
Preservation Of Patterns and Input-Output Privacy

Shaofeng Bu, Laks V.S. Lakshmanan, Raymond T. Ng and Ganesh Ramesh
University of British Columbia

Vancouver, BC, Canada V6T 1Z4
{sfbu,laks,rng,ramesh}@cs.ubc.ca

Abstract

Privacy preserving data mining so far has mainly
focused on the data collector scenario where individu-
als supply their personal data to an untrusted collector
in exchange for value. In this scenario, random per-
turbation has proved to be very successful. An equally
compelling, but overlooked scenario, is that of a data
custodian, which either owns the data or is explicitly
entrusted with ensuring privacy of individual data. In
this scenario, we show that it is possible to minimize
disclosure while guaranteeing no outcome change. We
conduct our investigation in the context of building a
decision tree and propose transformations that preserve
the exact decision tree. We show with a detailed set of
experiments that they provide substantial protection to
both input data privacy and mining output privacy.

1 Introduction

One of the key motivations for privacy preserving
data mining is the mining-as-a-service model, in which
there are at least two different scenarios. In [2], Agar-
wal and Srikant consider the data collector scenario
where individual data owners selectively submit their
data to a data collector, who may not be trusted, in
exchange for the value coming from mining the data
collection. Many existing studies focus on this scenario.

In this paper, we consider a different, yet equally
prevalent, scenario of a data custodian which either
owns the data (e.g., a company owns its data) or is ex-
plicitly given the trust and responsibility of protecting
the privacy of the individuals. For example, a med-
ical research group (i.e., the custodian) obtains con-
sent forms from patients to participate in a biomarker
study. Because the data custodian has little exper-
tise in data mining, it considers hiring a company to
help mine the data. It does not implicitly trust the
company and wants to guard against possible privacy

breaches. To do so, the data custodian needs to trans-
form its data. To determine the appropriate transfor-
mation, there are two critical considerations: minimiz-
ing disclosure versus minimizing outcome change (i.e.,
the deviation between the outcome obtained by min-
ing the original data and the outcome of mining the
transformed data). Among the transformations stud-
ied in the literature, random perturbation is a domi-
nant approach, i.e., transforming data values by adding
random noise in a principled way [2]. The more noise
is added, the more disclosure is minimized – but the
more the mining outcome is changed. It is implicitly
assumed that to minimize disclosure, it is inevitable
that there be outcome change.

In this paper, we show that it is possible to minimize
disclosure while guaranteeing no outcome change. We
conduct our investigation in the context of decision tree
classifiers. We propose classes of monotone and anti-
monotone functions, that preserve the decision tree in
an exact sense. For privacy preserving data mining, we
claim there are three equally important pillars. The
no-outcome-change guarantee is the first pillar. The
second pillar is the protection of the input data – input
privacy in [8]. The third pillar is the protection of the
mining outcome – output privacy. Existing studies fo-
cus on input privacy, but ignore the other two pillars.
We show that using (anti-)monotone transformations
can satisfy all three pillars at the same time. More-
over, when (anti-) monotone transformations are used,
decoding the mining outcome is straightforward. Fi-
nally, with the proposed transformations, every data
value is transformed. In contrast, with random pertur-
bations, there is a chance that a discrete data value is
not changed and the true value is revealed.

Figure 1 shows a simple example of a monotone
transformation. The original data D is shown in (a).
The attributes age and salary are transformed with
the linear monotone functions: age ′ = 0.9 ∗ age + 10,
and salary ′ = 0.5 ∗ salary. The transformed data
D ′ is now given to the mining service provider (Fig-

1

Age Salary Risk
23 50K High
17 30K High
43 40K High
68 50K Low
32 70K Low
20 20K High

(a) Original Data D

Age Salary Risk
31 25K High
25 15K High
49 20K High
71 25K Low
39 35K Low
28 10K High

(b) Transformed Data D ′

LowHigh

High

Salary < 22.5K

Age < 35

(1’)

(3’)(2’)

(c) Transformed

Decision Tree T ′

LowHigh

High

Salary < 45K

Age < 27.5

(1)
(2) (3)

(d) Original Deci-

sion Tree T

Figure 1. A Training Data Set before and after transformation and their corresponding Decision Trees

ure 1(b)). The classifier T ′ based on D ′ is shown in
(c). Note that D ′ provides input privacy, whereas T ′

provides output privacy. To decode T ′ to get the real
decision tree, the data custodian uses the inverse func-
tion per attribute to obtain T , shown in (d). The in-
verse transformations are age = (age ′ − 10)/0.9, and
salary = salary ′/0.5. Notice that this is exactly the
same outcome if the decision tree algorithm were to be
applied to D directly without the transformation. Also
note that T ′ looks realistic enough that a hacker may
not even know that it is encoded.

For many situations, simply using (anti-)monotone
functions may not be too effective for privacy protec-
tion. One of the key technical contributions here is the
generalization from (anti-)monotone functions to piece-
wise (anti-)monotone functions. The two central ideas
are to introduce breakpoints and to exploit monochro-
matic pieces. By going piecewise, three levels of uncer-
tainty are added: (i) the uncertainty of the number of
breakpoints, (ii) the uncertainty of the locations of the
breakpoints; and (iii) the uncertainty of the function
used in each piece. A key insight is that other than ap-
plying randomization to every value in the domain, it is
more beneficial to apply randomizaiton to appropriate
sub-domains only.

We analyze disclosure risk performance (the second
and third pillars) with a comprehensive framework.
First, for input privacy, we consider domain disclosure
and subspace association disclosure. For output pri-
vacy, we consider outcome disclosure, which protects
paths of a decision tree. Second, we consider different
attack models for the hacker. And, third, we consider a
hacker’s prior knowledge, modeled as knowledge points
in the attribute domain. Based on benchmark data
sets, we provide empirical results showing the effec-
tiveness of the proposed framework.

2 Related Studies
Extensive research has been done in statisti-

cal databases to provide statistical answers without
breaching sensitive information about individuals. A
commonly used technique is random perturbation [1].
The study by Agrawal and Srikant shows how a deci-
sion tree can be built on data perturbed with random
noise added in a principled way [2]. However, preserv-
ing the exact decision trees is not their goal, and they
show that there is a tradeoff between classification ac-
curacy and privacy level.

Recall the distinction between the data collector and
data custodian scenarios. The random perturbation
approach is designed to deal with the former, but can
be applied to the latter as well. The piecewise mono-
tone framework proposed here is designed for the data
custodian scenario. Under this scenario, the proposed
model delivers the three pillars of privacy preservation,
whereas the perturbation approach cannot.

Evfimievski et al. [5]apply the random perturbation
approach to association rule mining. Rizvi and Haritsa
propose a variant based on probabilistic distortion [8].
The mining outcome is changed. Output privacy is not
a stated design objective.

Recently, Kargupta et al. showed that a hacker can
use spectral analysis based matrix decomposition tech-
niques to separate the random noise from the real val-
ues [7]. Huang et al. [6] use a principal component
analysis based method to exploit possible correlations
among attributes to reconstruct original data, demon-
strating that more accurate individual data can be re-
vealed than originally thought.

Clifton and others consider privacy preservation
with vertically partitioned data [10]. The focus is on
developing protocols to make sure that each site can-
not gain additional information about the data via
the collaboration. There are studies on various other
mining tasks with privacy preservation as the main
goal, including clustering [10], order-preserving com-

parisons [3], and data exchange [9]. For data exchange,
the notion of k-anonymity is designed for input privacy.
If the transformed data were mined directly, the mining
outcome could be significantly affected.

3 Preliminaries

3.1 Monotone and Anti-monotone Functions

The training data set is a relation instance D with
m attributes A1, . . . , Am, and a categorical class label
attribute C. Throughout this paper, we are interested
in active domains of attributes, which contain values
of attributes appearing in a given data set. We denote
the active domain of an attribute A by δ(A). Often we
will transform it into another active domain δ ′(A).

Let A be a numeric attribute with a linear or-
dering <. Let f : δ(A) → δ ′(A) be a function.
Then f is monotone (resp., anti-monotone) if for ev-
ery x, y ∈ δ(A), x < y implies f(x) < f(y) (resp.,
f(x) > f(y)). Throughout this paper, we only
consider transformation f whose inverse f−1 is well-
defined, because the data custodian needs f−1 to de-
code the mining result. Given a tuple 〈t, c〉 (c being
the class label) in D, the tuple is transformed from
〈t.A1, . . . , t.Am, c〉 to 〈f1(t.A1), . . . , fm(t.Am), c〉. We
use !f to denote the vector of the m transformations.
Let D ′ = {〈!f(t), c〉|〈t, c〉 ∈ D} be the data set consist-
ing of these transformed tuples.

We refer to a tuple 〈t.A, c〉 as an A-projected tuple,
i.e., it retains the A-value and the class label. When-
ever there is no confusion, we refer to an A-projected
tuple as simply a tuple.

3.2 Domain, Subspace Association and Pattern
Disclosure

Definition 1 Let f : δ(A) → δ ′(A) be a transforma-
tion. A domain crack function g : δ ′(A) → δ(A) repre-
sents the guess the hacker makes on each transformed
value. For a value v ′ ∈ δ ′(A) that appears in D ′, a
guess is a crack if the guess falls within a radius ρ from
the actual value, i.e., |g(v ′)−f−1(v ′)| ≤ ρ. The domain
disclosure risk is the fraction of the number of cracks to
the number of distinct values of A ′ appearing in D ′.

Input privacy [8] refers to the protection of D and is
measured using various metrics [2, 5], domain disclo-
sure being the popular one, as discussed above. How-
ever, for many applications, the data custodian might
care more about the association between domain val-
ues rather than domain disclosure. For example, for an
insurance application, the company cares more about
protecting Bob of age 45 earning 50K, rather than the
individual values of age or salary. We refer to this as
subspace association disclosure.

Definition 2 Let S ⊆ {A1, . . . , Am} be a subset of
attributes of the input training data. For simplic-
ity, let S = {A1, . . . , As}. A subspace crack function
!g : (δ ′(A1) × . . . × δ ′(As)) → (δ(A1) × . . . × δ(As))
represents the guess the hacker makes on each trans-
formed S-tuple. A guess is a (S-tuple) crack if ∧s

i=1

|!gi(v ′
i) − !f−1

i (v ′
i)| ≤ ρi (radius for Ai). The subspace

association disclosure risk is the fraction of the number
of cracks to the number of S-tuples in D ′.

Definition 3 Let a path in the decision tree T ′ be of
the form: ∧h

i=1Aiθiv
′
i, where θi is a comparison opera-

tor. A path crack function !g : (δ ′(A1)×. . .×δ ′(Ah)) →
(δ(A1) × . . . × δ(Ah)) represents the guess the hacker
makes on a transformed path. A guess is a (path) crack
if ∧h

i=1 |!gi(v ′
i) − !f−1

i (v ′
i)| ≤ ρi. The pattern disclosure

risk is the fraction of the number of cracks to the num-
ber of paths in T ′.

In output privacy, the focus is on protecting the data
mining outcome from being disclosed. For decision
trees, the paths of the tree are to be protected. Most
studies adopting the random perturbation paradigm
only focus on input privacy. The mining outcomes are
not encoded. Since the hacker only has access to the
perturbed data, one may argue that in a twisted sense,
the exact identity of the pattern is protected inas-
much as perturbation changes mining outcome. But
then the custodian suffers the same fate: she can-
not fully recover the exact pattern. In contrast, for
(anti-)monotone transformations, the true classifier is
revealed to the data custodian (given the no-outcome-
change guarantee to be shown in Section 4), whereas
the hacker has to guess the true identities of the paths
of the decision tree, out of many possibilities.
3.3 Attack Models Possibly with Prior Knowledge

Sources of prior knowledge may be from published
statistics (e.g., the minimum age being 17, the me-
dian salary being 35K), from samples of similar data
(e.g., a rival company having data similar to D), or the
top k modal classes (e.g., the mode of employee age
being 34). Alternatively, the hacker may know that
a given attribute follows a certain distribution (e.g.,
Zipf, Gaussian), even though the parameters may not
be known exactly. These various forms of prior knowl-
edge can be captured by the notion of knowledge points.

Definition 4 Let v ′ be a value of attribute A in D ′.
Let the hacker guess that v ′ ∈ δ ′(A) corresponds to
v ∈ δ(A). We say that (v, v ′) is a knowledge point if
|v − f−1

A (v ′)| ≤ ρ.

Following Definition 1, the radius ρ defined above is
the same as the radius used for a crack. Moreover, the

hacker can use these knowledge points to form the basis
of a curve fitting attack.

Definition 5 (Curve Fitting Attack) Let (x1, y1),
. . . , (xm, ym) be m knowledge points. Apply a curve
fitting method to fit the points into a crack function g.

We consider three curve fitting methods: (i) a regres-
sion line that minimizes the residuals of the m knowl-
edge points; (ii) a polyline that connects the m knowl-
edge points; and (iii) a spline that fits the m points.

Another attack model is sorting. Consider the age
attribute again. Even though the defined range of age
is within [0, 100], for a practical training data set with
say 10, 000 tuples on employees, it is almost guaranteed
that every age in the interval [20, 65] occurs in D at
least once. Then the hacker takes the transformed val-
ues of age and sorts them in increasing order. Knowing
the nature of a domain such as age, the hacker then
maps the transformed values in increasing order to con-
secutive values starting with the (guessed) minimum
value all the way to the (guessed) maximum. In the
rest of this paper, we show how to safeguard against
these attack models, and simultaneously provide the
no-outcome-change guarantee.

4 The No-Outcome-Change Guarantee

In this section, we show that the decision tree con-
structed using D is identical to the tree constructed
using D ′ when either the gini index or entropy is used
to select the split-points. These two selection criteria
are the most widely used.

Definition 6 Let 〈t1, . . . , tn〉 be the ordered sequence
of A-projected tuples in D such that ti.A ≤ tj.A when-
ever i < j. Equal values are in some canonical order.
The class string σA,D for attribute A in data set D is de-
fined as the string obtained by concatenating the class
labels in the ordered sequence of tuples. Whenever the
data set D is obvious, we denote the class string simply
as σA.

For the data set D in Figure 1(a), consider A being
the age attribute. Sorting the tuples on age gives the
class string σage = HHHLHL, where H and L denote
the class label High and Low respectively. For the at-
tribute salary, the class string σsalary = HHHHLL.
Let us compare the corresponding class strings in D ′

shown in Figure 1(b). Observe that the class string for
each attribute is unchanged.

Lemma 1 Let a monotone function be applied to
transform attribute A from D to D ′. Then the class
string is preserved, i.e., σA,D ′ = σA,D. Similarly, for
an anti-monotone transformation, σA,D ′ = (σA,D)R,
where σR denotes the reverse of string σ.

Definition 7 Given a class string σ for attribute A
of a data set, we decompose σ into multiple non-
overlapping substrings r1, . . . , rm such that: (i) σ =
r1 ◦ . . . ◦ rm; (ii) for all 1 ≤ i ≤ m, the substring
ri consists of a single class label; and (iii) for all
1 ≤ i ≤ (m − 1), the substrings ri and ri+1 are of
different class labels. Each piece ri is a label run.

For the class string σage = HHHLHL in Figure 1,
there are four label runs HHH, L, H and L. From
Lemma 1, monotone functions preserve all the label
runs of each attribute. Based on the definitions of the
gini index and entropy, we have the following lemma.

Lemma 2 For each attribute, the split-point that op-
timizes either the gini index or entropy must not occur
within a label run; it must be at the end points between
two successive label runs.

Consider the first label run HHH in age in Figure 1,
corresponding to the age values 17, 20 and 23 in D.
The lemma says that the best split point for age cannot
occur at age = 20. The candidate locations of the best
split point for age must correspond to the end points
of successive label runs – in this case 23, 32 and 43.
Note that the same lemma applies to the transformed
data D ′. From Figure 1(b), the candidate locations of
the best split point for age’ are again the end points of
successive label runs – in this case 31, 39, and 49. As
formalized below, the candidate locations of the best
split point are identical in D and D ′.

Theorem 1 The winning attribute and the split point
location in D ′ – relative to the sequential ordering of
the label runs – is identical to that in D.

The theorem follows from the fact that in D ′, the
label runs are preserved as in D. Consequently, all the
candidate split point locations are preserved as well.
Note the difference between split points and split point
locations. E.g., consider σage = HHHLHL in Figure 1.
The split point in Figure 1(a) is age = (23+32)/2 and
is located between the first and second label runs. In
D ′, as shown in Figure 1(b), the actual value of the
split point is changed to age’ = (31+39)/2 = 35, pro-
viding output privacy. However, the split point is still
at the same location with respect to the sequential or-
dering of the label runs. Finally, even though the data
values change from D to D ′, the gini index and en-
tropy calculations remain unchanged as they are based
on relative frequencies. Hence, the winning attribute
and the split point locations are preserved.

Let T ′ be the decision tree obtained by mining the
transformed database D ′. Construct another decision

Algorithm PieceTransform
Input: a sorted sequence of A− projected tuples
1. Call Procedure ChooseBP or ChooseMaxMP to decompose

A into w pieces r1, . . . , rw

2. For each piece ri, call ChooseFunction to choose fi

3. For 1 ≤ i ≤ w, initialize fi such that they satisfy the
global-monotone invariant, and apply fi to δi(A)

Figure 2. A Piecewise Framework

H H L L L L H H HH H H H

values in D :

runs in D :

values in D’:

28 29 29 29 29 42 43 4427151521

144 5 5 5 5 12 1321617 1620

sorted values in D’:
runs in D’: HHHHH

2 4 5 5 5 5 16 17 2012 13 14 16
L L L L H H H H

Figure 3. Failing the Global-Monotone Invari-
ant

tree S as follows. Start from the root of T ′ going
top-down: for every node x ′ in T ′ of the form Aθv ′

(where θ is a comparison operator and v ′ is a value in
δ ′(A)), create a corresponding node x in S of the form
Aθf−1

A (v ′), where fA : δ(A) → δ ′(A) is the data trans-
formation used for A. Our main result is the following:

Theorem 2 Let D, D ′, T ′, S be as above. Let T be
the decision tree obtained by mining D directly. Then:
S = T .

5 A Piecewise Framework

To defend against the various attack models, the
central idea of the proposed solution framework is to
introduce breakpoints to break up the domain into mul-
tiple pieces, each of which is encoded by a different
transformation function. Figure 2 gives a skeleton al-
gorithm for implementing the piecewise framework. It
consists of three main phases: (i) choosing breakpoints,
(ii) choosing a transformation for each piece, and (iii)
setting them up to satisfy a global constraint. We elab-
orate on all these aspects below.

5.1 ChooseBP: Choosing Breakpoint Locations
Randomly

It is the primary objective that when breakpoints
are added, the no-outcome-change guarantee is pre-
served. To do so, let us return to the concept of la-
bel runs introduced in Definition 7. Figure 3 shows
a simple example when there are three label runs:
r1 ≡ HHHH, r2 ≡ LLLL, r3 ≡ HHHHH. Suppose a
breakpoint is introduced exactly between two succes-
sive label runs to create three pieces, each of which uses
its own (anti-)monotone transformation (i.e., third row
of Figure 3). In the transformed data, however, the la-
bel runs are different (i.e., fifth row), and create a new

H H L L L L H H HH H H H

28 29 29 29 29 42 43 4427151521

10024 25 25 25 25 102 10123161720 16

H H L L L L H H HH H H H

24 25 25 25 25 100 101 10223201616 17

values in D :

values in D’:

runs in D :

sorted values in D’:

runs in D’:

Figure 4. Satisfying the Global-Monotone In-
variant

class string. The key problem for the situation shown
in Figure 3 is that the three pieces, after their indi-
vidual transformations, no longer follow the original
ordering among themselves. Specifically, as shown in
the first row of Figure 3, the three label runs are in
the ordering of r1 ≡ HHHH, followed by r2 ≡ LLLL,
then by r3 ≡ HHHHH. However, after the transfor-
mations as shown in row 4, the runs r2 and r3 have
moved ahead of r1, thereby causing the class string to
change. The solution to this problem is to ensure that
the pieces satisfy a global constraint to preserve their
relative ordering after transformation.

Definition 8 Let the original domain be broken up
into w pieces δ1(A), . . . , δw(A) with w transformation
functions f1, f2, ..., fw. This set of transformations is
said to satisfy the global-monotone invariant iff for all
1 ≤ i < j ≤ w,∀v ∈ δi(A), ∀u ∈ δj(A), it is neces-
sary that fi(v) < fj(u). Similarly, the set is said to
satisfy the global-anti-monotone invariant if the latter
inequality is changed to fi(v) > fj(u).

Figure 4 shows how the global-monotone invariant
is satisfied. Because the largest transformed value of
r1 is 20, the invariant requires that all the transformed
values in r2 be strictly greater than 20, which is the
case in Figure 4. Notice that this invariant is satis-
fied even though an anti-monotone function has been
applied to r1, whereas a monotone function has been
applied to r2. Similarly, all the transformed values in
r3 are greater than 25, irrespective of whether a mono-
tone or an anti-monotone function is applied to r3. In
this way, as shown in row 5 of Figure 4, the label runs
in D ′ are identical to those in D.

While both Figure 3 and 4 consider putting break-
points right at the boundaries between label runs, this
is only a simplification for illustration purposes. In
fact, any value can be a breakpoint location, as long
as the global-monotone invariant is obeyed. This is es-
sentially the nature of Procedure ChooseBP shown in
Figure 5. For an attribute A, ChooseBP decomposes
the domain of A into w pieces for some w > 0, i.e.,
δ(A) = δ1(A) ∪ . . . ∪ δw(A) and δi(A) ∩ δj(A) = ∅,
i .= j. The w breakpoints are randomly selected from
the set of distinct values of A. Even though ChooseBP

Procedure ChooseBP
Input: DA,C, the number w of breakpoints to be returned
1. Set CBP to be {t.A|t.A ∈ DA,C}, the set of A-values
2. Randomly pick w values from CBP as the breakpoints
3. Return BP /* the set of selected breakpoints */

Figure 5. A Skeleton for ChooseBP

is simple, its privacy protection power arises from the
fact that the number w and the exact w locations are
not known to the hacker. Specifically, if the cardinal-
ity of CBP is N, then there are O(2N) combinations for
the hacker to ponder over.
5.2 ChooseMaxMP: Exploiting Monochromatic

Pieces

Definition 9 A value v ∈ δ(A) in D is monochro-
matic if all the tuples with v as the A attribute value
agree on the label, i.e., . ∃t1, t2 ∈ D such that t1.A =
t2.A = v and t1.C .= t2.C, where C is the class la-
bel. Furthemore, if all the tuples in a piece r contain
monochromatic values and the same label, then r is
called a monochromatic piece.

In Figure 4, 29 is a non-monochromatic value; ev-
ery other value, including 15, is monochromatic. The
piece r1 is a monochromatic piece. The key benefit
offered by a monochromatic piece is that there is no
requirement to apply either a monotone or an anti-
monotone function. In Figure 4, the values in r1:
1, 2, 15 are transformed anti-monotonically to 20, 17
and 16 respectively. Note that the label runs do not
change if the transformation f is any bijective func-
tion. For example, 1, 2 and 15 can be transformed so
that f(1) < f(15) < f(2) (e.g., see row 3 of Figure 7).
When such a bijective function can be used, a sorting
attack is blocked. Furthermore, the space of bijective
functions strictly contains the space of monotone or
anti-monotone functions. Thus, while ChooseBP uses
randomized breakpoints to confuse the hacker, the use
of a bijective function here creates an even more serious
combinatorial problem for the hacker. Specifically, if N
is the total number of values in all the monochromatic
pieces, there are O(N!) combinations for the hacker to
ponder over.

To maximize the benefit of monochromatic pieces,
Procedure ChooseMaxMP, shown in Figure 6, finds
all the monochromatic values and grows them into
monochromatic pieces of the largest size. Given a
sorted sequence of A-values, this task can be achieved
by a simple scan from the smallest to the largest value.

To illustrate the procedure, consider Figure 7, which
has the same original label runs as in Figures 3 and 4.
Let us begin from the smallest value 1. Because the
value 1 is monochromatic, 1 is added to BP in line (11).

Procedure ChooseMaxMP
Input: DA,C sorted on attribute A, the desired number w of

breakpoints to be returned
1. Set BP to be empty, flag MP to false, curLabel to null
2. For each value v starting from the smallest {
3. If v is not monochromatic {
4. If MP is true { /* end of a monochromatic piece */
5. Add v to BP /* a new non-monochromatic piece */
6. Set MP to false, and curLabel to null
7. } /* else simply skip to the next value */
8. }
9. else { /* v is monochromatic */
10. If MP is false { /* end of a non-mono. piece */
11. Add v to BP /* a new monochromatic piece */
12. Set MP to true and curLabel to v.C.
13. } else if curLabel $= v.C { /* different label */
14. Add v to BP /* a different monochromatic piece */
15. Set curLabel to v.C
16. } /* else continues the current monochromatic piece */
17. } } /* end for-loop */
18. If the size of BP is h and is less than w,
19. Randomly pick (w − h) breakpoints, if any, from the set of
20. non-monochromatic values as in ChooseBP
21. Return BP

Figure 6. A Skeleton for ChooseMaxMP

H H L L L L H H HH H H H

28 29 29 29 29 42 43 4427151521

r 1 r 4r 3

H H L L L L H H HH H H H

r 2

19 27 27 27 27 31 33 35181086 8

values in D :

values in D’:

sorted values in D’:

runs in D :

runs in D’:

pieces obtained:
3318 27 27 27 27 35 311986 810

Figure 7. Maximizing Monochromatic Pieces

The subsequent monochromatic values 2 and 15 are
skipped according to line (16) effectively growing r1.
The next value is 27. While it is monochromatic, the
label is different. Thus, a new monochromatic piece be-
gins in line (13) and 27 is added to BP. The next value
28 remains in the same monochromatic piece contain-
ing 27. The next value 29 is non-monochromatic. This
marks the end of the previous monochromatic piece
and starts a non-monochromatic piece in line (4); 29
is added to BP. To complete the example, the next
and last breakpoint is 42. In sum, ChooseMaxMP cre-
ates 4 pieces: r1 ≡ (1, H)(2, H)(15, H)(15, H), r2 ≡
(27, L)(28, L), r3 ≡ (29, L)(29, L)(29, H)(29, H) and
r4 ≡ (42, H)(43, H)(44, H).

Because r1, r2 and r4 are monochromatic, any bi-
jective function can be used. Notice that the way that
breakpoints are selected by ChooseMaxMP maximizes
the number of values for which a bijective function can
be applied. Row 5 in Figure 7 shows the transformed
values. Notice that the global-monotone invariant is
maintained between successive pieces.

Notice that there is no uncertainty in the posi-
tions of the monochromatic pieces as their sizes are
maximized by ChooseMaxMP. In other words, the
hacker knows exactly what the monochromatic and
non-monochromatic pieces are in D ′. However, know-
ing the pieces in D ′ does not help the hacker at all

in cracking the corresponding values in D. For exam-
ple, in Figure 7, knowing rows 5 and 6 do not help the
hacker in cracking row 2.

In Figure 7, three important cases have not been
illustrated. First, if the number of monochromatic
pieces is less than w, ChooseMaxMP still operates
by essentially selecting the remaining breakpoints ran-
domly from among the non-monochromatic values. Ex-
perimental results later will show that even in this
rare case, the proposed framework offers adequate do-
main disclosure protection. And whenever there are
monochromatic pieces, the framework exploits them to
give enhanced protection.

Second, if there are not enough non-monochromatic
values to choose from, ChooseMaxMP returns all the
non-monochromatic values, together with the starting
values of the monochromatic pieces. For real data, this
is a very good situation for the data custodian as it im-
plies that the total number of values in the monochro-
matic pieces dominates.

Finally, in our simple example, the shortest piece is
of length 2. We include short pieces in our example for
simplicity. In practice, ChooseMaxMP may impose a
minimum width threshold (e.g., width ≥ 5).

5.3 Selecting Transformations Randomly

After breakpoints are selected, the next step is to
choose a transformation for each piece from a family
of functions. Let Fbi denote a set of bijective func-
tions including non-monotone ones, e.g., any permuta-
tion functions. This set Fbi is applicable to monochro-
matic pieces. For non-monochromatic pieces, we are
restricted to the family of (anti-)monotone functions,
denoted by Fmono. This set can contain polynomials
of degree ≥ k, logarithmic functions, parabolic func-
tions and so on. Note that Fmono is closed under com-
position. That is to say, for any monotone functions
f, g ∈ Fmono, their composition f ◦ g is also monotone
and is in Fmono. As in the case for a monochromatic
piece, a randomization step is used to select the trans-
formation for the non-monochromatic piece.

5.4 Defense Against Sorting Attacks

Next we turn to sorting attacks. As specified in Pro-
cedure ChooseFunction, if a piece r is monochromatic,
fr is chosen from Fbi, and a sorting attack is blocked.
What about a non-monochromatic piece? Note that
a non-monochromatic piece r with a monotone trans-
formation can already have its own inherent protec-
tion against a sorting attack – provided that there are
enough “discontinuities” within r. A value v ∈ δr(A) is
a discontinuity if there is no tuple t in r with t.A = v,
where δr(A) denotes the dynamic range [minA, maxA]

of A in r, and minA, maxA denote the least and great-
est A-value occurring in r. To be more precise, if δr(A)
contains some discontinuity values, then the attacker
can only crack a value v ′ ∈ δ ′

r(A) to within a range,
say Rg = [v1, v2] ⊆ δr(A). Recall from Definition 1
that a guess is a crack if |g(v ′) − f−1(v ′)| ≤ ρ. Let
Rρ = [v−ρ, v+ρ], where v = f−1(v ′). Then the proba-
bility that a value v ′ is cracked under sorting attack can
be redefined as: P(|(g(v ′) − f−1(v ′)| ≤ ρ) = |Rg∩Rρ|

|Rg| .
Let us consider the entire sorted sequence in D ′ in

Figure 7 (i.e., row 5). Consider v ′ = 27. There are 5
values ranked ahead of 27 and 3 values ranked after 27.
Thus, given that the original domain is [1,44], g(v ′) can
range from Rg= [6,41]. As shown, the original value is
f−1(v ′) = 29. Let us say that the width of a crack is
2, giving Rρ = [27, 31]. Thus, the probability that v ′

is cracked is 5/36. From the above formula, it is clear
that the larger the number of discontinuities, the wider
the range Rg and the smaller the crack probability.

In sum, the data custodian can follow the “recipe”
below to determine if an attribute A is safe for dis-
closure. If A has many monochromatic pieces, or if
the non-monochromatic pieces contain many disconti-
nuities, then A is safe with low crack percentage against
a sorting attack. The only situation that is unsafe is
when A has few monochromatic values and simultane-
ously few discontinuities. However, the data custodian
must decide whether domain disclosure risk for A is
a primary concern or not. As discussed before, per-
haps the more important issue for the custodian is the
association of the A-values with the values of other at-
tributes, not just the A-values themselves. Empirical
results in Section 6 will examine this perspective.

A final point concerns the amount of information
the data custodian needs to keep in order to decode
the decision tree T ′ to get T . While this is discussed
in [4], it suffices to say that the information required is
rather minimal (i.e., the locations of breakpoints and
the transformations used).

6 Empirical Evaluation

6.1 Experimental Setup
Data Sets: We conducted our experimental eval-

uation on many benchmark data sets, including the
forest covertype, census income and WDBC data sets
from the UC Irvine collection. The results reported be-
low are based on the forest covertype data set. These
results are representative of those that we do not have
space to show.

The forest covertype data set consists of 581,012 tu-
ples and 10 numeric attributes (and other non-numeric
attributes). The table in Figure 8 gives the key statis-
tics of the 10 attributes. There are attributes with

dynamic # of # of avg Length total %
attr. range distinct mono. of mono. of mono.

width values piece piece values
#1 2000 1978 9 163 74.2%
#2 361 361 0 0 0.0%
#3 67 67 1 15 22.4%
#4 1398 551 22 10 40.0%
#5 775 700 14 24 48.0%
#6 7118 5785 202 18 62.9%
#7 255 207 2 41 39.6%
#8 255 185 8 6 25.9%
#9 255 255 3 8 9.4%
#10 7174 5827 229 17 66.8%

Figure 8. Statistics of Attributes

many discontinuities; the number of discontinuities is
the difference between the second column and the third
column of the table. But attributes 2, 3 and 9 have no
discontinuity. There are also attributes with several
monochromatic pieces. The last column gives the per-
centage of values that are contained in the monochro-
matic pieces. For attribute 1, the percentage is the
highest at 74%. But for attribute 2, the percentage is
0% as there is no monochromatic piece. This attribute
represents the worst case, as it also does not contain
any discontinuity.

Transformations: Fbi consists of transformations
for monochromatic pieces. We used a random permuta-
tion function. Fmono is for non-monochromatic pieces.
We used linear and higher order polynomials, log, and
log 1

2 (denoted sqrt(log)).
Prior Knowledge: Curve-fitting attacks – linear

regression, spline, polyline – require some number of
knowledge points (denoted as KP below) to work with.
We simulated the ignorant hacker who has no prior
knowledge. Clearly, curve fitting can also be adversely
affected by knowledge points that the hacker thought
were accurate but that turn out to be way off. We
call a knowledge point (v, v ′) to be good if it satisfies
Definition 4; but call it bad if |v − f−1

A (v ′)| > 5ρ. The
width ρ for a KP varied from 1%, 2% and 5% of the
width of the dynamic range. Given the definition of
ρ’s, we feel that each good KP represents a consider-
able amount of prior knowledge. Thus, a hacker with
2 or 4 good KPs is referred to as a knowledgeable
and an expert hacker respectively. The locations of
KPs are selected randomly. Furthermore, given the
randomization involved, each disclosure risk figure re-
ported below is based on the median of 500 random
trials. The experiments were implemented in a MAT-
LAB environment. We ran the experiments on an Intel
Pentium PC with 3GHz CPU and 2GB RAM.

6.2 Domain Disclosure Risk
6.2.1 Impact of Breakpoints, Monochromatic

Pieces and KPs

Figure 9 shows the domain disclosure risks (i.e., the
y-axis) for all 10 attributes of the forest covertype
data set using polyline as the curve fitting model. For

each attribute, the first bar gives the baseline when
no breakpoint is used but with an expert hacker (i.e.,
4 KPs). The second and third bar correspond to the
cases when ChooseBP and ChooseMaxMP are used,
with an expert hacker. Note that to make the com-
parisons between ChooseBP and ChooseMaxMP fair,
ChooseBP uses the same number of breakpoints as
ChooseMaxMP, which is determined by the number
of monochromatic pieces for the attribute. (The min-
imum number of breakpoints in each case is set to
w = 20.) The last bar corresponds to the case when
ChooseMaxMP is used with a knowledgeable hacker.
For each attribute, the runtime of ChooseMaxMP is
within 1-2 seconds.

The difference between the first two bars indicates
the reduction of crack percentage with breakpoints.
For instance, for attribute 1, the crack percentage
drops from over 65% to 30%. Reduction is achieved for
every attribute. Even for the “worst case” attribute 2
as shown in Figure 8, breakpoints manage to keep the
crack percentage below 25%. This shows that the use
of breakpoints alone is effective, even when there is no
monochromatic piece.

The difference between the second and third bar in
Figure 9 is due entirely to the monochromatic pieces.
Depending on the percentage of monochromatic values,
the reduction can be very significant. For the first at-
tribute, the crack percentage drops from 30% to below
10%. This shows the effectiveness of ChooseMaxMP in
exploiting monochromatic pieces, if present.

As a reference point, when random perturbations
are used, there is a chance that a discrete data value is
not changed and the true value is revealed. For exam-
ple, in [8], many situations examined leave a significant
percentage (e.g., 30%) of values unchanged, even with
no prior knowledge used. As shown below, against an
ignorant hacker with no prior knowledge, the crack per-
centage using our framework is consistently below 5%.
Furthermore, the studies in [7, 6] show that when spec-
tral analysis techniques are used, the crack percentage
can be significantly increased.

The third bar of each attribute in Figure 9 corre-
sponds to an expert hacker (i.e., 4 KPs). For all 10
attributes, the crack percentage is significantly lower
when the hacker has less domain knowledge. The
fourth bar of each attribute shows the crack percentage
when the hacker is only a knowledgeable hacker (i.e.,
2 KPs). In all cases, the crack percentage falls below
15%. And for an ignorant hacker, the crack percent-
age falls below 5%. Finally, the crack percentage is
sensitive to the presence of even a single bad KP. For
example, for attribute 10, the crack percentage with 4
good KPs drops from about 20% to around 10% with

Figure 9. Impact of Breakpoints and
Monochromatic Pieces on Domain Disclosure

4%
1% 2%

9%
3%

3%

3%

Linear Regression Spline Fitting

PolyLine Fitting

Figure 10. The Venn Diagram of Cracks: the
Combination Attack

the introduction of a single bad KP.

6.2.2 A combination of Attacks
So far all the results presented here are based on the
polyline curve fitting model and the sqrt(log) trans-
formation function. The table below shows the corre-
sponding values for alternative situations. All the fig-
ures are based on attribute 10 of the forest covertype
data set with ChooseMaxMP and an expert hacker. It
is clear that results shown above represents a “worst
case” analysis.

polynomial log sqrt(log)
Linear regression 10.39% 11.53% 10.85%

Spline attack 14.51 % 14.8 % 15.28%
Polyline attack 15.55 % 18.05 % 18.03%

A natural extension to the various attacks analyzed
so far is to consider when the hacker applies all of these
attack models. The central question here is whether
the different attack models crack similar or different
items. Figure 10 shows a Venn diagram of the cracks
for linear regression, spline fitting and polyline fitting
on attribute 10 using sqrt(log) as the transformation.
For instance, 3% of the domains are cracked solely by
polyline, whereas an additional 9% are cracked by poly-
line and spline but not by linear regression.

The question to ask here is: what the disclosure risk
for this combination attack is. One simple answer is
to add up all the percentages, which gives rise to 25%.
However, for most situations, this is an over-estimation
of risk. To illustrate, suppose that a specific item a
is identified to be a by polyline, b by spline and c
by linear regression. While it is true that one of the
three attacks correctly reveals the identity of item a,

of total % worst case
attr. discon- of mono. crack %

tinuities values by sorting
#1 22 74.2% 26%
#2 0 0.0% 100%
#3 0 22.4% 78%
#4 847 40.0% 4%
#5 75 48.0% 22%
#6 1333 62.9% 8%
#7 48 39.6% 13%
#8 70 25.9% 11%
#9 0 9.4% 90%
#10 1347 66.8% 7%

Figure 11. Sorting Attack: Worst Case

the hacker does not know which one. Thus, he cannot
distinguish whether a is really a, b or c. One way to
calculate the percentage of cracks is to use expected
values. Assuming the hacker trusts the three crack
models equally, this gives an expected crack percentage
of 12.5%. Another way is to count only those items as
cracks if two or more methods agree on them. From
the Venn diagram shown in Figure 10, this gives a total
combined crack percentage of 16%.

6.2.3 Sorting Attack: the Worst Case Analysis
Finally, we measure the risk of a sorting attack on all
10 attributes. The table in Figure 11 gives the worst
case results because we assume that the hacker has
the knowledge of the true minimum and maximum val-
ues of the dynamic range. If these two pieces of prior
knowledge is not known, the crack percentage is sig-
nificantly lower. The second column of the table in
Figure 11 gives the number of discontinuities within
the dynamic range (cf: Figure 8). The third column is
directly copied from the last column of Figure 8. As
expected, the three attributes 2, 3 and 9 are the most
vulnerable with no discontinuity, and a small percent-
age of monochromatic values (hardly surprising given
that these attribute domains are small and the data
set contains over 500,000 rows). However, as long as
an attribute has a fair number of discontinuities or
monochromatic values, the attribute is safe against a
sorting attack even in the worst case.

6.3 Subspace Association Risk

Next we turn to subspace association disclosure risk.
For the 10 attributes of the forest covertype data set,
there are over 1,000 subspaces containing two or more
attributes. Figure 12 shows the results of a few selected
subspaces. All subspaces shown contain either 2 or 3
attributes. For the ones selected, they are divided into
two categories.

The first category are attributes for which the curve
fitting attack is more serious than the sorting attack.
Specifically, we consider the set of attributes {4, 7, 10}
and their subspaces. The first three bars in Figure 12
show their individual domain disclosure risks from Fig-
ure 9 with an expert hacker. The next four bars show

#4 #7 #10 #4,7 #4,10 #7,10 #4,7,10 #2,7 #2,10 #2,7,10
0

5%

10%

15%

20%

25%

Attributes and Subspace

Pe
rc

en
tag

e o
f C

ra
ck

16%

25%

18%

3.9%
1.7%

3.7%

0.2%

24%

15%

2.9%

Domain Subspace {#4,7,10} Subspace {#2,7,10}

Figure 12. Subspace Association Disclosure
Risk

the subspace association risks for all the combinations.
For example, the individual risks of attribute 4 and 7
are 16% and 25% respectively. The association disclo-
sure risk of attributes 4 and 7 together, however, drops
significantly to 4%. And the association disclosure risk
among attributes 4, 7 and 10 drops to 0.2%. In gen-
eral, as the subspace becomes larger, the disclosure risk
drops significantly.

The second category are attributes for which the
sorting attack is more serious. For a worst case discus-
sion, we return to attribute 2. Even though attribute 2
is 100% cracked by sorting in the worst case, note that
the association disclosure risks of attribute 2 with other
attributes can be acceptable (i.e., last three bars of Fig-
ure 12). Thus, for the data custodian to decide whether
attribute 2 can be safely released, the data custodian
needs to first determine which is the primary concern:
attribute 2 alone versus the association of attribute 2
with other attributes. For many situations, it is the
association disclosure that is more critical.

It is also interesting to compare the association dis-
closure risk with and without attribute 2 in Figure 12.
While the domain disclosure risk of attribute 10 alone
is 18%, the association disclosure risk of attributes
2 and 10 together is 15%. This is due to how val-
ues in attribute 2 are associated with values in at-
tribute 10. This skew leads to the following observa-
tion: risk(A, B) < risk(A) ∗ risk(B). This is good
news for the data custodian if the primary concern is
subspace association risk, rather than domain risk.

6.4 Output Privacy: Pattern Disclosure Risk

Finally, to measure pattern disclosure risk, we ap-
plied the C4.5 decision tree algorithm on the 10 at-
tributes of the forest covertype data set. The decision
tree constructed contains 1707 paths from the root.
The maximum length of these paths is 40. The follow-
ing table shows the frequency of path lengths and the
corresponding cracks.

Length of
Decision 1 2 3 4 5 6 > 6
Paths

of Paths 2 4 5 9 15 24 1648
of Cracks 1 0 0 0 0 0 0

Among all the 1707 paths from the root, there is
only 1 path of length 2 that is cracked. In fact, this
result is based on an insider hacker (i.e., 8 KPs) and
a 5% width. For a less powerful hacker, or a smaller
radius, all the paths are protected showing impeccable
output privacy protection.

7 Future Work

In ongoing work, we study how to generalize the
piecewise framework from decision trees to SVM and
other kernel methods. The difference is that the divid-
ing planes can have arbitrary orientations. In a forth-
coming paper, we show how the no-outcome-change
guarantee and the other two pillars of privacy can be
supported for SVM.

References

[1] N.R. Adam and J. C. Wortman. Security-control
methods for statistical databases. ACM Computing
Surveys, 21, 4, pp515–556, 1989.

[2] R. Agrawal and R. Srikant. Privacy preserving data
mining. Proc. 2000 SIGMOD, pp. 439–450.

[3] R. Agrawal et al. Order Preserving encryption for nu-
meric data. Proc. 2004 SIGMOD, pp. 563–574.

[4] S. Bu et al. Preservation Of Patterns and Input-
Output Privacy. Full version of this submission:
ftp://ftp.cs.ubc.ca/local/laks/papers/ decisionTree-
Icde2007ExtendedVersion.pdf.

[5] A. Evfimievski, J. Gehrke and R. Srikant. Limiting
privacy breaches in privacy preserving data mining.
Proc. 2003 PODS, pp. 211–222.

[6] Z. Huang, W. Du and B. Chen. Deriving private infor-
mation from randomized data. Proc. 2005 SIGMOD,
pp. 37–48.

[7] H. Kargupta et al. On the privacy preserving prop-
erties of random data perturbation techniques. Proc.
2003 ICDM, pp. 99–106.

[8] S. Rizvi and J. Haritsa. Privacy-preserving associa-
tion rule mining. Proc. 2002 VLDB, pp. 682–693.

[9] L. Sweeney. K-anonymity: a model for protecting
privacy. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 10, 5, p.557-570,
2002.

[10] J. Vaidya and C. Clifton. Privacy-Preserving K-
Means Clustering over Vertically Partitioned Data.
Proc. 2003 SIGKDD, pp. 206–215.

