474	1368	0	0	106	5	CTSW	58 (internal tag)	cathepsin W (lymphopain)
CTTCTGAGGG	193	97	0	0	95	8	C9orf117	73	chromosome 9 open reading frame 117
AAAGTTATTT	1196	290	2	8	91	17	FOXJ1	94	forkhead box J1
ATTTTCCTGT	120	38	0	0	82	13	DKFZp434I099	94	chromosome 16 open reading frame 50
TCTCTCTGGA	266	185	0	0	80	6	Hs.404306	43	Transcribed locus
CAGAGCGAAC	126	46	0	0	80	12	DKFZP586M1120 /LRRC48	94	leucine rich repeat containing 48
CTTGAGTCCA	299	224	0	0	76	6	101/01	44 (internal tag)	(cDNA)
TGATAAGATG	115	46	0	0	68	10	ARMC4	88	armadillo repeat containing 4
ATAAACATTI	6/5	294	1	5	68	10	LOC1238/2/LRRC50	89	dynain avonemal light intermediate
ATTAATTTCC	107	40	0	0	67	11	DNALI1	61	polypeptide 1
CITIGUUI	113	4/	0	0	00	10	N4BP2	52 (internal tag)	dynain ayonemal intermediate
ATCGACCCTC	89	34	0	0	55	11	DNAI2	94	polypeptide 2
TGAGCTTGTG	1072	261	4	12	54	17	MS4A8B	94	subfamily A, member 8B
TGATTATTAA	96	43	0	0	53	9	TOX	59 (internal tag)	protein TOX
ATTGLAAGA	102	49	0	0	53	9	FLJ40919	88	hypothetical protein FLJ40919
TGCCCAACAC	90 77	25	0	0	51	13	DKFZn434A128	72	hypothetical protein DKFZp434A128
CTGGCCGGCC	77	23	0	0	50	12	TRIB3	73 (internally primed)	tribbles homolog 3 (Drosphilia)
ATAGATATGG	103	52	0	0	50	8	PICALM	44 (internal tag)	phosphatidylinositol binding clathrin assembly protein
ATTTTCTTAA	664	213	2	7	50	13	C6orf206	89	chromosome 6 open reading frame 206
GAGGATTCCA	93	44	0	0	49	9	SKB1	80	SKB1 homolog (S. pombe)
GGATTTTATT	80	31	0	0	49	11	DKFZP434H0115	92	hypothetical protein DKFZp434H0115
GTCTATAAAG	73	26	0	0	47	12	MGC48998	89	chromosome 1 open reading frame 110
GTGAAAGACA	98	51	0	0	47	8	CASC1	88	cancer susceptibility candidate 1
GTTATGGCTG	620	290	1	6	47	9	CYP4B1	75	cytochrome P450, family 4, subfamily B, polypeptide 1
GTGATCAGCT	2465	1658	4	14	46	6	MUC5AC ⁴	44 (internal tag)	mucin 5, subtypes A and C, tracheobronchial/gastric
TATCCCTGGT	78	32	0	0	45	10		44 (internal tag)	(cDNA)
AAIATACTAG	84	39	0	0	45	9	VIA A 1000	47 (into	no match
CATTTTTACT	243	75	2	3	43	14	SPAG6	94 (internal tag)	Sperm associated antigen 6
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			72	10	DIDGO		RAB33B, member RAS oncogene
ACTITAACIG	71	29	0	0	42	10	RAB33B	50 (internal tag)	family

GCATTCTTCC	81	39	0	0	42	9	FLJ32884	89	chromosome 1 open reading frame 92
TGACTGTAGC	69	29	0	0	39	10	KIAA1533	48	KIAA1533
CTCTGAGTCC	172	133	0	0	39	5		53 (internal tag)	cDNA clone IMAGE: 4253586
TATAGTTGGA	64	27	0	0	37	10	CTNNB1	46 (internal tag)	catenin (cadherin-associated protein),
TTTGCAAATA	610	150	4	8	37	16		48	cDNA clone c1/9g10
ACCGCAGGCT	319	112	4	5	37	12		40	no match
GTTGCATCCC	70	33	0	0	37	0			no match
GAAATACGTA	70	20	0	0	27	9		19	aDNA alona CS0DC002VC12
ACTTCTTATC	73	26	0	0	26	0	AV7	40	edonvilata kinaga 7
ACTIGITATE	/3	50	0	0	30	0	AK/	94	adenyiate Killase /
ATTAGTTTCT	67	31	0	0	36	9	C6ORF118	94	118
AGTCAGGATA	1095	265	8	16	35	17	FLJ34512	89	hypothetical protein FLJ34512
AAATTATATT	64	29	0	0	35	9	ZNF214	88	zinc finger protein 214
TGAACATTTG	203	66	1	3	35	13	MGC16186	74 (internally primed)	hypothetical protein MGC16186
TGGGGGCCTC	128	94	0	0	35	6		48	cDNA clone IMAGE: 2090661
CAAGGCAATT	60	27	0	0	33	10	MPH1B	58 (internal tag)	malate dehydrogenase 1B, NAD
TCAGTATGTG	59	26	0	0	33	10			no match
AGCAAAGCCC	61	28	0	0	33	9	c22orf15	49	chromosome 22 open reading frame
									AKAP-associated sperm
ATAGGTCTTT	224	97	1	3	32	10	ASP/ROPN1L	89	protein/roppprin 1-like
TGATTCTGAA	74	42	0	0	32	7	ZNF140	70	zinc finger protein 140 (clone pHZ- 39)
TCATCACACT	61	30	0	0	31	9	FLJ23049	94	hypothetical protein FLJ23049
TACTGTTCTA	73	43	0	0	30	7	KCNE1	94	potassium voltage-gated channel, lsk-
GAACACTATT	56	25	0	0	30	9	Hs 512441	54	similar to polycystin 1-like 3
ACTTCTCCTT	52	22	0	0	30	10	CLSPN	50 (internal tag)	claspin homolog (Xenopus laevis)
CTTCGAGTCC	127	98	0	0	29	6	FASTK	58 (internal tag)	fas-activated serine/threonine kinase
	184	57	1	4	29	14	TASIK	68	cDNA
TGTTATTTGA	43	14	0		29	13	PE20/SPAG16	78	PF20/SPAG16
IGHAILIGA	45	14	0	0	20	15	1120/51A010	78	coiled-coil-helix-coiled-coil-helix
CATTTGGAAC	95	67	0	0	28	6	CHCHD3	48	domain containing 3
AGTGGATCAC	228	71	1	5	28	14	c9orf18	88	chromosome 9 open reading frame 18
CTGAACATAT	63	36	0	0	28	8	NYD-SP29	94	SP29/WD repeat domain 63
CAGAGGCCAG	302	152	1	5	27	8		48	cDNA clone IMAGE 5284144
CAAAGAGGGT	49	23	0	0	26	9		48	cDNA clone IMAGE: 2308801
CAGTCTGATT	146	56	1	3	26	11	MGC16309 /LRRC46	73	leucine rich repeat containing 46
ATGGTTTCCG	190	43	1	5	26	18	FLJ11724	80	hypothetical protein FLJ11724
GCCCACCCAA	57	31	0	0	26	8		48	cDNA clone IMAGE: 4579858
TCTCATTTAG	56	31	0	0	25	8		44 (internal tag)	cDNA clone IMAGE: 4244412
GCAGCCTTGC	136	111	0	0	25	5	KIAA1609	44 (internal tag)	KIAA1609 protein
TTTCTCCCCA	50	25	0	0	25	8	MGC34837	94	chromosome 1 open reading frame 87
AATAAATGTG	283	97	2	6	25	12	C10orf79	67 (internally primed)	chromosome 10 open reading frame
CATCTGAAAT	49	24	0	0	25	8	Hs.233936	53 (internal tag)	LOC440476
AATGTGTTTA	288	158	1	4	24	8	ABCA13	92	ATP binding cassette gene, subfamily
ATGAGAGTGG	162	76	1	3	24	9	CTSZ	48	A member 13
TCTTATTCTC	47	23	0	0	24	9	CIGE	48	cDNA clone IMAGE: 4366048
GCTTTGCTCT	49	25	0	0	24	8		48	cDNA
CTGACCAGAG	2068	681	21	37	24	13	CAPS	88	calcyphosine
GAGGAGGCCC	2000	50	1	6	24	16	EL 144200	88	FL 1/4200 protein
CATCCAGCAG	53	29	0	0	24	8	rantor	48	raptor
TTTTCAGATG	47	23	0	0	23	8	FHRP1	56	EH domain hinding protein 1
ТССТСТАААТ	231	102	1	5	23	10	1.1.1.1	48	cDNA
CTGTGATGCA	79	56	0	0	23	6		70	cDNA clone IMAGE 4762947
TCAACACTCT	16	30	4	11	23	14	1.00124121	48	by a statical protein LOC124121
	408	145	4		22	14	LUC134121	Jo (internal tag)	aDNA along IMACE: 4(1(2)
TAATATAACA	/0	4/	0	10	22	0	EL 122004/CODC17	48	CDINA CIONE IMIAGE: 401031
TICIGACATT	395	104	4	10	22	16	FLJ55084/CCDCT/	88	colled-coll domain containing 17
TGATTAGATA	68	47	0	0	21	6	C15orf26	94	chromosome 15 open reading frame 26
CCGCTAGGGG	137	31	1	4	21	19	DKFZp43400527	72	hypothetical protein DKFZp43400527

¹Calculated from the 19 bronchial epithelial (BE) libraries ²Calculated from SAGE libraries representing 11 non-lung tissue types ³SDAdjRatio = (bronchial mean - bronchial SD) / (non-lung mean + non-lung SD) ⁴Reliable mapping to GenBank Accession Number U06711 (tracheobronchial mucin)

Supplemental Table E6. Quantitative RT-PCR data comparing expression between bronchial epithelium and lung parenchyma for three selected genes in a new cohort.

Sample	ACTB	A	RMC3		BLU	M	MDAC1		
			Normalized		Normalized		Normalized		
	СТ	СТ	СТ	СТ	СТ	СТ	СТ		
CS1	30.7	29.0	-1.8	27.1	-3.6	27.0	-3.7		
CS2	29.6	28.1	-1.5	26.6	-3.0	26.0	-3.6		
CS3	29.2	28.2	-1.0	26.1	-3.1	27.5	-1.7		
CS4	29.9	28.8	-1.2	26.6	-3.3	26.4	-3.5		
CS5	29.3	28.6	-0.7	26.3	-3.0	26.6	-2.7		
CS6	29.3	28.1	-1.2	25.9	-3.4	25.0	-4.3		
CS7	29.7	28.1	-1.6	26.5	-3.2	27.6	-2.1		
CS8	28.9	28.0	-0.9	25.5	-3.4	25.8	-3.1		
CS9	29.7	29.0	-0.7	26.4	-3.3	26.1	-3.6		
FS1	29.4	28.3	-1.1	26.7	-2.7	27.9	-1.5		
FS2	30.2	29.3	-0.9	27.4	-2.9	27.0	-3.3		
FS3	30.5	29.2	-1.2	27.2	-3.3	27.7	-2.8		
FS4	30.4	29.1	-1.3	26.8	-3.6	26.0	-4.3		
FS5	29.4	27.7	-1.7	25.6	-3.8	25.7	-3.7		
FS6	29.1	27.8	-1.3	25.6	-3.5	28.2	-0.9		
FS7	30.2	29.0	-1.1	27.5	-2.7	27.3	-2.9		
LP1	26.6	36.3	9.7	33.2	6.5	34.9	8.3		
LP2	26.6	33.2	6.6	29.7	3.1	32.1	5.5		
LP3	25.2	40.0	14.8	33.8	8.6	40.0	14.8		
LP4	29.6	40.0	10.4	34.3	4.8	34.2	4.7		
LP5	26.2	34.2	8.0	30.9	4.7	32.3	6.1		

CT = cycle threshold

Normalized CT = gene CT minus *ACTB* CT CS = Current Smoker

FS = Former Smoker

LP = Lung parenchyma

40 =not detected within 40 cycles

Supplemental Table E7. Identification of SAGE tags enriched in current smoker libraries (CS) relative to former smoker libraries (FS). Mean normalized tag abundance values (TPM) representing the five CS libraries were compared with those representing the 11 FS libraries. [Average tag abundance values from library pairs generated from the same individual (BE-4A/B, BE-8A/B, BE-11A/B) were used in determining the FS mean.] One hundred and forty-nine tags were found to be enriched in the CS dataset three-fold or greater, at a minimal mean abundance level of 20 TPM, and with expression in at lease four out of the five CS libraries. Tag-to-gene mapping was according to SAGE Genie, May, 2006. Mapping reliabilities of <70 % are noted within the table.

			CS	FS	
Tere			Mean	Mean	CS Mean/
lag	Gene Symbol	Gene Name	(1PM)	(TPM)	FS Mean
CCTATCAGTA	MSMB	microseminoprotein, beta-	14355	4558	3
CCCCCACCCC		aldehyde dehydrogenase 3 family,	4006	205	12
GULLAGUL	ALDHJAI	memberAl	4006	305	13
CAAGACCAGT	GSTA2	glutathione S-transferase A2	1418	437	3
TTAAAATTC		alcohol dehydrogenase / (class IV),	971	120	7
	ADH/	mu or sigma polypeptide	801	120	/
ТТАТСАААТС	NQOI	NAD(P)H dehydrogenase, quinone 1	761	197	4
		aldo-keto reductase family 1,			
AGGTCTGCCA	AKR1C2	member C2	512	117	4
GCTACACAAT			504	128	4
		glutathione peroxidase 2			
GGTGGTGTCT	GPX2	(gastrointestinal)	362	42	9
CAAATAAACC	PIR	Pirin	257	42	6
		SAM pointed domain containing ets			
GTGCAGGGAG	SPDEF	transcription factor	231	60	4
		aldo-keto reductase family 1,			
GCTTGAATAA	AKR1B10	member B10	223	6	37
		developmentally regulated RNA-			
TATTTTTGAA	DRB1	binding protein 1	220	34	6
	4 1/1 1/2	aldo-keto reductase family 1,	100	25	~
AGGICIACCA	AKRIC2	member C2	190	35	5
GCTATCAGTA	no match		175	50	3
	CUD1D1	cytochrome P450, family 1,	171		10
AAIGCIIIIA	Сүріві	subfamily B, polypeptide 1	171	14	12
	CEACAM5	carcinoembryonic antigen-related	170	55	2
AATATITATA	CEACAWIJ	zing finger DHHC type containing	170		5
TATTTTGAAA	ZDHHC15	2ine iniger, Drifte-type containing	148	16	9
	EDITIO	cleavage and polyadenylation	110	10	,
СТССАААААА	CPSF2 (55 %)	specific factor 2, 100 kDa	146	45	3
GGCCCCATTT	CBR1	carbonyl reductase 1	142	30	5
TGGGAGTGGG	CBRI		140	12	11
TUUUAUTUUU		aldo kato reductase family 1	140	15	11
		member C3 (3-alpha hydroxysteroid			
GAGAGCTTTG	AKR1C3	dehydrogenase, type II)	130	20	7
		pleckstrin homology domain			,
TCCCTTTAAG	PLEKHO1 (37 %)	containing, family O member 1	127	38	3
TCTGAATAGC	TXN	thioredoxin	115	27	4
CTTCCTGTGA	SBEM	small breast epithelial mucin	111	25	4
	BTBD7 (30 %)	BTB (POZ) domain containing 7	95	20	3
CTTCCATAAC	$\frac{\text{DIDD}/(37/0)}{\text{CVD1A1}}$	BTB (102) domain containing /	05	23	3
CIIGCAIAAG	CYPIAI	cytochrome P450, family 1,	85	2	40

		subfamily A, polypeptide 1			
	CLDN10* (P2RY1 80	claudin 10* (purinergic receptor			
GTGGAGAAGA	%)	P2Y, G-protein coupled, 1)	77	22	4
TATTTTTCGT	TTC9	tetratricopeptide repeat domain 9	75	20	4
TCCAAGCGTC			72	12	6
GCGTGCTCTC			71	24	3
GAATGAACTG	EDIL3 (42 %)	EGF-like repeats and discoid I-like domains 3	68	7	10
		aldehyde dehydrogenase 3 family,		10	~
GCAAGAAGAG	ALDH3A1 (55 %)	memberAl	64	10	6
GTTGGGGTTT	USH2A (39 %)	recessive, m ile)	63	21	3
TTTGCAGTAA	, , , , , , , , , , , , , , , , , , ,		59	19	3
TTGCACCCTT	MSMB (55 %)	microseminoprotein, beta-	59	14	4
CCTATCAGCA	Hs.619737	transcribed locus	59	5	11
		calcium-binding tyrosine-(Y)-			
GA A GGATA A A	CLDVD	phosphorylation regulated	-0	_	
CAAGCATAAA	CABYR	(fibrousheathin 2)	58	5	11
CAGTCTAAAA	UCHL1	L1 (ubiquitin thiolesterase)	56	5	11
AGTGGTGGCT	FMOD	fibromodulin	55	10	6
TCCCTATTGA			49	16	3
		secreted phosphoprotein 1			
		(osteopontin, bone sialoprotein I,			
AATAGAAATT	SPP1	early T-lymphocyte activation 1)	47	8	6
CCTACCAGTA		X7 1 X7 1 · · · 1	46	8	6
TCTATCAGTA	VES1 (39 %)	V-yes-1 Y amaguchi sarcoma viral	46	11	4
	11151 (57 70)	sulfiredoxin 1 homolog (S.	10	11	
GTGATGTAAG	SRXN1	cerevisiae)	45	12	4
AATAAATTGG			45	11	4
GTGGGGTTTC			45	11	4
CCTATCAGAA	no match		45	14	3
GGCATTTTGT			44	10	4
CTCCACCCAA	Hs.147579 (41 %)	transcribed locus	43	5	8
CACGCGCTCA	POLR2E	polymerase (RNA) II (DNA directed) polypeptide E, 25kDa	42	8	5
ΤΑΤΑΤΑΑΑΑΑ	COMMD6	COMM domain containing 6	40	10	4
CAGCCGCACT	no match		39	5	9
CCTATCGGTA	no match		39	9	4
		chromosome 10 open reading frame			
ATCAGCAAGT	C10orf104 (54 %)	104	39	13	3
TGGACATAAA	ZNF714 (50 %)	zinc finger protein 714	38	12	3
CAAATGAATA	ZNF585A	zinc finger protein 585A	38	12	3
AATAGTTTCC	Hs.605431 (66 %)	transcribed locus	37	6	6
ATGAAAATCT	FLJ45803	FLJ45803 protein	36	11	3
TTATAGATAT	UBE1C (44 %)	ubiquitin-activating enzyme E1C (UBA3 homolog, yeast)	36	10	4
GCCTGTGGAT	PSKH1	protein serine kinase H1	36	8	4
CGTATCAGTA	no match		36	7	5
CCTATTAGTA	no match		35	0	84
		(clone TR1.6VL) anti-thyroid peroxidase monoclonal autoantibody			
CAAGATACAC	Hs.534006 (55 %)	IgK chain, V region	35	10	3

TAGAGGGCCA			35	1	33
CCGCTGTTCC	no match		35	4	8
CCACCTGCTA	no match		34	1	67
тттаттттт	EHMT1/FL121106	euchromatic histone-lysine N- methyltransferase 1/hypothetical	34	11	3
		tumor necrosis factor receptr	51		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		superfamily, member 10c, decoy		_	_
CTGGGGTTTC	TNFRSF10C (39 %)	without an intracellular domain	34	7	5
TGTTACCTGG	MYOM2	myomesin (M-protein) 2, 165kDa	33	7	5
ATAGCAGTCT	ZNF331 (49 %)	zinc finger protein 331	33	8	4
CCCATCAGTA	no match		33	9	4
GAGTAACAAA	LOC401098 (66 %)	hypothetical LOC401098	33	9	4
GCGGCAGCGG	RPL22 (49 %)	ribosomal protein L22	32	9	4
TACACAGAAT			32	7	5
CCTGTCAGTA	DVL3 (47 %)	dishevelled, dsh homolog 3 (Drosophila)	32	5	7
TAACCCAGGC			31	10	3
GGAATTGCCC	BPIL1	bactericidal/permeability-increasing protein-like 1	31	5	6
CATATCAGTA			31	7	4
CCTTTCAGTA	TRIM4 (33 %)	tripartite motif-containing 4	30	4	8
CTGACCAAAA			29	2	13
TCATTGTAAG			29	5	6
CCTATCAGTG			29	8	4
		protein-L-isoasparate (D-asparate) O-methyltransferase domain			
TTGGCGGGTC	PCMTD1 (32 %)	containing 1	28	7	4
CTTTGTATTT	COL18A1 (39 %)	collagen, type XVIII, alpha 1	28	1	45
GGCCCAGGCT	NPTXR (43 %)	neuronal pentraxin receptor	28	3	10
ACTGTTCTCT	LGALS3	lectin, galacoside-binding, soluble, 3	28	5	5
	PANX2	nannevin 2	28	5	5
	TANAZ	pannexin 2	28	8	3
TTGGGGTCTC	MGC13008 (42 %)	hypothetical protein MGC13008	20	8	3
GACACAGCAA	ENTPD8	ectonucleoside triphosphate diphosphohydrolase 8	27	3	9
TACCTGTGCC	RCD-8/OR10W1	autoantigen/olfactory receptor, family 10, subfamily W, member 1	27	9	3
		TatD Dnase domain containing 1/chromosome 6 open reading frame	25		2
	1A1DN1/C6orf/9	/9	27	9	3
	Hs.55/80/ (49 %)	transcribed locus	27	8	3
TGIGAATCIG	V1L2 (43 %)	villin 2 (ezrin)	26	7	4
TTGAAAATAT	LOC345222 (46 %)	BC043530	26	8	3
GAATAGACTT	GAPVD1 (43 %)	domains 1	26	8	3
AAGAGTTTTG	AKR1B1	member B1 (aldose reductase)	26	5	5
ТСТТТАТТАА	Hs.598324 (43 %)	transcribed locus	25	5	5
CTCTGCATTT	HEMK1	memk memyuransierase family member 1	25	6	4
TGGTGACAAT	VDP	vesicle docking protein p115	25	8	3

		RAB38, member RAS oncogene			
TAATATATAT	RAB38	family	25	4	6
		putative nucleic acid binding protein	25	0	2
AAAGIAAIII	RYI (54 %)	RY-I	25	8	3
GCACIGAACC	RPL15 (39 %)	ribosomal protein L15	25	8	3
TGAACTTGGG	ADORA2B (33 %)	adenosine A2b receptor	24	8	3
		developmentally down-regulated 4-			
AACATTAAAT	NEDD4L (53 %)	like	24	8	3
		transcribed locus, strongly similar to			
		NP_055947.1 sorting nexin 13; rgs			
		domain- and phox domain-		0	2
GCICCIGIAT	Hs.48/648 (39 %)	containing protein [Homo sapiens]	24	8	3
TTTCCTCATA	KPL4/HS.210025 (59 %)	locus	24	5	5
GGGGCAGAGA	JTB	jumping translocation breakpoint	24	6	4
		eukaryotic translation initiation			
TTAATATTCA	EIF4A1 (39 %)	factor 4A, isoform 1	24	3	8
TCATTTAATG	no match		24	1	26
GGGCCCAGGC	MGC33486	hypothetical protein MGC33486	24	1	37
		transient receptor potential cation			
TATTACTTGT	TRPM7 (49 %)	channel, subfamily M, member 7	23	6	4
TCTCACAGTT	MSMB (39 %)	microseminoprotein, beta-	23	6	4
AAGATGTTTG	DEV/C1/orf86	ribotlavin kinase/chromosome 14	22	7	4
AAUATUTTTU	KFK/C1401160	chromosome 19 open reading frame	23	/	4
CTCCCCCGA	C19orf10	10	23	5	4
TCACCCCCAA	TFF3 (55 %)	trefoil factor 3 (intestinal)	23	7	4
ΤΑΤCTTTATA	CNIH4	cornichon homolog 4 (Drosophila)	23	6	4
GACAGGCTTG	no match		23	7	3
		high-mobility group nucleosome			
ATCAAAGAGT	HMGN1 (50 %)	binding domain 1	23	5	5
	DDUCDDD	protein kinase C, delta binding	22	-	2
CIGGAGACIC	РККСДВР	protein	23	1	3
AGCICIGIAG	~ · ~ ~ ·		22	6	4
CAAGITGITA	CASD1	CAS1 domain containing 1	22	7	3
CTGGTCCTCT	C200rf91 (33 %)	91	22	7	3
GCCTTATCTT	VFATS4 (39 %)	VFATS domain containing 4	22	7	3
	1211151 (57 70)	phosphatidylinositol glycan, class A		,	
		(paroxysmal nocturnal			
TCCAAAAATA	PIGA	hemoglobinuria)	22	7	3
GTAGACCCCA	FLJ25222	CXY orf1-related protein	22	7	3
CTCCCACCCG	no match		22	2	10
		elongation of very long chain fatty			
TCTTTATTAG	ELOVI 4	acids (FEN1/Elo2, SUR4/Elo3,	22	6	4
		yeast)-like 4	22	7	4
	AINKKD20 Hs 120/PRDX6 (51	clone TESTIS-714 mRNA	22	/	3
GCACTAATAT	%)	sequence/peroxiredoxin 6	22	7	3
TTTTGTATTC	no match		22	2	13
GCACCCTTTC	MJDN	midnolin	21	2	14
TGTGTTGAAA	no match		21	7	3
		solute carrier family 7, (cationic		,	
		amino acid transporter, y+ system)			
TGCTTTTGTA	SLC7A11	member 11	21	1	33

		ST6 (alpha-N-acetyl-neuraminyl-			
		2,3-beta-galactosyl-1,3)-N-			
		acetylgalactosaminide alpha-2,6-			
	ST6GALNAC3/RAB2	sialyltransferase 3/RAB2, member			
GTAACCAAAT	(39 %)	RAS oncogene family	21	6	4
		anterior pharynx defective 1			
AGGAGCAACT	APH1A (39 %)	homolog A (C. elegans)	21	4	5
		integrin beta 3 binding protein			
		(beta3-endonexin)/zinc finger			
TATAAAAGTC	ITGB3BP/ZNF117	protein 117 (HPF9)	21	4	5
TGGTTTGCAG	RP11-217H1.1 (41 %)	implantation-associated protein	21	6	3
		T84 colon carcinoma cell IL-1beta			
		regulated HSCC1 mRNA, partial			
CAATGGTAGG	Hs.593121 (45 %)	sequence	21	7	3
CAATTAATTC	GRPEL2 (41 %)	GrpE-like 2, mitochondrial (E. coli)	21	7	3
		non-metastatic cells 5, protein			
		expressed in (nucleoside-			
TAAGATGTTG	NME5	diphosphate kinase)	21	6	3
		immediate early response 3			
		interacting protein 1/COP9			
		constitutive photomorphogenic			
CACTTGTTAT	IER3IP1/COPS2	homolog subunit 2 (Arabidopsis)	21	7	3
AATAATGGTT	ULK2	unc-51-like kinase 2 (C. elegans)	21	6	3
AGTTGTACTT	RPSA	ribosomal protein SA	21	7	3
		G protein-coupled receptor kinase-			
GGGATCAGCT	GIT1 (43 %)	interactor 1	20	6	4
		nudix (nucleoside diphosphate			
GATATTTTCA	NUDT4	linked moiety X)-type motif 4	20	4	5
CCCCAGTGAG	ARRDC1	arrestin domain containing 1	20	6	3
ACACAGTCGA			20	6	3
GCGATCAGCT	FOXK2 (32 %)	forkhead box K2	20	3	7

**Supplemental Table E8.** Identification of SAGE tags enriched in former smoker libraries (FS) relative to current smoker libraries (CS). Mean normalized tag abundance values (TPM) representing the 11 FS libraries were compared with those representing from the five CS libraries. [Average tag abundance values from library pairs generated from the same individual (BE-4A/B, BE-8A/B, BE-11A/B) were used in determining the FS mean.] Two hundred tags were found to be enriched in the FS dataset three-fold or greater, at a minimal mean abundance level of 20 TPM, and with expression in at lease nine out of the 11 FS libraries. Tag-to-gene mapping was according to SAGE Genie, May, 2006. Mapping reliabilities of <70 % are noted within the table.

			CS Maar	FS	EC Maan/
Тад	Gene Symbol	Gene Name	(TPM)	(TPM)	FS Mean/ CS Mean
ТСТССАТАСС			775	2343	3
TGCCCTCAGG	LCN2	lipocalin 2 (oncogene 24p3)	578	1756	3
GCAAGAAAGT	HBB	hemoglobin, beta	176	1085	6
		major histocompatibility complex, class II,			
GGGCATCTCT	HLA-DRA	DR alpha	328	1033	3
CCCAACGCGC	HBA1	hemoglobin, alpha 1	59	992	17
TGCCCTCAAA	LCN2	lipocalin 2 (oncogene 24p3)	243	939	4
CCTCCTCCAC	TDED (54 %)	Trf (TATA binding protein-related factor)-	174	780	4
CTTCTCTTTC	$\frac{1 \text{Krr} (34 70)}{C10 \text{ arf} 9}$	proximal homolog (Drosophila)	1/4	/80	- 4
GIIGICIIIG		chromosome 10 open reading frame 86	124	0/0	5
CHICHGCCC	HBA1	hemoglobin, alpha l	/5	666	9
TGCCCTCAGA	PRKAB1 (39 %)	catylatic subunit	134	484	4
ATTAACACCC			11	364	34
GCCGTGAGCA	ABHD10 (66 %)	abhydrolase domain containing 10	95	340	4
TGGCCCCAGG	APOC1	apolipoprotein C-I	23	337	15
GTGCGGAGGA	LDHA/SAA2	lactate dehydrogenase A/serum amyloid A2	6	318	56
		ATP-binding casseette, sub-family A			-
AATGTGTTTA	ABCA13	(ABC1), member 13	101	309	3
GAGTTAAAAA	HLA-DRB1	DR beta 1	69	252	4
ATCAAGAATC	IFI30	interferon, gamma-inducible protein 30	45	225	5
GCCCTATGCG	LYPD2	LY6/PLAUR domain containing 2	14	200	14
GGAAAAGTGG	SERPINA1	serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	42	165	4
AGTTTCTTGT	MPDU1	mannose-P-dolichol utilization defect 1	16	158	10
AAGAATTTGA	NDUFB1	NADH ehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7 kDa	34	141	4
CAAATAAACC		immunoglobulin heavy constant gamma 1	22	1.4.1	(
GAAATAAAGU	IGHGI	(G1m marker)	23	141	6
AIIIIIACIA	UBD	ubiquitin D major histocompatibility complex_class II	24	127	5
TGAAAACTAC	HLA-DPA1	DP alpha 1	33	120	4
GAAGCAATAA	ST3GAL3	S13 beta-galactoside alpha-2,3- sialytransferase 3	37	119	3
GTGGCCACGG	S100A9	S100 calcium binding protein A9 (calgranulin B)	19	117	6
ATCACACCAC			38	115	3
TTAACCCCTC	RNASE1	ribonuclease, RNase A family, 1 (pancreatic)	13	110	9

		TYRO protein tyrosine kinase binding			
AAGCACAAAA	TYROBP	protein	35	106	3
TACCTGCAGA	S100A8	S100 calcium binding protein A8 (calgranulin A)	20	100	5
TTAAAAAAA		retinoic acid receptor responder (tazarotene	1.5	07	,
TTAAACAAAG	RARRESI	Induced) l	15	97	6
GCACTCCAGC	TNFAIP8	8	29	94	3
TGGAAGCACT	IL8	interleukin 8	15	91	6
GAATTATACT	TMEM45A	transmembrane protein 45A	29	90	3
GCAGCTGGGC	DOC2A	double C2-like domains, alpha	14	83	6
		chemokine (C-C motif) ligand 18 (pulmonary			
GATCAATCAG	CCL18	and activation-regulated)	4	80	20
AAATCAATAC	C10G	gamma polypeptide	20	75	4
GTAATCCTGC			16	73	5
GCCTTAACAA	PBEF1	pre-B-cell colony-enhancing factor 1	21	72	3
TTTATTTAGC	NARCH3	membrane-associated ring finger (C3HC4) 3	22	69	3
ATTGATGTGT	SFTPA2	surfactant pulmonary-associated protein A2	14	66	5
GTGCTGTCTC	HBA1 (54 %)	hemoglobin, alpha 1	3	65	20
ТТАААСТТАА	CXCR4	chemokine (C-X-C motif) receptor 4	8	65	9
		complement component 4A (Rodgers blood	-		
AACACAGCCT	C4A	group)	17	65	4
AAATTCTGTT	AHSA2	AHA1, activator of heat shock 90 kDz protein ATPase homolog 2 (yeast)	17	59	3
TACATTTGAA	SLC26A4	solute carrier family 26, member 4	17	58	3
		ATBETA-AMY (BETA-AMYLASE); beta-	/		
ACTCAGCCCG	Hs.525607	amylase	9	57	7
GGAACAGGGG	LOC553158 (55 %)	PRR5-ARHGAP8 fusion	18	57	3
TTTCCCATAA	CAPN13	calpain 13	14	57	4
AAGGGAGCAC	IGL@	immunoglobulin lambda locus	5	55	11
AAAAACCCTT	TOPORS	topoisomerase I binding, argining/serine-rich	15	54	4
TGTTTTCATA	CCL4L2	chemokine (C-C motif) ligand 4-like 2	2	53	25
ATTTAGCAAG	FABP4	fatty acid binding protein 4, adipocyte	7	53	8
CGACCCCACG	APOE	apolipoprotein E	2	53	23
TTTTGAAATA	TBC1D3	TBC1 domain family, member 3	11	52	5
GTOGOGALLA	LOUIO1	immunoglobulin heavy constant gamma 1	16	~ 1	2
TECCUCCAAA	IGHGI	(G1m marker)	16	51	3
IGCIGCCIGI	BS12	Ec fragment of IgG, low affinity IIIa	15	48	3
GTAATAAAAT	FCGR3A	receptor (CD16a)	11	47	4
		chemokine (C-X-C motif) ligand 6			
TATCACATTC	CXCL6	(granulocyte chemotactic protein 2)	5	47	9
		nuclear factor of kappa light polypeptide	10	15	
GACITGIATA	NFKBIA (60 %)	gene enhancer in B-cells inhibitor, alpha	12	45	4
GCAGTTCTGA	HLA-DRB1	DR beta 1	6	45	7
AAACCCCAAT	IGL@/FBS1	innunoglobulin lambda locus/fibrosin 1	6	42	7
CTTATTTCCT	HTR4 (39 %)	5-hydroxytryptamine (serotonin) recentor 4	12	42	4
	(-> / •/	complement component 1, q subcomponent,			
GAGGGTGCCA	C1QB	beta polypeptide	14	42	3
AAATCAATAA	Hs.576821 (51 %)	transcribed locus	4	42	11
GAATTTCCCA	C2	complement component 2	8	41	5
TTGAATCCCC	PI3	protease inhibitor 3, skin-derived (SKALP)	12	40	3

TGTGGAAATC	LOC285033 (33 %)	hypothetical protein LOC285033	4	40	10
GGCTTTCCCT	RNF149	ring finger protein 149	13	40	3
GGGGCTTAGG	DTX2	deltex homolog 2 (Drosophila)	13	39	3
TAATGAATAA	BCL2A1	BCL2-related protein A1	2	39	16
AAGAATTAAA	TOPBP1 (43 %)	topoisomerase (DNA) II binding protein	8	38	5
GGGGCAACAG	CD52	CD52 molecule	5	38	8
TTTGAATCCA	STAG3	stromal antigen 3	10	37	4
CTGTTGGCAT	RPL21	ribosomal protein L21	10	37	4
TTTGAGTCCA	KIF20A (39 %)	kinesin family member 20A	12	37	3
AAAGCAATCA	PHC1	polyhomeotic-like 1 (Drosophila)	7	37	5
CAATGCCTCT	HLA-DRA	major histocompatibility complex, class II, DR alpha	5	36	7
ATGTGAAGAG	SPARC	secreted protein, acidic, cysteine-rich	2	36	22
GGAGGTGGAG	ZNF713	zinc finger protein 713	2 4	35	9
TCTCTGATGC	TIMP2	tissue inhibitor of metalloproteinase 2	2	35	16
	1 livii 2	Lysosomal-associated multispanning	2	55	10
GCGGTTGTGG	LAPTM5	membrane protein-5	12	35	3
CCACTGTGCT	CCM2	cerebral cavernous malformation 2	11	35	3
CCACTGAACT	ALS2CR8/IER5L	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 8/immediate early response 5-like	9	35	4
ACCATTCTGC	IFITM2	interferon induced transmembrane protein 2 (1-8D)	10	35	4
CTGACAGTGA	HLA-DMB	major histocompatibility complex, class II, DM beta	7	34	5
GCATCTTCAA	SP110	SP110 nuclear body protein	9	34	4
GTTGTGTTAA	TMEM125 (54 %)	transmembrane protein 125	10	34	4
CCAGGGCAAC	TncRNA	trophoblase-derived noncoding RNA	7	34	5
ACACTGCACT	PPM1F	protein phosphate 1F (PP2C domain containing)	10	34	3
ССССТСССТС	SLC4A2	solute carrier family 4, anion exchanger, member 2 (erythrocyte membrane protein band 3-like 1)	9	33	4
TTCTGTGAAT	VPS37B/CALD1	vacuolar protein sorting 3/B (veast)/caldesmon 1	8	33	4
GATAACACAT	CCL4	chemokine (C-C motif) ligand 4	2	32	15
TATTTAGGAA	ELF2 (30 %0	E74-like factor 2 (ets domain transcription factor)	7	32	5
COTTOCOTA	H. ACOCIE/H. COEA0	CDNA FLJ30263 fis, clone BRACE2002606/CDNA FLJ38433 fis, clone	10	22	2
	HS.402015/HS.620548	FEBKA2014578	10	32	5
CTGACTGTCC	CD74 (55 %)	CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated)	6	32	5
TTACTGCACT	FAM83D/Hs.577380 (49 %)	family with sequence similarity 83, member D/transcribed locus	3	31	10
ATTTAGTCAT	IFI44	interferon-induced protein 44	7	31	4
GTTGTGGTAA			8	30	4
AATTTGTGTC	MGC40178 (49 %)	hypothetical protein MGC40178	9	30	3
ACTATTTCCA	FBP1	fructose-1,6-bisphosphatase 1	9	30	3
AAACTCGCTG			7	30	4
GCTTGCAAAA	SOD2	superoxide dismutase 2, mitochondrial	10	30	3

GACAATGAGA	IDH3G	isocitrate dehydrogenase 3 (NAD+) gamma	8	30	4
GTCGTGGTTA	TPT1 (32 %)	tumor protein, translationally-controlled 1	8	29	3
CCACTGCAAT	FNDC3B	fibronectin type III domain containing 3B	2	29	18
TGACTGTATT	AOC3/FLJ12355	amine oxidase, copper containing 3 (vascular adhesion protein 1)/ hypothetical protein FLJ12355	8	29	4
		transcribed locus, weakly similar to			
CAGGAACACT	Hs.573145 (49 %)	protein XP_375410 [Homo sapiens]	8	29	4
AGGGAATTAA	PDCD11 (66 %)	programmed cell death 11	6	28	4
CCTGGCCCTA	CXCL16	chemokine (C-X-C motif) ligand 16	7	28	4
GAACGCCTAA	DPYSL2	dihydropyrimidinase-like 2	0	28	28
		transcribed locus, weakly similar to NP 061913.2 elongation protein 4 homolog:			
		PAX6 neighbor gene; chromosome 11 open			
GGAGGCAGAG	Hs.573578 (49 %)	reading frame 19 [Homo sapiens]	9	28	3
AATTTTGTCT	Hs.192729 (27 %)	transcribed locus	4	28	6
GCACCTTATT	FLJ14668	hypothetical protein FLJ14668	2	28	11
ATTCACCCCC	MAST3	microtubule associated serine/threonine kinase 3	9	28	3
TCAGGCCTGT	CSF3	colony stimulating factor 3 (granulocyte)	0	20	27
ТСАСТСТААА	SR140 (36 %)	U2-associated SR140 protein	6	27	4
	51(140 (50 70)	G protein-coupled receptor, family C, group	0	21	
ACTGTATTTT	GPRC5A	5, member A	7	27	4
CAGCTGCTCC	ACTRT2	actin-related protein T2	2	27	11
GTGGCATATG	CDH13	cadherin 13, H-cadherin (heart)	7	27	4
CCCCGATCTT	ATAD3A	ATPase family, AAA domain containing 3A	9	27	3
TCTTGATTTA	A2M	alpha-2-macroglobulin	0	27	27
		six transmembrane epithelial antigen of			-
ТПТСТАТСА	STEAP2	prostate 2	6	27	5
TGAGCTACCC	FER1L4	fer-1-like 4 (C. elegans)	2	26	12
ACAGAGTGAG	PARVA	parvin, alpha	6	26	4
AGCACATTTG	COTL1	coactosin-like 1 (Dictyostelium)	6	26	4
ТАССААСССА	PTAR1	protein prenyltransierase alpha subunit repeat	5	26	5
GTGGCACATA	SFT2D2 (51 %)	SET2 domain containing 2	7	25	4
Grobenentin	51 1202 (51 70)	centaurin, gamma-like family, member	1	25	•
GCCCGAGATG	CTGLF1/RP11- 144G6.7	1/hypothetical gene supported by AK093334; AL833330; BC020871; BC032492	7	25	4
TTTTTGCTTT	C4BPA	complement component 4 binding protein, alpha	0	25	25
GGTTCAAGGC	ATHL1	ATH1, acid trehalase-like 1 (yeast)	3	25	8
GATTATTCCT	DNAH1	dynein, axonemal, heavy polypeptide 1	7	25	4
TTGCTGACTT	COL6A1	collagen, type VI, alpha 1	2	25	10
		transcribed locus, strongly similar to			
	II. 420214 (25.0/)	XP_37321.2 PREDICTED: hypothetical	0	25	25
GAGCITIAAT	HS.438314 (35 %)	family with sequence similarity 44 member	0	25	25
CCCAGCCTAA	FAM44A	A	7	25	4
ACACAGTTTT	FAT	FAI tumor suppressor homolog 1 (Drosophila)	5	25	5
GACTCTTCAG	SERPINA3	serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3	0	25	25
ACACACAGGA	CXCL6 (33 %)	chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)	5	25	5
TUTUT	CALCED (33 70)	(Signaturoe) to enemotiate the protein 2)	5	25	5

		macrophage receptor with collagenous			
ACTGCAGCCA	MARCO/PRSS12	structure/protease, serine, 12 (neurotrypsin, motopsin)	0	25	25
AAGGGATTTT	KIAA0256	KIAA0256 gene product	8	24	3
CAACAACGCC	SAT	spermidine/spermine N1-acetvltransferase	5	24	5
		fucosyltransferase 2 (receptor status			
GAGTTGGGTA	FUT2 (39 %)	included)	4	24	6
TTAAGTATAG	C20orf6	chromosome 20 open reading frame 6	8	24	3
CCTGGAATCC	TFDP2	transcription factor Dp-2 (E2F dimerization partner 2)	2	24	15
	11012	potassium voltage-gated channel, delayed-		21	15
GAAACTAGGA	KCNS3	rectifier, subfamily S, member 3	2	24	11
		transmembrane emp24 protein transport domain containing 3/potassium large			
TTCTCTCTGG	(39%)	subfamily M beta member 2	4	24	5
AGGCTGGATG	DNAL4	dynein, axonemal, light polypeptide 4	5	24	5
GTGGCTTATG	Hs.545933	CDNA clone IMAGE:5302821	7	24	3
		colony stimulating factor 3 receptor			-
CTCCATCCAG	CSF3R	(granulocyte)	2	24	15
GAAGATTGAG	STAT5A	signal transducer and activator of transcription 5A	6	24	4
		SYF2 homolog, RNA splicing factor (S.			
TATATTTCCA	SYF2/EIF4E3 (56 %)	factor 4E member 3	6	23	4
AAAAGCTTGA	URB	steroid sensitive gene 1	7	23	4
AATCTGAACC	CLIC5	choride intracellular channel 5	6	23	4
GATTTTCTGG	PSCD4	pleckstrin homology, Sec7 and coiled/coil domains 4	7	23	3
GCACCAAAGC	CCL3L3	chemokine (C-C motif) ligand 3-like 3	0	23	23
		guanylate binding protein 1, interferon-			
GGCAGGAGTA	GBP1	inducible, 67kDa	7	23	3
TTAACACCTA	MSR1	macrophage scavenger receptor 1	5	23	5
CTCCCCTTCC		low density lipoprotein receptor adaptor	5	22	5
	LDLKAFI	alanyl (membrane) aminopeptidase	5	23	5
		(aminopeptidase N, aminopeptidase M,			
GCACCTGTCG	ANPEP	microsomal aminopeptidase, CD13, p150)	5	23	5
GCACAGGCCA	EGFL7	EGF-like-domain, multiple 7	2	23	14
AAGCTGTTGT	DNMT1	DNA (cytosine-5-)-methyltransferase 1	7	23	3
TTCAGTAATA	VPS37C	vacuolar protein sorting 37C (yeast)	6	23	4
AATCCGGGAG	ZFP41 (55 %)	zinc finger protein 41 homolog (mouse)	4	23	5
		transcribed locus,, strongly similar to XP_498081.1 PREDICTED: similar to			
GATCACTGCT	Hs.332649 (66 %)	Olfactory receptor 212 [Homo sapiens]	0	23	23
TGCCACCACG			0	23	23
TATACAGATT	TANC2 (55 %)	coiled-coil containing 2	3	22	7
TTCACATTAG	CCT4 (39 %)	chaperonin containing TCP1, subunit 4 (delta)	7	22	3
GGATGATTAT	ALOX5	arachidonate 5-lipoxygenase	2	22	14
TCATAAATGA	CLNS1A (39 %)	chloride channel, nucleotide-sensitive, 1A	6	22	4
CCGGCCCTAC	PDZK1IP1	PDZK1 interacting protein 1	7	22	3
AACCCAAGAG	YIPF6	Yip1 domain family, member 6	7	22	3
	II. 520860 (51.0/)	Homo sapiens, clone IMAGE:3851018,	(	22	2
CAAGGGGGGA	HS.529800 (51 %)	mкna	0	22	3

GTGAACCCCT	NT5C2 (43 %)	5'-nucleotidase, cytosolic II	2	22	13
AGTTTGAGAC	Hs.613501 (66 %)	transcribed locus	5	22	5
TGTTCATTTA	SELENBP1	selenium binding protein 1	2	22	13
TGGACAAAGA	DNAH5 (55 %)	dynein, axonemal, heavy polypeptide 5	5	21	5
CCATTGCTCT	ABCA11/PTGIR (39 %)	ATP-binding casseette, sub-family A (ABC1), member 11 (pseudogene)/prostaglandin 12 (prostacyclin) receptor (IP)	4	21	5
CCAGCAGTGG	MRPL48	mitochondrial ribosomal protein L48	2	21	13
GTGAAACTTC	ZNF517	zinc finger protein 517	5	21	5
GTGCTGTTTA			2	21	9
ATTAGTGTTG	RPL7A (51 %)	ribosomal protein L7a	5	21	4
TAAAGACTCT	IQGAP2	IQ motif containing GTPase activating protein 2	4	21	5
TGCCCTCAAG			5	21	4
GGGATAAAAT	B4GALNT1/TCF20	Beta-1,4-N-acetyl-galactosaminyl transferase 1/transcription factor 20 (AR1)	6	21	3
TCTTTCTCAT	COMMD8	COMM domain containing 8	6	21	3
GTTCACTGCA	ICAM1	intercellular adhesion molecule 1 (CD54), human rhinovirus receptor	4	21	5
AGCCTGGGAG	ACSL6 (55 %)	acyl-CoA synthetase long-chain family member 6	3	21	6
ATAGTGCCAC	Hs.562075 (49 %)	transcribed locus, moderately similar to XP_508169.1 PREDICTED: hypothetical protein XP_508169 [Pan troglodytes]	7	21	3
GTCTCCTAAT	GPRC5A	G protein-coupled receptor, family C, group	5	21	1
GICICCIAAI	GIRCJA	interferon-induced protein with tetratricopeptide repeats 3/ATPase, Ca++		21	+
TATTTATATG	IFIT3/ATP2B4	transporting, plasma membrane 4	5	20	4
GGGATTTAGA	no match		4	20	5
TTAAGAAGCC	ACAD8	acyl-Coenzyme A dehydrogenase family, member 8	5	20	4
ATAAAGGTTC	STRBP	spermatid perimuclear RNA binding protein	5	20	4
AAAAGATTAA	FMO2	flavin containing monooxygenase 2	2	20	10
AACCCCGGAG	RAD50 (49 %)	RAD50 homolog (S. cerevisiae)	0	20	20
ATGCTTGCTT	ADFP	adipose differentiation-related protein	4	20	5
TGCCTATAAT	CPT2/TMEM111	carnitine palmitoyltransferase II/transmembrane protein 111	5	20	4
CAAACTAACC	IGHG1	ımmunoglobulın heavy constant gamma 1 (G1m marker)	2	20	12
GTTTCAGGAG	SIRPA	signal-regulatory protein alpha	2	20	8