Fast Poisson Disk Sampling in Arbitrary Dimensions

Robert Bridson*
University of British Columbia

Abstract

In many applications in graphics, particularly rendering, generating
samples from a blue noise distribution is important. However, exist-
ing efficient techniques do not easily generalize beyond two dimen-
sions. Here I demonstrate a simple modification to dart throwing
which permits generation of Poisson disk samples in O(N) time,
easily implemented in arbitrary dimension.

CR Categories: 1.3.0 [Computer Graphics]: General

Keywords: sampling, blue noise, Poisson disk

1 Introduction

Blue noise sample patterns—for example produced by Poisson disk
distributions, where all samples are at least distance r apart for
some user-supplied density parameter r—are generally considered
ideal for many applications in rendering (see Cook’s landmark pa-
per for example [1986]). Unfortunately the naive rejection-based
approach for generating Poisson disk samples, dart throwing, is im-
practically inefficient.

Many papers have overcome this inefficiency in two dimensions; I
focus on one approach in particular, due to Dunbar and Humphreys
[2006]. Their algorithm maintains a “scalloped sector” data struc-
ture which efficiently encodes the geometry of the region of the
plane at distance between r and 2r from existing samples, and per-
mits efficient uniform sampling from this region. Since every point
in this region is an allowable sample, and since every maximal Pois-
son disk sampling containing the existing samples must also con-
tain a point from this region, their algorithm can very efficiently
generate the desired distribution.

However, many sampling applications use three or more dimen-
sions: rendering with motion blur or depth-of-field, many parti-
cle systems for animation, etc. Existing two-dimensional fast blue
noise samplers do not easily generalize to higher dimensions, thus
practitioners tend to use either uniform random distributions (de-
spite undesirable clustering), jittered/stratified sampling (which re-
duces but doesn’t eliminate clustering), or more structured distribu-
tions which induce anisotropy.

In this sketch I present a new algorithm, easily implemented in arbi-
trary dimensions, that is guaranteed to take O(N) time to generate
N Poisson disk samples. Similar to the approach of Dunbar and
Humphreys, sample candidates are drawn only from a region near
existing samples, but instead of exactly computing the allowed re-
gion, rejection sampling is used to discover it.

2 The Algorithm

The algorithm takes as input the extent of the sample domain in
R", the minimum distance r between samples, and a constant k

*email: rbridson@cs.ubc.ca

Figure 1: Two-dimensional sample pattern from the algorithm and
corresponding periodogram averaged over many runs.

as the limit of samples to choose before rejection in the algorithm
(typically & = 30).

Step 0. Initialize an n-dimensional background grid for storing
samples and accelerating spatial searches. We pick the cell size to
be bounded by 7/4/n, so that each grid cell will contain at most
one sample, and thus the grid can be implemented as a simple n-
dimensional array of integers: the default —1 indicates no sample, a
non-negative integer gives the index of the sample located in a cell.

Step 1. Select the initial sample, zo, randomly chosen uniformly
from the domain. Insert it into the background grid, and initialize
the “active list” (an array of sample indices) with this index (zero).

Step 2. While the active list is not empty, choose a random index
from it (say 7). Generate up to k points chosen uniformly from the
spherical annulus between radius r and 2r around z;. For each
point in turn, check if it is within distance r of existing samples
(using the background grid to only test nearby samples). If a point
is adequately far from existing samples, emit it as the next sample
and add it to the active list. If after k attempts no such point is
found, instead remove 7 from the active list.

3 Analysis

Step 2 is executed exactly 2N —1 times to produce /N samples: each
iteration either produces a new sample and adds it to the active list,
or removes an existing sample from the active list. Each iteration of
step 2 takes O(k) time, and since k is held constant (typically quite
small) the algorithm is linear.

Figure 1 shows results in two dimensions; the accompanying ma-
terial shows results in three dimensions. The accompanying proto-
type code illustrates a simple implementation which takes the di-
mension of the space as a parameter.

Acknowledgements

This work was in part supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada.

References

CooK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data struc-
ture for fast poisson-disk sample generation. ACM Trans. Graph.
25, 3, 503-508.



