
1

An Algorithm for Merging and Aligning Ontologies:
Automation and Tool Support

Natalya Fridman Noy and Mark A. Musen

Stanford Medical Informatics
Stanford University

Stanford, CA 94305-5479
{noy, musen}@smi.stanford.edu

Abstract
As researchers in the ontology-design field develop the
content of a growing number of ontologies, the need for
sharing and reusing this body of knowledge becomes
increasingly critical. Aligning and merging existing
ontologies, which is usually handled manually, often
constitutes a large and tedious portion of the sharing process.
We have developed SMART, an algorithm that provides a
semi-automatic approach to ontology merging and
alignment. SMART assists the ontology developer by
performing certain tasks automatically and by guiding the
developer to other tasks for which his intervention is
required. SMART also determines possible inconsistencies
in the state of the ontology that may result from the user’s
actions, and suggests ways to remedy these inconsistencies.
We define the set of basic operations that are performed
during merging and alignment of ontologies, and determine
the effects that invocation of each of these operations has on
the process. SMART is based on an extremely general
knowledge model and, therefore, can be applied across
various platforms.

1 Merging Versus Alignment

In recent years, researchers have developed many
ontologies. These different groups of researchers are now
beginning to work with one another, so they must bring
together these disparate source ontologies. Two approaches
are possible: (1) merging the ontologies to create a single
coherent ontology, or (2) aligning the ontologies by
establishing links between them and allowing them to reuse
information from one another.

As an illustration of the possible processes that establish
correspondence between different ontologies, we consider
the ontologies that natural languages embody. A researcher
trying to find common ground between two such languages
may perform one of several tasks. He may create a
mapping between the two languages to be used in, say, a
machine-translation system. Differences in the ontologies
underlying the two languages often do not allow simple
one-to-one correspondence, so a mapping must account for
these differences. Alternatively, Esperanto language (an
international language that was constructed from words in
different European languages) was created through
merging: All the languages and their underlying ontologies
were combined to create a single language. Aligning

languages (ontologies) is a third task. Consider how we
learn a new domain language that has an extensive
vocabulary, such as the language of medicine. The new
ontology (the vocabulary of the medical domain) needs to
be linked in our minds to the knowledge that we already
have (our existing ontology of the world). The creation of
these links is alignment.

We consider merging and alignment in this paper.
For simplicity, throughout the discussion, we assume that

only two ontologies are being merged or aligned at any
given time. Figure 1 illustrates the difference between
ontology merging and alignment. In merging, a single
ontology that is a merged version of the original ontologies
is created. Often, the original ontologies cover similar or
overlapping domains. For example, the Unified Medical
Language System (Humphreys and Lindberg 1993; UMLS
1999) is a large merged ontology that reconciles differences
in terminology from various machine-readable biomedical
information sources. Another example is the project that
was merging the top-most levels of two general common-
sense-knowledge ontologies—SENSUS (Knight and Luk
1994) and Cyc (Lenat 1995)—to create a single top-level
ontology of world knowledge (Hovy 1997).

In alignment, the two original ontologies persist, with
links established between them.1 Alignment usually is
performed when the ontologies cover domains that are
complementary to each other. For example, part of the
High Performance Knowledge Base (HPKB) program
sponsored by the Defense Advanced Research Projects
Agency (DARPA) (Cohen et al. 1999) is structured around
one central ontology, the Cyc knowledge base (Lenat
1995). Several teams of researchers develop ontologies in
the domain of military tactics to cover the types of military
units and weapons, tasks the units can perform, constraints
on the units and tasks, and so on. These developers then
align these more domain-specific ontologies to Cyc by
establishing links into Cyc’c upper- and middle-level
ontologies. The domain-specific ontologies do not become
part of the Cyc knowledge base; rather, they are separate
ontologies that include Cyc and use its top-level
distinctions.

1 Most knowledge representation systems would require one
ontology to be included in the other for the links to be established.

2

Figure 1. Merging versus alignment. O
1
 and O

2
 are the

original ontologies, the dotted lines represent the transition
that an original ontology undergoes, and the gray area is the
result. The result of merging is a single ontology, O; that of
alignment is persistence of the two ontologies with links
(solid lines in the figure) established between them.

Until now, ontology designers have performed this
complicated process of ontology merging and alignment
mostly by hand, without any tools to automate the process
or to provide a specialized interface. It is unrealistic to hope
that merging or alignment at the semantic level could be
performed completely automatically. It is, however,
possible to use a hybrid approach where a system performs
selected operations automatically and suggests other likely
points of alignment or merging. The easiest way to
automate the process partially is to look for classes that
have the same names and to suggest that the user merges
these classes. We developed an algorithm for ontology
merging and alignment, SMART, that goes beyond simple
class-name matches and looks for linguistically similar
class names, studies the structure of relations in the vicinity
of recently merged concepts, and matches slot names and
slot value types.

We also wanted to provide specialized tools for merging
and alignment. To be effective, these tools should support
an ontology developer who is working simultaneously with
several ontologies; should provide easy import and export
of concepts among these ontologies; and should check
whether consistency is maintained after the performed
operations, while allowing for inconsistent intermediate
states.
We therefore undertook the following research:
• We defined a set of formalism-independent basic

operations that are performed during ontology merging
or alignment. Naturally, this set overlaps with the set of
all operations performed during ontology development.
However, none of these two sets—the set of all
operations in a design of single ontology and the set of
merging and alignment operations—properly subsumes
the other.

• We developed SMART, an algorithm for semi-automatic
ontology merging or alignment. SMART starts by
automatically creating a list of initial suggestions based
on class-name similarity. Then, for each operation

invoked by the user, based on the classes and slots in the
vicinity of that operation, SMART performs a set of
actions automatically, makes suggestions to guide the
user, checks for conflicts, and suggests ways to resolve
these conflicts.

• We designed (and are currently implementing) a
specialized tool to perform ontology merging and
alignment. The tool is an extension of the Protégé
ontology-development environment (Protégé is described
in Section 7 and in the article by Musen and colleagues
(Musen et al. 1995)).

The knowledge model underlying SMART (described in
Section 2) is compatible with the Open Knowledge Base
Connectivity (OKBC) protocol (Chaudhri et al. 1998). We
did not make any assumptions about the underlying
knowledge model that are more detailed than OKBC-
compatibility, so our results are applicable to a wide range
of systems.

We describe our experience in ontology alignment in
Section 3. Section 4 contains an overview of SMART.
Section 5 defines the set of basic operations in merging and
alignment, and presents a detailed example of one such
operation. We give an overview of related work in Section
6, and discuss possible future extensions to our framework
in Section 7. Section 8 concludes the paper.

2 Knowledge model

The knowledge model underlying SMART is frame-based
(Minsky 1981) and is designed to be compatible with
OKBC (Chaudhri et al. 1998). At the top level, there are
classes, slots, facets, and instances:
• Classes are collections of objects that have similar

properties. Classes are arranged into a subclass–
superclass hierarchy with multiple inheritance. Each
class has slots attached to it. Slots are inherited by the
subclasses.

• Slots are first-class objects (as in OKBC), and they are
named binary relations between two class frames or
between a class frame and a simple object (such as a
string, number, or symbol). Slots can be single-valued or
multivalued. Each slot has associated with it a name,
domain, value type, and, possibly, a set of facets.

• Facets are frames that impose additional constraints on
slots in a class frame. Facets can constrain cardinality or
value type of a slot, contain documentation for a slot, and
so on.

• Instances are individual members of classes. Any
concrete (as opposed to abstract) class can have
instances.

These definitions are the only restrictions that we impose
on the knowledge model underlying SMART. Since such
knowledge model is extremely general, and many existing
knowledge-representation systems have knowledge models
compatible with it, the solutions to merging and alignment
produced by SMART can be applied over a variety of
knowledge-representation systems.

MERGE O1 and O2

O1 O2

O

O1

ALIGN O2 to O1

O2

O1

O2

3

Adopting an OKBC-compatible knowledge model also
makes it possible to implement SMART as an OKBC
client, where most of the work in accessing a knowledge
base is performed on the server side. We translated the set
of basic merging and alignment operations (Table 1) to
OKBC using OKBC’s scripting language. Most of the
operations from this set are simple combinations of one or
two operations from the OKBC specification (Chaudhri et
al. 1998). Several of the operations, however, require more
extensive scripts. If the OKBC front end included these
more complex operations, then OKBC would provide better
support for merging and alignment.

3 Experience in ontology alignment

One of our main motivations for developing algorithms and
tools for ontology merging and alignment was our
participation in the task of aligning ontologies that were
developed as part of HPKB project (Cohen et al. 1999;
HPKB 1999). This project comprises several teams
designing ontologies independently and then bringing
together these ontologies to solve complex reasoning
problems. Therefore, merging and alignment of the
ontologies developed by different teams is an important
part of HPKB. The Cyc knowledge base (Lenat 1995) was
adopted as the common upper-level ontology. The
participating teams developed ontologies for various parts
of the military domain: military units, military tasks,
purposes of military actions, constraints on military units,
and so on. These ontologies then were aligned with one
another and with the upper level. Even though the
researchers made the effort to have the ontologies aligned
in the first place, often the complete alignment at the design
time turned out to be impossible: Several of these
ontologies were partially developed before Cyc was
adopted as the upper level, and a few developers found it
easier to formalize their part of the domain first and to align
that part to Cyc afterward. In the end, after the ontologies
were delivered, the alignment process had to take place.

Consider, for instance, the ontology that formalizes the
knowledge about constraints on military units (Unit-
Constraints ontology). The information in this ontology
includes the facts of how fast a unit of a certain type can
move under specific terrain and light condition, how much
fuel it consumes, and how much fuel it can store, what its
combat power is, and so on. Undoubtedly, this ontology
overlaps both with the upper-level Cyc ontology and with
domain-specific ontologies, such as the ontology of military
units. The alignment process in this case included (but was
not limited to) the following activities:
• We identified the content that overlapped with the

already existing one, and either removed it from the
Unit-Constraints ontology, or moved part of it to
other ontologies. For instance, the developers of the
Unit-Constraints ontology defined several military-
unit specialties (such as foot infantry) that were not
present in the ontology of military units at that time. We

moved these new unit specialties to the ontology of
military units.

• Concepts that were at the top level of the Unit-
Constraints ontology became subclasses of the more
general concepts in the upper level (for example, a
Constraints-On-Units class, which was at the top
level of the constraint hierarchy, became a subclass of
the Resource-Constraints from the upper ontology).

• We established value-type links for the many slots that
had value types defined in the upper ontology, such as
Speed, Capacity, and Rate.

• We changed several concept names to conform to
naming conventions adopted in other ontologies.

• We added axioms to link the information in the concepts
to the information in upper level.

Based on this and other practical experiences, we
developed a general approach to ontology merging and
alignment that facilitates and partially automates this
tedious and time-consuming process.

4 Description of the SMART algorithm

We now describe how the SMART algorithm works. The
word in parentheses at the beginning of an algorithm step
indicates whether a user executes the step (User) or
whether SMART can perform the step automatically
(SMART).
1. (User) Setup: Load two ontologies and custom tailor the

strategy preferences described in Section 4.1.
2. (SMART) Generate the initial list of suggestions: Scan the

class names in both ontologies to find linguistically
similar names. (Linguistic similarity can be determined
in many different ways, such as by synonymy, shared
substrings, common prefixes, or common suffixes.)
Create the initial list of suggestions to the user. If the
process is merge, suggest the following:
- For each pair of classes with identical names, either

merge the classes or remove one of the classes in the
pair.

- For each pair of classes with linguistically similar
names, establish a link between them (with a lower
degree of confidence than in the first set).

If the process is align and one ontology (say, O
1
) has

been identified by the user as the less general, then the
suggestions are based on the assumption that classes in
the less general ontology need to be linked by subclass–
superclass relations with the classes in the more general
ontology (O

2
). Recall, for instance, our earlier example

of assigning a parent from the more general ontology
(Resource-Constraint) to a concept from the more
specific one (Constraint-On-Units). So, for each
class C at the top level of O

1
, the following suggestions

are made with high confidence:
- If there is a class in O2 with the same name as C,

merge the two classes.
- Otherwise, find a parent for class C.

4

3. (User) Select and perform an operation: The operation
the user selects can be, but does not have to be, from the
current list of suggestions. The set of possible basic
operations is defined in Section 5.1.

4. (SMART) Perform automatic updates and create new
suggestions: For the concepts involved in the operation
just performed in step 3, consider linguistic similarity of
their class and slot names and the structure of the
ontology in their vicinity. Based on the similarity and
structural patterns, trigger actions in three categories:
- Immediately execute additional changes determined

automatically by the system.
- Add to the list of conflicts (described in Section 4.2)

the set of new conflicts in the state of the ontology
resulting from the user action and suggestions on how
to remedy each conflict.

- Add to the list of suggestions (described in Section
4.2) the set of suggestions to the user on what other
actions can be performed next.

5. Repeat steps 3 and 4 until the ontologies are fully
merged or aligned.

Creation of the initial list of suggestions in step 1 is mostly
syntactic: SMART makes its decisions based on names of
frames and not on positions of frames in the ontology or
frames’ participation in specific relations. Step 4 includes
semantic analysis as well: SMART considers the types of
relations involving current concepts and arguments of these
relations. In section 0, we give examples of the specific
semantic relations that SMART considers in step 4.

In the remainder of this section, we describe how a user
can custom tailor the behavior adopted by the algorithm
(Section 4.1) and the structure and content of the lists that
contain the current sets of suggestions (Section 4.2). One of
SMART’s central abilities is to determine new actions and
suggestions based on the operation just performed. Thus,
for each basic merging or alignment operation defined in
Section 5.1 (Table 1), we must define the set of automatic
actions that the operation may trigger, the conflicts that it
may produce, and the new points of merging that it may
create. We show how the decisions in each of these three
categories are made for one such operation, merging
classes, in Section 0.

4.1 Custom tailoring of the behavior
The user can custom tailor the behavior of the system by
setting the values of the preference variables. We describe
two of the preference variables (that determine the strategy
and the preferred ontology) in this section.

Preferred ontology

When we align or merge ontologies, one or more ontologies
often are more stable than are the others in ontology set.
Stable here does not mean superior, or better tested, or
more established. Rather, an ontology is stable if, for
various reasons, making changes to it is highly discouraged
and should be done only if absolutely necessary. An
ontology can be designated as stable because, for instance,

it is heavily reused already and any changes to it would
affect all the systems that are reusing the ontology. A user
can designate the more stable ontology as the preferred
one. The preferred setting guides, for instance, the
choice of a name for a concept that results from merging
two differently named concepts: The name of the concept
from the preferred ontology becomes the merged
concept’s name. Similarly, the default resolution of
conflicts favors of the preferred ontology.

Preferred policy: merge or override

The preferred-policy variable guides the choices that
SMART makes when conflicts arise among different slots
of a concept. Concepts can get new slots as a result of
operations such as merge-classes or add-parent.
Some of these newly acquired slots may have the same
names as the old slots, but may have different value types
(or sets of facets). By setting the policy to override, the
user requests that the value received from the preferred
ontology automatically overrides the other ones. If the user
wishes to select the overriding value himself, he sets the
policy to merge.

For example, suppose that we are merging two concepts
that describe a military unit. Suppose also that one
Military-Unit concept comes from the preferred
ontology and that this concept has a rate-of-movement
slot with the value-type Speed; the other Military-Unit
concept has a slot with the same name but value-type
Number. If the policy is override, the concept that results
from merging these two Military-Unit concepts will
have the rate-of-movement slot with value-type Speed
(the value type that the merged concept received from the
preferred ontology). If the policy is merge, SMART
will place the resolution of the conflict as an item on the list
of conflicts.

The setting of merge and override policies is similar
to merge and override composition rules (Ossher et al.
1996) for composition in subject-oriented programming
(subject-oriented programming is an approach to object-
oriented programming that we describe in Section 6).

4.2 Data structures
We have referred several times to the two basic data
structures that SMART maintains throughout the merging
and alignment process and that it uses to guide the user in
the process: the list of conflicts that resulted from the user’s
actions and the list of suggestions for the next action. We
call these structures the Conflicts list and the ToDo list,
respectively. The items on the Conflicts list represent
inconsistencies in the current state of the knowledge base
that must be resolved before the knowledge base can be in a
logically consistent state. For example, if we merge two
slots with conflicting facet values, SMART puts the
operation of removing one of the facets in the conflict on
the Conflicts list. Before closing the knowledge base, the
user must perform this operation or ask SMART to decide
which facet to remove. Alternatively, if two slots of a

5

merged concept have similar (but not identical) names and
the same value type, then merging these slots is an
operation that probably should be performed. However,
execution of this operation is not required for internal
consistency of the knowledge base. SMART places such an
operation on the ToDo list.

ToDo list

An item on the ToDo list is either a single operation or a
disjunction of operations. In the latter case, the underlying
semantics is that only one of the operations in the
disjunction needs to be performed. SMART chooses the
operations for the ToDo list from the set of basic merging
and alignment operations (Table 1) and specifies their
arguments (and, possibly, suggested results).

For example, suppose that, as a result of the addition of a
new parent, a Military-Unit concept acquired a
combat-power slot with a name similar to that of one of
its old slots, unit-combat-power, and the same value
type (Number). SMART adds the following suggestion to
the ToDo list:
(or (remove-slot Military-Unit combat-power)
 (remove-slot Military-Unit
 unit-combat-power))

Conflicts list

An item on the Conflicts list consists of a description of
a conflict and a suggested action that would remedy the
problem. It also contains a default solution that will be
invoked if the user asks SMART to resolve the conflict.
For instance, using our previous example, if the two slots
(that is, the one that the Military-Unit concept already
had and the one that the concept inherited from the newly
added parent) had the same name, combat-power, but
different value types, Number and Integer, and the policy
was merge, SMART would add the following record to the
Conflicts list:
Problem:
 conflicting value types: Integer and
 Number at combat-power in Military-Unit
Solution:
 (or (remove-slot Combat-Unit
 (combat-power :value-type Integer))
 (remove-slot Combat-Unit
 (combat-power :value-type Number)))
Default solution:
 (remove-slot Combat-Unit
 (combat-power :value-type Number))

The default solution is based on which ontology was
designated as preferred. If the user asks SMART to
resolve all conflicts automatically, SMART executes the
default solution.

Other attributes of items in the Conflicts and ToDo
lists

Priority. SMART assigns priority to the items in the
Conflicts and ToDo lists and orders the items in the lists
with the higher-priority items more easily accessible. The

priority value can be based on one or more of the
following:
• SMART’s certainty about the item: The higher the

certainty, the higher the priority
• The item’s age: Items triggered by the more recent

operations have higher priority because they refer to the
concepts that are closer to the user’s current focus

• The number of references to the concepts in the
operation: The more elements in the ontology would be
affected if the operation is invoked, the higher the
priority of the operation.

Feedback and explanation. Each item in the Conflicts
and ToDo lists has references back to the triggering
operation and to the rule that SMART used to put the item
on the list (in the formal or natural-language form). The
reference and the rule explain to the user why a particular
item appears on the list. The user can also disable the rules
that he considers not useful or impediments.

5 The set of basic operations in merging and
alignment

In this section, we define the set of basic operations for
ontology merging or alignment. Then, we describe one of
these operations (merge-classes) in detail: We discuss
the automatic operations and additions to the ToDo and
Conflicts lists that the merge-classes operation
triggers.

5.1 Overview of the basic merging and
alignment operations

OKBC specifies a superset of all operations that can be
performed during an ontology-design process (Chaudhri et
al. 1998). This superset of operations is sufficient for the
processes of ontology merging and alignment, because the
latter can also be treated as the ontology design processes.
Therefore, we can argue that the only task that a merging
and alignment tool must do is to support the OKBC
operations. However, judging from our own experience in
merging and alignment, we believe that not all the
operations required for general ontology design are used in
the more specialized processes of ontology merging and
alignment. For instance, during merging or alignment, we
rarely create new classes completely from scratch (the new
classes are usually modifications of the existing ones);
creation of new slots or facets is even less common.
Likewise, several operations are performed only during
ontology merging and alignment and are usually not present
at the ontology-design stage. For example, merging two
concepts into one is common in ontology merging. Moving
a concept from one ontology to another is often performed
during alignment. Although these operations can be
expressed as combinations of primitive operations from the
OKBC set, the user needs to perform these sequences of
basic operations in one step.

6

Table 1 summarizes the basic operations for ontology
merging and alignment that we identified. Several of these
operations are normally performed only during ontology
merging, several operations are used only in ontology
alignment, and most operations apply to both situations.
The list in Table 1 is not exhaustive; for example, we have
not represented operations dealing with updates to facets
and instances (see Section 7).

We translated the operations from Table 1 to OKBC
using the OKBC’s scripting language. Most of the
operations from this set are simple combinations of one or
two operations from the OKBC specification. Several of
them, however, require more extensive scripts. These

operations can extend the OKBC front end to provide
support for merging and alignment in OKBC.

Identification of these basic operations and of the
consequences of invoking them is the central task in our
approach to ontology merging and alignment. For each
operation, we can specify the rules that determine the
specific members of the three sets updated by the operation:
(1) changes that should be performed automatically, (2)
conflicts that will need to be resolved by the user, and (3)
new suggestions to the user. Having specified these rules,
we can have the system automatically create members of
these three sets based on the arguments to a specific
invocation of an operation.

Operator Arguments Description Need for the operator When

Merge-classes C1, C2 Merge C1 and C2 to create a
new class, C3

Classes represent similar
concepts

Merge

Remove-class C1 Remove C1 from the ontology The class is already represented
in the other ontology

Both
1

Remove-parent C1, C2 Precondition: C2 is a parent of
C1.
Remove C2 from the list of
C1’s parents

Merging: Extra parents are the
result of an earlier merging
Alignment: A more appropriate
parent is in another ontology

Both

Add-parent C1, C2 Add C2 to the list of parents of
C1

An appropriate parent found in
another ontology

Align

Rename C1, N1 Change a name of C1 to N1 Need to conform to naming
conventions in another ontology

Both

Move C1, 01, O2 Move C1 from O1 to O2 All the concepts similar to C1

are in O2
Align

Remove-slot C1, S1 Remove S1 from the list of
slots of C1

Merging: Extra slots are the
result of an earlier merging
Alignment: A similar slot was
inherited from a new parent

Both

Move-slot S1, C1, C2 Precondition: S1 is a slot in C1.
Remove S1 from the list of
slots in C1 and add it to the list
of slots in C2

The slot is more appropriately
defined in a parent

Both

Rename-slot S1, N1 Change a name of S1 to N1 Need to conform to naming
conventions in another ontology

Rename-slot-in-
class

C1, S1, N1 Change a name of S1 in C1 to
N1

2
Need to fix slot names in
merged concept

Both

Change-slot-
range-in-class

C1, S1, T1 Change value type of S1 in C1
to T1

There is a more appropriate
value type in another ontology

Both

Table 1. Partial set of atomic operations in ontology merging and alignment processes. C
1
 and C

2
 are class frames, S

1
 is a slot frame,

N
1
 is a string, O

1
 and O

2
 are ontologies, and T

1
 is a value type for a slot (can be a class frame or a simple type, such as number). For

each operation, we define what arguments it takes, give its natural-language description, provide a commonly encountered reason for
performing this operation, and indicate the process (merging, alignment, or both) where it is applicable.

1 In the merging process, this could be considered to be a special case of merge-class
2

 If S1 is attached to other classes, its copy is created, named N1, and attached to C1

7

Combat-Arms-Unit: subclass-of Military-Unit
echelon: Military-Echelon
combat-power: Integer
rate-of-movement: Rate
fuel-capacity: Capacity

Ground-Maneuver-Unit: subclass-of Modern-Military-Unit
echelon: Military-Echelon
combat-power: Number
movement-rate: Rate

Figure 2. Example of classes to be merged. The words in italics are names of slots followed by value types.

In the next section, we discuss one of these operations in
detail. We show how SMART creates the additions to the
two running lists (ToDo and Conflicts) and what changes
it makes automatically as a result of such an operation.

5.2 Example: merge-classes
As we defined in Table 1, the merge-classes operation
takes two class-frame arguments and merges the two
classes into one. A user would usually perform the merge-
classes operation to merge two classes that come from
two different source ontologies and that represent similar
concepts. Figure 2 shows an example of two classes from
two different ontologies; both cover the domain of military
units: Combat-Arms-Unit and Ground-Maneuver-
Unit. These two classes—Combat-Arms-Unit and
Ground-Maneuver-Unit—represent the same collection
of military units; therefore, they must be merged if the two
source ontologies are merged. We refer to these two classes
in the examples throughout this section. We assume that the
Combat-Arms-Unit class originally is defined in the
preferred ontology.
Naming of the new concept. If there is a preferred
ontology, then the name of the concept that is the result of
the merge-classes operation is the same as the one that
came from the preferred ontology. If there is no
preferred ontology and the classes being merged have
different names, then the user must choose the name for the
new concept. In our example, the merged class will be
named Combat-Arms-Unit because this name is the one
that came from the preferred ontology.
In Section 5.1, we defined three sets of actions that an
operation can trigger: (1) performing automatic updates, (2)
identifying conflicts, and (3) presenting suggestions for
further actions. Now we describe what actions from each of
these three sets are triggered specifically by the merge-
classes operation.

5.2.1 Automatic updates

After the user has invoked the merge-classes operation,
SMART automatically performs the following operations
in addition to simply merging classes.
Updating of references. SMART updates all references to
the merged classes in both ontologies to refer to the new
class, and removes all the duplicate relations created by this
step (such as two subclass–superclass relations between the
same pair of classes). Consequently, sets of parents,
children, and slots of the new class are unions of sets of
parents, children, and slots of the original classes
respectively. For example, the set of parents for the new

Combat-Arms-Unit class now consists of two classes:
Military-Unit and Modern-Military-Unit.
Setting of the ontology affiliation. The merged class and
all its slots become part of the merged ontology.
Removal of slots with duplicate names. If the merged
concept has two slots with the same name but different
value types and the policy is override, the new concept
keeps only the slot that came from the preferred
ontology. For example, the new Combat-Arms-Unit class
acquired two slots named combat-power: one with the
value-type Integer and the other with the value-type
Number. The merged concept keeps only the slot with the
value-type Integer because this slot came from the
preferred ontology and the policy was override.

5.2.2 Conflicts to be resolved by the user

After the merging operation, SMART determines the
conflicts in the state of the ontology that the user will need
to resolve.
Merging of slots with duplicate names. A conflict that a
user needs to resolve arises when the merged concept has
two slots with the same name but different value types and
the policy is merge. For our example, SMART adds the
following record to the Conflicts list:
Problem:
 conflicting value types: Integer and
 Number at combat-power in Military-Unit
Solution:
 (or (remove-slot Combat-Unit
 (combat-power :value-type Integer))
 (remove-slot Combat-Unit
 (combat-power :value-type Number)))
Default solution:
 (remove-slot Combat-Unit
 (combat-power :value-type Number))

5.2.3 Suggested actions

As a result of the merge-classes operation, SMART also
creates a list of suggested actions based on the concepts in
the structural vicinity of the merging operation.
Merging of superclasses with name matches. If the set of
superclasses of the merged concept contains classes with
the same or similar names, SMART places the task of
merging these classes on the ToDo list with high priority:
Not only do these concepts have similar names, but also
they play the same role—superclass—for the merged
concept. In our example, the set of superclasses of the
merged Combat-Arms-Unit concept consists of the
Military-Unit and Modern-Military-Unit classes.
These two superclasses—Military-Unit and Modern-
Military-Unit—have linguistically similar names, and

8

Figure 3. Redundancy resulting from merging. Single arrows represent subclass relations. The gray color indicates concepts that are
directly involved in the merging operation.

they play the same role to the newly merged concept.
Therefore, the task of merging them has a high priority on
the ToDo list.
Merging of subclasses with name matches. The task of
merging subclasses that have the same or similar names
becomes a high-priority item in the ToDo list.
Merging of slots with similar names. If two slots attached
to the merged concept have similar names, SMART
suggests that the user removes one of them. Removing one
of the two slots that have similar names and the same value
type gets higher priority than that of removing one of the
slots if they have different value types. For example,
Combat-Arms-Unit now has rate-of-movement and
movement-rate slots, both with Rate as value type. It is
highly probable that the merged class needs to retain only
one of these two slots.
Suggestion of actions based on structural indications.
The process described so far may result in the redundancy
illustrated in Figure 3: One of the direct parents of the
merged concept is a (possibly indirect) subclass of another
direct parent of the same concept. Then, SMART suggests
that the user removes one of these two parents of the
merged concept. For example, suppose that the Military-
Unit and the Modern-Military-Unit concepts were
merged first and Ground-Maneuver-Unit was a direct
subclass of US-Military-Unit (Figure 3a). Then, after
Combat-Arms-Unit and Ground-Maneuver-Unit are
merged, SMART adds the following to the ToDo list:
(remove-parent Combat-Unit Military-Unit)

The set of subclasses of the merged concept may contain a
similar redundancy: One of the children of the new concept
may be a subclass of another child of the same concept
(Figure 3b). Thus, for the example in the figure, SMART
suggests the following action:
(remove-parent Foot-Infantry Combat-Unit)

Removing such redundant subclass–superclass links is
another suggestion that results from invocation of merge-
classes operation.

5.3 Logging of basic operations as a mechanism
for periodic merging or alignment

The ontology merging or alignment process is not a one-
shot exercise. After the user has merged (or aligned) two
ontologies and has developed a new consistent ontology,
one of the source ontologies may change. Ideally,
reapplication of the merging (or alignment) process to the

changed ontologies should be almost automatic. The ability
to reapply the changes is called periodic merging
(MacGregor et al. 1999).

Subject-oriented programming (Ossher and Harrison
1992), which we discuss in more detail in Section 7, solves
the problem of reapplying changes to the updated sources
by using scripted extensions: Each update to a class
hierarchy is defined by a set of rules that are then applied to
the hierarchy. If the hierarchy changes, this extension is
reapplied to it at no additional human cost.

Having defined the set of basic operations for our
system, we can maintain a log of the basic operations that
were performed with their arguments and results. If the
ontologies are updated at the points other than the ones
explicitly used in the log, the reapplication is completely
automatic. Otherwise, the user must make adjustments to
the log, though. SMART can automatically identify points
of adjustment. We are currently developing the specific
heuristics for periodic merging and alignment.

6 Related work

Researchers in computer science have discussed automatic
or tool-supported merging of ontologies (or class
hierarchies, or object-oriented schemas—the specific
terminology varies depending on the field). However, both
automatic merging of ontologies and creation of tools that
would guide the user through the process and focus his
attention on the likely points for actions are in early stages.
In this section, we discuss the existing merging and
alignment tools in ontology design and object-oriented
programming.

6.1 Ontology design
One of the few working prototypes of an ontology-merging
tool is a system developed by the Knowledge Systems
Laboratory (KSL) at Stanford University (Fikes et al.
1999). This system is early prototype that solves initial
problems in ontology merging. It can bring together
ontologies developed in different formalisms and by
different authors.

The KSL’s approach to merging has similarities to the
one described in this paper: The KSL’s algorithm generates
a list of suggestions based on the operations performed by
the user. The process starts by running a matching
algorithm on class names in both ontologies to suggest the
merging points. The matching algorithm looks for the exact

Milit ary- Unit

US- Military- Unit

Combat- Arms-Unit

Ground-Maneuv er-Unit

merge

Milit ary- Unit

US- Military- Unit

Combat- Arms-Unit

Infant ry

Foot- Infantry

Combat- Arms-Unit

Ground-Maneuv er-Unit

merge

Infant ry

Foot- Infantry

Combat- Arms-Unit

(a) (b)

9

match in class names, or for a match on prefixes, suffixes,
and word roots of class names. A user can then choose
from these matching points, or proceed on his own
initiative. After each step performed by the user, the system
generates a new set of suggestions.

The KSL’s approach to merging is also different from
SMART’s in many respects. KSL’s merging algorithm
does not consider slots at all. The process for name matches
appears to be depth first and may cause the user to lose
focus by finding matches much deeper in the class
hierarchy than the current point of concentration. On the
other hand, SMART does not consider disjoint
classification of categories, whereas the KSL’s algorithm
does.

The KSL’s tool employs user-interface metaphors from
the Ontolingua ontology editor (Ontolingua 1995)—an
advantage for the many ontology developers familiar with
the ontology editor. The Ontolingua interface is not always
easy to use, however, and this drawback seems to carry
over to the merging tool.

Another ontology-merging and alignment project at
Information Science Institute (ISI) at the University of
Southern California (Chapulsky, Hovy, and Russ 1997)
attempted to merge extremely large top-level ontologies:
Cyc (Lenat 1995) and SENSUS (Knight and Luk 1994).
The SENSUS ontology itself resulted from manual merging
of the PENMAN Upper Model (Penman 1989), WordNet
(Miller 1995), and several other ontologies. In the ISI
approach, the creation of an initial list of alignment
suggestions relies on more than just class names. The
concept features that ISI scores and combines to produce
the suggestion list include concepts whose names have long
substrings in common; concepts whose definitions (that is,
documentation) share many uncommon words; and
concepts that have sufficiently high combined name-
similarity scores for nearby siblings, children, and
ancestors. Experiments have shown that the initial list of
suggestions filters out many uninteresting concepts.
However, the algorithm stops there: After this initial list is
created, it was up to the ontology developer to continue the
ontology alignment.

As mentioned in Section 1, medical vocabularies provide
a rich field for testing of various ontology-merging
paradigms. Not only is there a wide variety of large-scale
sources, but also medicine is a field where standard
vocabularies change constantly, updates are issued,
different vocabularies need to be reconciled, and so on.
Oliver and colleagues (Oliver et al. 1999) explored
representation of change in medical terminologies using a
frame-based knowledge-representation system. The authors
compiled a list of change operations that are relevant for
the domain of medical terminologies, and developed a tool
to support these operations. Many of the operations are
similar to the ones described in Section 5. However, the
user has to do all the operations manually; there is no
automated help or guidance.

6.2 Object-oriented programming
One of the better-developed works in the area of ontology
merging comes not from the researchers in artificial
intelligence, but rather from the researchers in object-
oriented programming, who face problems similar to those
of ontology researchers. They too may need to bring
together several object-oriented class hierarchies (with the
associated methods) to create a new product. Subject-
oriented programming (SOP) (Harrison and Ossher 1993)
supports building of object-oriented systems through
composition of subjects. Subjects are collections of classes
that represent subjective views of, possibly, the same
universe. For instance, a class Shoe in a shoemaker
universe would probably have attributes different from
those of the same class in a shoe-seller universe. The class
hierarchies that define shoes (and their types) from these
different points of view would be the two subjects. If these
subjects are to work together (for instance, if the shoemaker
supplies shoes to the shoe seller), their corresponding class
hierarchies must be merged.

The formal theory of subject-oriented composition
(Ossher et al. 1996) defines a set of possible composition
rules, these rules’ semantics, and the ways that the rules
work with one another. Interactive tools for subject-
oriented composition are currently under development.
There are important differences and similarities in the SOP
approach and requirements for class-hierarchy merging and
the ontology merging described here.

We begin with the description of the similarities.
Merging of class hierarchies covering similar domains is
the central task of both ontology merging and subject-
oriented composition. The slots of the merged classes
(instance variables in object-oriented terminology) must be
merged, too. Simply creating union of slots leads to
conflicts that must be resolved as well. In fact, our idea of
preferred strategy (merge or override) was inspired by the
merge and override composition rules used in specifying
subject-oriented composition. In both cases, completely
automatic matching (or creation of composition rules) is
not possible, and interaction with the user (preferably
through easy-to-use graphical tools) is needed. In Section
5.3, we introduced the notion of extensions in subject-
oriented programming and described the relation of
extensions to periodic ontology merging: An extension is a
set of rules that defines updates to a class hierarchy.
Reapplying extensions after a class hierarchy changes is
similar to reapplying the set of logged merging and
alignment operations after an ontology changes.

One of the major differences between SOP and our work
stems from the fact that subject-oriented composition also
needs to compose methods associated with classes. In an
ontology, however, classes do not have methods associated
with them. On the other hand, ontologies may have axioms
that relate different classes or slot values. Object-oriented
class hierarchies do not include axioms. Alignment (as
opposed to merging) is extremely uncommon in
composition of object-oriented hierarchies, whereas it is
common in ontology design.

10

7 Future directions

We currently are implementing SMART as an extension to
the Protégé ontology development environment (Musen et
al. 1995)—a graphical and interactive ontology-design and
knowledge-acquisition environment developed in our
laboratory. Protégé helps ontology developers and domain
experts to perform knowledge-management tasks. Its
graphical user interface is as easy to use as is possible
without significant loss in expressiveness. The ontology
developer can quickly access the relevant information about
classes and instances whenever he requires this information
and can use direct manipulation techniques to edit an
ontology. Tree controls allow quick and simple navigation
through a class hierarchy. Protégé uses forms as the
interface for the user to fill in slot values for instances.
Protégé knowledge model is OKBC-compatible (Grosso et
al. 1998).

Throughout the paper, we have mentioned possible
future research. We summarize these ideas here.

7.1 Extensions to the model
We first describe possible extensions to the SMART
algorithm. We then discuss how to evaluate formally an
ontology-merging and alignment tool (Section 7.2)

Clusters

When a merging or alignment process is underway, at any
point there may be several areas in the source ontologies
where “something is happening.” That is, there can be
several points of contact between the ontologies that are
under consideration. Each of these points is a cluster: a set
of concepts closely related to one another for which
alignment or merging work is needed. For example, slots
for the recently merged concepts need to be matched, or
conflicts that resulted from that merge need to be resolved.
Figure 4 illustrates the notion of a cluster.

If we define these clusters, then we can group the actions
on the ToDo and Conflicts lists based on the cluster to
which they belong, and the list entries from the current
cluster can be placed at the top of the lists.

Figure 4. Focus clusters used in the merging or alignment
process. Trees represent source ontologies; dotted lines represent

recently established links between ontologies.

Facets and instances

Facets impose additional constraints on slots in a frame.
For example, a facet can define cardinality constraints on a
slot. Suppose that we merged two classes and that both
classes have a slot with the same name and the same value
type. In this case, SMART automatically merges the slots
and adds a slot with that name and value type to the newly
created concept. However, in one of the source ontologies,
the slot that was merged may have had a facet that defined
its maximum cardinality as 2. In the second source
ontology, the otherwise-identical slot may have had a
minimum cardinality of 3. These cardinality restrictions are
incompatible, so the algorithm must reconcile them.

The OKBC specification (Chaudhri et al. 1998) lists
standard facets for slots, such as maximum and minimum
cardinality, inverse, numeric minimum and maximum,
documentation, and so on. In the merging and alignment
process, it is desirable to consider each of these standard
facets, correlation among possible facet values, and ways of
reconciling conflicting values. We can also use values of
the standard facets to create additional suggestions: For
example, if we merge two slots, we probably need to merge
the inverses of these slots as well.

Many ontologies include definitions of not only classes
(collections of similar objects), but also instances
(individual objects). It would be useful to include
automation and tool support for instance alignment or
merging.

Performing merging and alignment in non-OKBC
frameworks

We currently assume that the source ontologies conform to
the OKBC knowledge model. More specifically, we rely on
having a frame-based model with classes, slots, and facets
as first-class objects (see Section 2). In the future, we
would like to extend SMART to other knowledge models.
We also pay little attention to axioms. Instead, we rely on
the knowledge-representation system’s built-in ability to
enforce axioms. The next important step is to consider how
to apply to heavily axiomatized frameworks semi-
automated strategies and generation of suggestions similar
to the ones described here.

7.2 Evaluation of the merging and alignment
process

For any algorithm or tool, it is important to evaluate
performance and to validate empirically achievement of
goals. Empirical evaluation generally has not been a strong
part of artificial intelligence, although some researchers
have undertaken it (Cohen 1995).

We can use the standard information-retrieval metrics of
precision and recall to evaluate the performance of
SMART. Recall can be measured as the ratio of the
suggestions on the ToDo list that the user has followed to
the total number of merging and alignment operations that
he performed. Precision can be measured as the fraction of
the suggestions from the ToDo list that the user followed.

11

This metric could be augmented by a measure of how many
of the conflict resolution strategies in the Conflicts list
were satisfactory to the user (and how many he had to
alter).

The number of operations from Table 1 that were
invoked during the ontology-merging or alignment process
also could serve as a measure of how closely related or far
apart the original ontologies were before the process began.
Note that the number of performed operations does not
measure the quality of the process itself. Collecting
information about operations performed during merging or
alignment could also contribute to a study of the value of
prior knowledge: The number of concepts that were
removed could be used as a measure of the extra knowledge
that a knowledge engineer had to create because he did not
use the base ontology from the beginning. This metric
would not provide a direct indication of the value of using
the base ontology from the start, because it does not
account for the extra body of knowledge could have slowed
the development.

8 Conclusions

We described a general approach to ontology merging and
alignment. We presented SMART—an algorithm for semi-
automatic merging and alignment. We discussed strategies
that SMART uses to guide a user automatically to the next
possible point of merging or alignment, to suggest what
operations should be performed there, and to perform
certain actions automatically. We defined the set of basic
operations invoked during a merging or alignment process.
The more complex operations from this set could be added
as front-end operations in OKBC. The strategies and
algorithms described in this paper are based on a general
OKBC-compliant knowledge model. Therefore, these
results are applicable to a wide range of knowledge-
representation and ontology-development systems.

Acknowledgments

This paper was greatly improved by the feedback, suggestions,
and ideas from William Grosso and Harold Boley. We are very
grateful to Lyn Dupré for her help. This work was funded in part
by the High Performance Knowledge Base Project of the Defense
Advanced Research Projects Agency.

References

Chapulsky, H., Hovy, E. and Russ, T. 1997. Progress on an
Automatic Ontology Alignment Methodology. ANSI Ad
Hoc Group on Ontology Standards; available at http://ksl-
web.stanford.edu/onto-std/hovy/index.htm.
Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D. and
Rice, J. P. 1998. OKBC: A Programmatic Foundation for
Knowledge Base Interoperability. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI-98): 600-607. Madison, Wisconsin: AAAI Press/The
MIT Press.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D. and
Rice, J. P. 1998. Open Knowledge Base Connectivity 2.0.3,
Specification document.
Cohen, P. R. 1995. Empirical Methods for Artificial
Intelligence. Cambridge, MA: MIT Press.
Fikes, R., McGuinness, D., Rice, J., Frank, G., Sun, Y. and
Qing, Z. 1999. Distributed Repositories of Highly
Expressive Reusable Knowledge. Presentation at HPKB
meeting, Austin, TX; available at
http://www.teknowledge.com/HPKB/meetings/Year1.5meeting/.

Grosso, W., Gennari, J. H., Fergerson, R. and Musen, M.
A. 1998. When Knowledge Models Collide (How it
Happens and What to Do). In Proceedings of the Eleventh
Banff Knowledge Acquisition for Knowledge-Bases Systems
Workshop. Banff, Canada.
Harrison, W. and Ossher, H. 1993. Subject-Oriented
Programming (A Critique of Pure Objects). In Proceedings
of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA’93): 411-
428. Washington, DC: ACM Press.
Knight, K. and Luk, S. K. 1994. Building a Large-Scale
Knowledge Base for Machine Translation. In Proceedings
of the Twelfth National Conference on Artificial
Intelligence (AAAI’94). Seattle, Washington: AAAI Press.
Lenat, D. B. 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. Communications of ACM
38(11): 33-38.
MacGregor, R., Chapulsky, H., Moriarty, D. and Valente,
A. 1999. Knowledge Management Tools. Presentation at
HPKB meeting, Austin, TX; available at
http://www.teknowledge.com/HPKB/meetings/Year1.5meeting/.

Miller, G. A. 1995. WordNet: A Lexical Database for
English. Communications of ACM 38(11): 39-41.
Musen, M. A., Gennari, J. H., Eriksson, H., Tu, S. W. and
Puerta, A. R. 1995. Protégé-II: Computer support for
development of intelligent systems from libraries of
components. In Proceedings of the Medinfo’95: 766-770.
Vancouver, BC.
Oliver, D. E., Shahar, Y., Shorliffe, E. H. and Musen, M.
A. 1999. Representation of Change in controlled medical
terminologies. Artificial Intelligence in Medicine 15: 53-76.
Ontolingua System Reference Manual 1995: http://www-ksl-
svc.stanford.edu:5915/doc/ontolingua/reference-manual.

Ossher, H. and Harrison, W. 1992. Combination of
Inheritance Hierarchies. In Proceedings of the Conference
on Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA’92): 25-40. Vancouver: ACM
Press.
Ossher, H., Kaplan, M., Katz, A., Harrison, W. and
Kruskal, V. 1996. Specifying Subject-Oriented
Composition. Theory and Practice of Object Systems 2(3):
179-202.
Penman 1989. The Penman documentation, Technical
report, USC/Information Sciences Institute, Marina del
Rey, CA.

