Real Time Fluids in Games

Matthias Müller

Outline

- Fluids in Games
- Heightfield Fluids
 - A very simple program
 - Physics background
 - Object interaction
- Particle Based Fluids
 - Simple particle systems
 - Smoothed Particle Hydrodynamics (SPH)

3

SIGGRAPH2007

Phys A

Reducing Computation Time

Phys

- Reduce resolution (lazy ⊗)
 - Simple (use same algorithms)
 - Results look blobby and coarse, details disappear
- Invent new methods (do research ☺)
 - Reduce dimension (e.g. from 3d to 2d)
 - Use different resolutions for physics and appearance
 - Simulate only in interesting, active regions (sleeping)
 - Camera dependent level of detail (LOD)
 - Non-physical animations for specific effects

Solutions

- Procedural Water
 - Unbounded surfaces, oceans
- Heightfield Fluids
 - Ponds, lakes
- Particle Systems
 - Splashing, spray, puddles, smoke

Solution

New state variable r[i,j]:

- u[i,j] is not modified directly

is distributed as water u to the neighboring columns - In case of a negative difference

water is removed

• At each time step:

SIGGRAPH2007 - Each column stores the part r[i,j] of u[i,j] currently replaced by solids

Phys 👗

23

Remarks on SPH

Phys

SIGGRAPH2007

- Compressibility
 - Pressure force reacts to density variation (bouncy)
 - Predict densities, solve for incompressibility [Premoze03]
- Parameters hard to tune
- Rendering
 - Sprites for smoke, blurry surface
 - Marching cubes for liquids
- Combine particles and heightfields [O'Brien95, Thuerey07]

41

Surface Tracking

- Two main bottlenecks
 - Not the simulation!
 - Collision detection
 - Surface tracking for liquids
- Marching cubes
 - Often used to in offline simulations
 - Generates detailed geometry in non visible places, far from the camera

42

Screen Space Meshes [Müller07]

References 2/2

Phys A

[Müller07]	M. Müller et al., Screen Space Meshes, SCA 07.
[Müller03]	M. Müller et al., Particle-Based Fluid Simulation for Interactive Applications, SCA 03, pages 154-159.
[O'Brien95]	J. O'Brien and J. Hodgins, Dynamic simulation of splashing fluids, In Computer Animation 95, pages 198–205
[Premoze03]	S. Premoze et al., Particle based simulation of fluids, Eurographics 03, pages 401-410
[Teschner03]	M. Teschner et al., Optimized Spatial Hashing for Collision Detection of Deformable Objects, VMV 03
[Thuerey07]	N. Thuerey et al., Real-time Breaking Waves for Shallow Water Simulations Pacfific Graphics 07
[Yuksel07]	Cem Yuksel et al., Wave Particles, Siggraph 07

47

