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Abstract� A number of ideas concerning information�integration tools
can be thought of as constructing answers to queries using views that
represent the capabilities of information sources� We review the formal
basis of these techniques� which are closely related to containment algo�
rithms for conjunctive queries and�or Datalog programs� Then we com�
pare the approaches taken by AT�T Labs� �Information Manifold� and
the Stanford �Tsimmis� project in these terms�

� Theoretical Background

Before addressing information�integration issues� let us review some of the basic
ideas concerning conjunctive queries� Datalog programs� and their containment�
To begin� we use the logical rule notation from �Ull����

Example �� The following�

p�X�Z� �� a�X�Y� � a�Y�Z��

is a rule that talks about a� an EDB predicate �	Extensional DataBase�
 or
stored relation�� and p� an IDB predicate �	Intensional DataBase�
 or predicate
whose relation is constructed by rules�� In this and several other examples� it is
useful to think of a as an 	arc
 predicate de�ning a graph� while other predicates
de�ne certain structures that might exist in the graph� That is� a�X�Y � means
there is an arc from node X to node Y � In this case� the rule says 	p�X�Z� is
true if there is an arc from node X to node Y and also an arc from Y to Z�

That is� p represents paths of length �

In general� there is one atom� the head� on the left of the 	if
 sign� �� and
zero of more atoms� called subgoals� on the right side �the body�� The head always
has an IDB predicate� the subgoals can have IDB or EDB predicates� Thus� here
p�X�Z� is the head� while a�X�Y � and a�Y� Z� are subgoals�

We assume that each variable appearing in the head also appears somewhere
in the body� This 	safety
 requirement assures that when we use a rule� we are
not left with unde�ned variables in the head when we try to infer a fact about
the head�s predicate�

We also assume that atoms consist of a predicate and zero or more arguments�
An argument can be either a variable or a constant� However� we exclude function
symbols from arguments�
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��� Conjunctive Queries

A conjunctive query �CQ� is a rule with subgoals that are assumed to have EDB
predicates� A CQ is applied to the EDB relations by considering all possible
substitutions of values for the variables in the body� If a substitution makes all
the subgoals true� then the same substitution� applied to the head� is an inferred
fact about the head�s predicate�

Example �� Consider Example �� whose rule is a CQ� If a�X�Y � is true exactly
when there is an arc X � Y in a graph G� then a substitution for X� Y � and Z

will make both subgoals true when there are arcs X � Y � Z� Thus� p�X�Z�
will be inferred exactly when there is a path of length  from X to Z in G�

A crucial question about CQ�s is whether one is contained in another� If
Q� and Q� are CQ�s� we say Q� � Q� if for all databases �truth assignments
to the EDB predicates� D� the result of applying Q� to D �written Q��D�� is
a subset of Q��D�� Two CQ�s are equivalent if and only if each is contained
in the other� It turns out that in almost all cases� the only approach known
for testing equivalence is by testing containment in both directions� Moreover�
in information�integration applications� containment appears to be more funda�
mental than equivalence� so from here we shall concentrate on the containment
test�

Conjunctive queries and their containment were �rst studied by Chandra
and Merlin ��CM����� Here� we shall give another test� following the approach
of �R����� because this test extends more naturally to the generalizations of the
CQ�containment problem that we shall discuss� To test whether Q� � Q��

�� freeze the body of Q� by turning each of its subgoals into facts in the
database� That is� replace each variable in the body by a distinct constant�
and treat the resulting subgoals as the only tuples in the database�

� Apply Q� to this canonical database�
�� If the frozen head of Q� is derived by Q�� then Q� � Q�� Otherwise� not� in

fact the canonical database is a counterexample to the containment� since
surely Q� derives its own frozen head from this database�

Example �� Consider the following two CQ�s�

Q�� p�X�Z� �� a�X�Y� � a�Y�Z��

Q�� p�X�Z� �� a�X�U� � a�V�Z��

Informally�Q� looks for paths of length � while Q� looks only for nodes X and Z
such that X has an arc out to somewhere� and Z has an arc in from somewhere�
Intuitively� we expect� Q� � Q�� and that is indeed the case�

In this and other examples� we shall use integers starting at � as the constants
that 	freeze
 the CQ� although obviously the choice of constants is irrelevant�
Thus� the canonical database D constructed from Q� consists of the two tuples
a��� �� and a��� � and nothing else� The frozen head of Q� is p��� ��

If we apply Q� to D� the substitution X � �� U � �� V � �� and Z � 
yields p��� � in the head of Q�� Since this fact is the frozen head of Q�� we have
veri�ed Q� � Q��



Incidentally� for this containment test and the more general tests of following
subsections� the argument that it works is� in brief�

� If the test is negative� then the constructed database is a counterexample to
the containment�

� If the test is positive� then there is an implied homomorphism � from the
variables of Q� to the variables of Q�� We obtain � by seeing what constant
each variable X of Q� was mapped to in the successful application of Q�

to the canonical database� ��X� is the variable of Q� that corresponds to
this constant� If we now apply Q� to any database D and yield a particular
fact for the head� let the homomorphism from the variables of Q� to the
database symbols that we use in this application be �� Then � followed by �
is a homomorphism from the variables of Q� to the database symbols that
shows how Q� will yield the same head fact� This argument proves Q� � Q��

Containment of CQ�s is NP�complete ��CM����� although �Sar��� shows that
in the common case where no predicate appears more than twice in the body�
then there is a linear�time algorithm for containment�

��� CQ�s With Negation

An important extension of CQ�s is to allow negated subgoals in the body� The
e�ect of applying a CQ to a database is as before� but now when we make a
substitution of constants for variables the atoms in the negated subgoals must
be false� rather than true �i�e�� the negated subgoal itself must be true��

Now� the containment test is slightlymore complex� it is complete for the class
�

p
�
� problems that can be expressed as fwj��x���y���w� x� y�g� where strings x

and y are of length bounded by a polynomial function of the length of w� and �

is a function that can be computed in polynomial time� This test� due to Levy
and Sagiv ��LS����� involves exploring an exponential number of 	canonical

databases� any one of which can provide a counterexample to the containment�
Suppose we wish to test Q� � Q�� We do the following�

�� Consider each substitution of constants for variables in the body of Q��
allowing the same constant to be substituted for two or more variables�
More precisely� consider all partitions of the variables of Q� and assign for
each block of the partition a unique constant� Thus� we obtain a number
of canonical databases D�� D�� � � � � Dk� where k is the number of partitions
of integer n� and n is the number of variables in the body of Q�� Each Di

consists of the frozen positive subgoals of Q� only� not the negated subgoals�
� For each Di consider whether Di makes all the subgoals of Q� true� Note

that because the atom in a negated subgoal may happen to be in Di� it is
possible that Di makes the body of Q� false�

�� For those Di that make the body of Q� true� test whether any Q��D�

i�
includes the frozen head of Q�� where D

�

i is any database that is a superset
of Di formed by adding other tuples that use the same set of symbols as Di�
However� D�

i may not include any tuple that is a frozen negative subgoal of
Q�� When determining what the frozen head of Q� is� we make the same
substitution of constants for variables that yielded Di�



�� If every Di either makes the body of Q� false or yields the frozen head of
Q� when Q� is applied� then Q� � Q�� Otherwise� not�

Example �� Let us consider the following two conjunctive queries�

Q�� p�X�Z� �� a�X�Y� � a�Y�Z� � NOT a�X�Z��

Q�� p�A�C� �� a�A�B� � a�B�C� � NOT a�A�D��

Intuitively� Q� looks for paths of length  that are not 	short�circuited
 by a
single arc from beginning to end� Q� looks for paths of length  that start from
a node A that is not a 	universal source
� i�e�� there is at least one node D not
reachable from A by an arc�

To show Q� � Q� we need to consider all partitions of fX�Y� Zg� There are
�ve of them� one that keeps all three variables separate� one that groups them
all� and three that group one pair of variables� The table in Fig� � shows the �ve
cases and their outcomes�

Partition Canonical Database Outcome

�� fXgfY gfZg fa��� ��� a��� ��g both yield head p��� ��
�� fX�Y gfZg fa��� ��� a��� ��g Q� body false
�� fXgfY�Zg fa��� ��� a��� ��g Q� body false
�� fX�ZgfY g fa��� ��� a��� ��g both yield head p��� ��
� fX�Y�Zg fa��� ��g Q� body false

Fig� �� The �ve canonical databases and their outcomes

For instance� in case ���� where all three variables are distinct� and we have
arbitrarily chosen the constants �� �� and  for X� Y � and Z� respectively� the
canonical database D� is the two positive subgoals� frozen to be a��� �� and
a��� �� The frozen negative subgoal NOT a��� � is true in this case� since a��� �
is not in D�� Thus� Q� yields its own head� p��� �� and we must test that Q�

does likewise on any database consisting of symbols �� �� and � that includes
the two tuples of D� and does not include the tuple a��� �� the frozen negative
subgoal of Q�� If we use the substitution A � �� B � �� C � � and D � �
then the positive subgoals become true for any such superset ofD�� The negative
subgoal becomes NOT a��� �� and we have explicitly excluded a��� � from any of
these databases� We conclude that the Levy�Sagiv test holds for case ����

Now consider case ��� where X and Y are equated and Z is di�erent� We
have chosen to use � for X and Y � � for Z� Then the canonical database for this
case is D�� consisting of the frozen positive subgoals a��� �� and a��� ��� For this
substitution� the negative subgoal of Q� becomes NOT a��� ��� Since a��� �� is in
D�� this subgoal is false� Thus� for this substitution of constants for variables in
Q�� we do not even derive the head of Q�� We need check no further in this case�
the test is satis�ed�



The three remaining cases must be checked as well� However� as indicated in
Fig� �� in each case either both CQ�s yield the frozen head of Q� or Q� does not
yield its own frozen head� Thus� the test is completely satis�ed� and we conclude
Q� � Q��

��� CQ�s With Arithmetic Comparisons

Another important extension of CQ�containment theory is the inclusion of arith�
metic comparisons as subgoals� In this regard we must consider the set of values
in the database as belonging to a totally ordered set� e�g�� the integers or re�
als� When we consider possible assignments of integer constants to the variables
of conjunctive query Q�� we may use consecutive integers� starting at �� but
now we must consider not only partitions of variables into sets of equal value�
but among the blocks of the partition� we must consider the relative order of
their values� The canonical database is constructed from those subgoals that
have nonnegated� uninterpreted predicates only� not those with a negation or a
comparison operator�

If there are negated subgoals� then we must also consider certain supersets
of the canonical databases� as we did in Section ��� But if there are no negated
subgoals� then the canonical databases alone su�ce�

Example �� Now consider the following two conjunctive queries� each of which
refers to a graph in which nodes are assumed to be integers�

Q�� p�X�Z� �� a�X�Y� � a�Y�Z� � X�Y�

Q�� p�A�C� �� a�A�B� � a�B�C� � A�C�

Both ask for paths of length � But Q� requires that the �rst node be numerically
less than the second� while Q� requires that the �rst node be numerically less
than the third�

The number of di�erent canonical databases is ��� We must consider the �ve
di�erent partitions of fX�Y� Zg� as we did in Fig� �� However� we also have to
order the blocks of each partition� For partition ��� of Fig� �� where each variable
is separate� we have � possible orders of the blocks� For partitions �� through
���� where there are only two blocks� we have  di�erent orders� Finally� for
partition ���� with only one block� there is one order�

In this example� the containment test fails� We have only to �nd one of the
�� cases to show failure� For instance� consider X � Z � � and Y � �� The
canonical database D for this case is fa��� ��� a��� ��g� and since X � Y � the
body of Q� is true� Thus� Q��D� must include the frozen head of Q�� p��� ���
However� no assignment of values to A� B� and C makes all three subgoals of Q�

true� when D is the database� That is� in order to make subgoals a�A�B� and
a�B�C� both true for D� we surely must use � or � for all of A� B� and C� Then
to make A � C true� we must have A � � and C � �� But then� whether B is
� or � we shall have in Q� a subgoal a��� �� or a��� ��� neither of which is in D�
Thus� D is a counterexample to Q� � Q��



The containment test for CQ�s with arithmetic is from �Klug���� and �vdM��
shows that the problem of testing containment for CQ�s with arithmetic compar�
isons is complete for �p

�
� at least in the case of a dense domain such as the reals�

�LS��� actually includes arithmetic comparisons in their work on negation� and
we should note that the above technique works even if there are negated subgoals
as well as arithmetic comparisons� There is a more general approach that works
for any interpreted predicates� not just a predicate like � or � that forms a total
order� it appears in �ZO���� However� this technique does not include CQ�s with
negated subgoals�

��� Datalog Programs

Let us now return to the original model of rules� excluding negated subgoals
and arithmetic comparisons� However� we shall now consider collections of rules�
which we call a Datalog program� Such collections of rules have a natural� least�
�xedpoint interpretation� where we start by assuming the IDB predicates have
empty relations� We then use the rules to infer new IDB facts� until no more facts
can be inferred� More on the semantics of Datalog� including e�cient algorithms
for evaluating the IDB predicates� can be found in �Ull���� �Ull���� While we
shall not discuss Datalog with negated subgoals here� because the meaning is
debatable in some cases� the principal ideas are surveyed in �Ull���� Here is an
example of a Datalog program and its semantics�

Example �� Consider the three rules�

�� p�X�Z� �� q�X�Y� � b�Y�Z��

	� q�X�Y� �� a�X�Y��


� q�X�Z� �� a�X�Y� � p�Y�Z��

Intuitively� think of a graph with two kinds of arcs� 	a�arcs
 and 	b�arcs�
 Then
p and q represent certain kinds of paths� Rule ��� says that a q�path followed by
a b�arc is a p�path� Rule �� says that a single a�arc is a q�path� while rule ���
says that a�arcs followed by p�paths are also q�paths� It may not be obvious what
is going on� but one can prove by an easy induction that the p�paths consist of
some number n � � of a�arcs followed by an equal number of b�arcs� A q�path is
the same� except it has one fewer b�arc�

To get a feel for why this claim holds� consider a particular graph G described
by the a and b EDB predicates� Then rule �� says all the paths a are in the
relation for q� We can therefore use rule ��� to infer that any path of the form
ab is in the relation for p� more precisely� if there is a path from node X to node
Z that follows an a�arc and then a b�arc� p�X�Z� is true� Next� rule ��� tells us
that any path of the form aab is a q�path� rule ��� says paths of the form aabb

are p�paths� and so on�

Containment questions involving Datalog programs are often harder than
for CQ�s� �Shm��� shows that containment of Datalog programs is undecidable�
while �CV�� shows that containment of a Datalog program in a CQ is doubly



exponential� However� the important case for purposes of information integration
is the containment of a CQ in a Datalog program� and this question turns out
to be no more complex than containment of CQ�s ��R������

To test whether CQ Q is contained in Datalog program P � we 	freeze
 the
body of Q� just as we did in Section ���� to make a canonical database D� We
then see if P �D� contains the frozen head of Q� The only signi�cant di�erence
between containment in a CQ and containment in a Datalog program is that in
the latter case we must keep applying the rules until either the head is derived�
on no more IDB facts can be inferred�

Example �� Consider the Datalog program from Example �� which we shall call
P � and the CQ Q�

p�A�C� �� a�A�B� � b�B�C��

Freezing the body of Q� we obtain the canonical database

D � fa��� ��� b��� �g�

Now� we apply P to D� Rule �� lets us infer q��� �� from a��� ��� Then�
rule ��� lets us infer p��� � from q��� �� and b��� �� Since p��� � is the frozen
head of Q� our test has concluded positively� Q � P �

� Synthesizing Queries From Views

Query containment algorithms connect to information integration via a concept
called 	synthesizing queries from views�
 The idea� originally studied by �YL���
and �C����� is suggested in Fig� � There are a number of 	EDB
 predicates� for
which we use p�s in Fig� � These predicates� which are not truly EDB predicates
since they usually don�t exist as physically stored relations� can be thought of
as representing the basic concepts used in queries� There are also views� denoted
by v�s in Fig� � that represent resources that the integrator uses internally to
help answer queries� Each view has a de�nition in terms of the EDB predicates�
and we suppose here that these de�nitions are conjunctive queries�

��� Solving Queries by Views

A query Q is expressed in terms of the EDB predicates� the p�s� Our problem
is to �nd a 	solution
 S for the query Q� A solution is an expression �also a
CQ in the �gure� in terms of the views� In order to be a valid solution� when
we replace the views in S by their de�nitions� we get an expansion query E�
which must be equivalent to the original query Q� An alternative formulation of
the query�synthesis problem is to ask for all solutions S whose expansion E is
contained in Q �perhaps properly contained�� 	The solution
 for Q is then the
union of all these partial solutions�



answer� � �� pj�� � � � pj�k� pjr� � � � pjrkr Expansion E

Solution Sanswer� � �� vj�� � � � � � � vjr� �

Query Qanswer� � �� pi�� � � � � � � pin� �

�

Fig� �� Constructing a query from views

Example �� We shall consider an example that illustrates some technical points�
but su�ers in realism for the sake of these points� Let us suppose that there is a
single EDB predicate p�X�Y � which we interpret to mean that Y is a parent of
X� Let there be two views� de�ned as follows�

v��Y�Z� �� p�X�Y� � p�Y�Z��

v	�X�Z� �� p�X�Y� � p�Y�Z��

Note that the views have the same body but di�erent heads� The �rst view� v��
actually produces a subset of the relation for p� those child�parent pairs �Y� Z�
such that the child is also a parent of some individual X� The second view� v��
produces a straightforward grandparent relation from the parent relation�

Suppose that we want to query this information system for the great grand�
parents of a particular individual� whom we denote by the constant �� This query
is expressed in terms of the EDB predicate p by

q�C� �� p���A� � p�A�B� � p�B�C��

Our problem is to �nd a CQ whose subgoals use only the predicates v� and v�
and whose expansion is equivalent to the query above� A bit of thought tells us
that

s��C� �� v	���D� � v��D�C��

is a solution� That is� if we replace each of the subgoals of s� by the de�nition
of the views �being careful to use unique variables in place of those variables
that appear in the bodies of the view de�nitions but not in the heads of those
de�nitions�� we get the expansion�

e��C� �� p���E� � p�E�D� � p�F�D� � p�D�C��



We can use the CQ containment test in both directions to prove that e� � q�
Intuitively� the subgoal p�F�D� in e� is super�uous� since every time there is
binding for E and D that makes p�E�D� true� we can bind F to the same value
as E and make p�F�D� true�

There are other solutions that� when expanded� are contained within q� but
are not equivalent to it� Some examples are�

s	�C� �� v����D� � v	�D�C��

s
�C� �� v����D� � v��D�E� � v��E�C��

s��C� �� v	���D� � v��D�C� � v	�C�E��

Solution s� is equivalent to q if individual � has a child in the database� Other�
wise� � cannot appear as a �rst component in the relation for v�� and the result of
s� is empty� Thus� s� � q� but not conversely� Solution s� is actually equivalent
to s�� while s� gives those great grandparents of individual � who are themselves
grandchildren�

��� Minimal�Solution Theorems

It might appear from Example � that one can only guess potential solutions for
a query and test them via CQ�containment tests� However� there are theorems
that limit the search and show that the problem of expressing a query in terms
of views� while NP�complete� is no worse than that� As discussed in Section ����
we expect that queries will be short� so NP�complete problems are unlikely to
be a major bottleneck in practice�

The principal idea is that any view used in a solution must serve some func�
tion in the query� a view without a function may be deleted from the solution�
For example� every subgoal of the query must be covered by some view� The
question of when a view covers a query subgoal is a bit subtle� because two
or more views may cover the same subgoal� For instance� consider Example ��
where both p�E�D� and p�F�D� from expansion e� 	cover
 p�A�B� from the
query� More precisely� A� E� and F may each represent a parent of individual ��
while B and D represent a parent of that parent� Note that p�E�D� and p�F�D�
come from the expansion of v���� D� and v��D�C�� respectively� in solution s�� so
these two subgoals from di�erent views each play the same role in the expansion�

Let us de�ne a solution S for a query Q to be minimal if

�� S � Q�
� There is no solution T for Q such that

�a� S � T � Q� and
�b� T has fewer subgoals than S�

Theorem�� ��L����� If queries are CQ	s without negation
 arithmetic compar�
isons
 or constants in the body
 then every minimal conjunctive�query solution
for a query Q has no more subgoals �uses of views than Q has subgoals�



Theorem�� ��RSU���� If queries are CQ	s without negation or arithmetic com�
parisons �but with constants in the body permitted
 as in Example �
 then every
minimal CQ�solution for a query Q has no more subgoals than the sum of the
number of subgoals and number of variables in Q�

Both Theorems �L���� and �RSU��� o�er nondeterministic polynomial�time
algorithms to �nd either

�� A single solution equivalent to the query Q� or
� A set of solutions whose union is contained in Q and that contains any other

solution that is contained in Q�

In each case� one searches 	only
 an exponential number �as a function of the
length of Q� of minimal queries� If we are looking for one solution equivalent to
Q� then we may stop if we �nd one� and we conclude there is none if we have
searched all solutions of length up to the bound and found none� If we want
all solutions contained in the query� then we search all up to the bound� taking
those that are contained in Q�

� Information�Integration Systems

Information integration has long been recognized as a central problem of modern
database systems� While early databases were self�contained� it is now generally
realized that there is great value in taking information from various sources and
making them work together as a whole� Yet there are several di�cult problems
to be faced�

� 	Legacy
 databases cannot be altered just because we wish to support a
new� integrating application above them�

� Databases that ostensibly deal with the same concepts may have di�erent
shades of meaning for the same term� or use di�erent terms for the same
concept�

� Information sources� such as those on the 	web�
 may have no �xed schema
or a time�varying schema�

A common integration architecture is shown in Fig� �� Several sources are
wrapped by software that translates between the source�s local language� model�
and concepts and the global concepts shared by some or all of the sources�
System components� here called mediators ��Wie���� obtain information from
one or more components below them� which may be wrapped sources or other
mediators� Mediators also provide information to components above them and
to external users of the system�

In a sense� a mediator is a view of the data found in one or more sources�
Data does not exist at the mediator� but one may query the mediator as if it
were stored data� it is the job of the mediator to go to its sources and �nd the
answer to the query�

Today� the components labeled 	mediator
 in Fig� � are unlikely to be true
mediators� but rather data warehouses� If a mediator is like a view� then a ware�
house is like a materialized view� That is� the warehouse holds data that is con�
structed from the data at the sources� The warehouse is queried directly� with
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Fig� �� Common integration architecture

no involvement by the sources� There are numerous problems associated with
the design and implementation of warehouses �see �Wid���� e�g��� not the least of
which is that it is di�cult and�or expensive to keep the warehouse up�to�date�
as the underlying data changes�

There are� however� several research projects developing true mediator capa�
bilities� and in this section we shall introduce two of them�

�� Information Manifold ��K����� �L���a�� �L���b��� a project of AT�T Labo�
ratories�

� Tsimmis ��T���� �P���� �P���a�� �GM����� �P���b��� a project at Stanford
University�

Both systems use logic�based technology� and while neither is based on Datalog
per se� the operation of each can be translated into Datalog�

��� Information Manifold

Information Manifold �IM� is based on a dialect of description logic called
CARIN ��LR����� Description logic is a fragment of �rst�order logic that can
almost be thought of as nonrecursive Datalog with IDB predicates restricted to
be unary� although there are certain capabilities of description logic that are
beyond what Datalog provides ��Bor����� Here� we shall use Datalog in examples
of the architecture of IM�



The architecture of IM is essentially that described in Section � The following
points characterize IM in these terms�

� An IM application has a collection of 	global
 predicates in terms of which
all queries are expressed�

� Each information source is associated with one or more views� Views are also
de�ned in terms of the global predicates�

� However� the de�nition of a view should not be given the usual interpretation
of 	this source provides all facts derivable from its de�nition and the global
predicates�
 Rather� the intension is that the view provides some of those
facts�

� The solution to a query is the union of all minimal CQ�s �over the views�
contained in the query� Note that there could be other solutions to the query
in sources not available to this IM application� but the minimal solutions
provide all the query answers that are accessible to IM�

� Also associated with a source are zero or more constraints� A constraint is a
guarantee that certain facts that might be present in the view will in truth
not appear there� For example� a source might supply a parent�child predicate
as its view� and a constraint might state that the only pairs supplied will
have female children born after �����

Example �� Let us consider an integrated information system about employees
of a company� This example too is somewhat contrived for the sake of some
technical points� In this system� the global predicates are�

�� emp�E�� meaning E is an employee�
� phone�E�P �� meaning P is E�s phone�
�� office�E�O�� meaning O is E�s o�ce�
�� mgr�E�M �� meaning M is E�s manager�
�� dept�E�D�� meaning D is E�s department�

There are three sources� each of which provides one view� The de�nitions of the
views are�

v��E�P�M� �� emp�E� � phone�E�P� � mgr�E�M��

v	�E�O�D� �� emp�E� � office�E�O� � dept�E�D��

v
�E�P� �� emp�E� � phone�E�P� � dept�E�toy��

That is� the �rst source� which supports view v�� gives information about em�
ployees� their phones and managers� The second source supports view v� and
gives information about the o�ces and departments of employees� The third
source supports view v� and provides the phones of employees� but only for em�
ployees in the Toy Department� Notice that the constraint department � 	Toy

is enforced by the subgoal dept�E� toy� in the de�nition of v�� This constraint
would be important if we asked a query about employees known not to be in the
Toy Department� then we would know that v� does not appear in any minimal
solution�

Also note that there is no reason to believe the phone information provided
by v� and v� is consistent� Further� it is entirely possible that the information is



incomplete� only one of these sources provides phone information� even though
the employee is in the Toy Department� In fact� perhaps neither source tells us
Sally�s phone� even though she has a phone�

Suppose this system is asked a query� 	what are Sally�s phone and o�ce�

We can express this query in terms of the global predicates as�

q��P�O� �� phone�sally�P� � office�sally�O��

There are two minimal solutions to this query� Both use v� to get Sally�s o�ce�
while the two solutions di�er on whether v� or v� is used to get the phone� That
is� the full answer to query q� is the union of the CQ�s�

answer�P�O� �� v��sally�P�M� � v	�sally�O�D��

answer�P�O� �� v
�sally�P� � v	�sally�O�D��

Note that the expansions of these solutions�

answer�P�O� �� emp�sally� � phone�sally�P� � mgr�sally�M� �

emp�sally� � office�sally�O� � dept�sally�D��

answer�P�O� �� emp�sally� � phone�sally�P� � dept�sally�toy� �

emp�sally� � office�sally�O� � dept�sally�D��

are not equivalent to q�� they are the CQ�s that come closest to q� while still
being contained in q��

��� Tsimmis

Tsimmis� which stands for 	The Stanford�IBM Manager of Multiple Informa�
tion Sources�
 is a DARPA�funded� joint project of the Stanford database group
and the IBM�Almaden database research group� although the IBM contingent
has recently begun work on their own information integration project called
Garlic ��G����� Tsimmis follows the mediator architecture of Fig� �� allowing
us to create a hierarchy of wrappers and mediators that talk to one another�
Tsimmis components talk among themselves using a data model called OEM
�Object�Exchange Model� and a query language called MSL �Mediator Speci��
cation Language�� MSL is also used to describe mediators and wrappers at a
high level� and these components can be generated automatically from the MSL
speci�cation�

OEM� The OEM model ��P���a�� is 	object�oriented�
 and data is assumed to
be organized into objects� An OEM object consists of�

�� A label� roughly the name of the object�s class�
� A type for the value of the object� The type is either an atomic type� integer�

string� Java script� and so on� or it is the type 	set of OEM objects�

�� A value� either an actual value if the object is atomic� or a set of OEM

objects�



setbook

library set

� � �

author string Crichton

title string Jurassic Park

Fig� �� An OEM object

�� An �optional� object�ID�

Example ��� Figure � suggests an OEM object with label library� whose value
is a set of objects representing the documents in the library� We also see one
member object� with label book� The value of this object is a set� and we have
shown two members of that set� Both are atomic objects� one labeled title and
having value Jurassic Park� and the other labeled authorwith value Crichton�

MSL� MSL statements are logical rules� but the rules are not exactly Datalog�
Rather� MSL uses a form of object�logic� in which

� Labels and values are connected using triangular brackets� �����
� It is also possible to include an object�ID inside triangular brackets as an

optional �rst component�
� Object�ID�s may be constructed using function symbols� as in HiLog ��C������
� Some �not necessarily all� members of a set of objects may be described by

enclosing them in curly braces f���g�

Example ��� Let us reconsider Example �� where we had three sources� Source �
produces employee�phone�manager information� Source  produces employee�
o�ce�department information� and Source � produces employee�phone informa�
tion for members of the Toy Department� Each of these sources will be assumed
to export appropriate OEM objects� For example� Source � exports objects with
atomic subobjects labeled name� phone� and mgr� We wish to describe� using



MSL rules� a mediator named med that uses these three sources and exports two
types of objects�

� Employee�phone�o�ce objects with label epo�
� Employee�department�manager objects with label edm�

Each object of these types will have subobjects with the appropriate labels�
Figure � shows the MSL rules that describe these objects exported by med�

�� �f�E� epo ��name E	 �phone P	
	�med ��

�emp ��name E	 �phone P	
	�source�

�� �f�E� epo ��name E	 �phone P	
	�med ��

�emp ��name E	 �phone P	
	�source

� �f�E� epo ��name E	 �office O	
	�med ��

�emp ��name E	 �office O	
	�source�

�� �edm ��name E	 �dept D	 �mgr M	
	�med ��

�emp ��name E	 �mgr M	
	�source� AND

�emp ��name E	 �dept D	
	�source�

Fig� �� An MSL mediator�description

In this example� we have made the �unrealistic� assumption that employee
names are unique� Thus� as we assemble epo objects for an employee named E�
we use the object�ID f�E�� expecting that this ID is unique� Rule ��� says that
whenever there is an emp object at Source � with a name subobject having value
E and a phone subobject with value P � we 	create
 at the mediator med an
object whose ID is f�E� and whose label is epo� This object has a subobject
with label name and value E and a second subobject with label phone and value
P � Rules �� and ��� are similar� rule �� takes employee�phone information from
Source �� while rule ��� takes employee�o�ce information from Source � Three
important points are�

� Because the object�ID is speci�ed in rules ��� through ���� whenever infor�
mation about the same employee E is found in two or more sources� the
subobjects implied by the heads of these rules will be combined into the
value of the same object � the one with ID f�E�� Thus� it will be typical
that employee objects will have three subobjects� with labels name� phone�
and office� They could even have more than three subobjects� For example�
Sources � and � could give di�erent phones� so two subobjects labeled phone

would appear� A single source could also have several phones or o�ces for
employee E� and all of these would appear as subobjects at the mediator�

� The fact that rule ��� only mentions name and phone subobjects at Source �
doesn�t mean it will fail if there are more subobjects� e�g�� a manager subob�
ject� MSL only mentions subobjects it needs� allowing any other subobjects



to be present� There is even a way �the rest�variable� to refer to 	whatever
other subobjects are present�


� There is no assumption that variables like E or P are atomic� They might
turn out to have sets of objects as values� and in fact di�erent objects at
the sources may have di�erent types for values having the same label� For
instance� some employees may have strings for names� while others have
objects with �rst� and last�name subobjects�

Rule ��� in Fig� � follows a somewhat di�erent philosophy in constructing
the edm objects at med� Here� an object is produced only if we are successful in
�nding� for employee E� a department at Source  and a manager at Source ��
If either is missing� then there is no object for employee E at med� In contrast�
rules ��� through ��� allow there to be an epo object for E if any one of the three
sources mentions E� Note also that the object�ID component in the constructed
sources is optional� and in rule ��� there is no need to specify an ID� Thus� the
head of rule ��� has only label and value components� while the other rules have
��component heads�

ConvertingMSL to Datalog� There is a way to convert MSL into completely
equivalent Datalog ��P����� We shall not go into this process� but rather give a
simpli�cation that will help us compare IM and Tsimmis�

Example ��� The following rules capture much of the content of the MSL rules
in Fig� ��

epo�E�P�O� �� v��E�P�M� � v	�E�O�D��

epo�E�P�O� �� v
�E�P� � v	�E�O�D��

edm�E�D�M� �� v��E�P�M� � v	�E�O�D��

Recall that v�� v�� and v� are the three views that we introduced in Example ��
They correspond to the sources �� � and � in Example ���

There is one important way that the rules above di�er from the MSL rules
in Fig� �� We only get epo facts for employees such that among the three views
we �nd both a phone and o�ce for that employee� In contrast� as we mentioned
in Example ��� the MSL rules can yield a phone without an o�ce or vice�versa�
This capability of MSL is an essential contribution to dealing with heterogeneous�
often incomplete information sources�

Querying Tsimmis Mediators� When we query an MSL mediator� we are
e�ectively querying the objects exported by the mediator� There is no notion
of 	global
 predicates as there is in IM� Rather� we must refer to the labels
�equivalent to predicates� that the mediator exports� Completion of our running
example will illustrate the distinction between the Tsimmis and IM approaches�

Example ��� Again let us ask 	what are Sally�s phone and o�ce�
 This time�
however� we ask it of the mediator med� whose exported objects we have repre�
sented in Datalog by the rules of Example �� The appropriate query is thus�



answer�P�O� �� epo�sally�P�O��

MSL�generated mediators answer their queries by expanding the rules by
which the mediator is de�ned� in order to get the same query in terms of infor�
mation at the sources� In our simple example� we would replace the epo subgoal
in the query by the bodies of the two rules that de�ne epo at med� thus obtaining�

answer�P�O� �� v��sally�P�M� � v	�sally�O�D��

answer�P�O� �� v
�sally�P� � v	�sally�O�D��

Notice that this expansion is identical to what IM obtained for the same query�

��� Comparing the IM and Tsimmis Query Processors

We should not suppose from Example �� that the result of 	equivalent
 IM and
Tsimmis queries are always the same� even after accounting for the di�erence in
the underlying logics� The processes of query translation are rather di�erent�

� IM uses the query synthesis strategy outlined in Section �
� IM queries are in terms of global predicates� which are translated into views�
� Tsimmis queries are in terms of predicates synthesized at a mediator� These

concepts� in turn� are built from views in the IM sense� exported by the
sources�

� Tsimmis uses a strategy of rule expansion to answer queries� Although the
expansion can result in an exponential number of terms� the �avor of the
search is di�erent from IM�s� In Tsimmis we can expand each subgoal of the
query independently� using every rule whose head uni�es with the subgoal�

Example ��� The following is an example of how the two systems can di�er� In
this example� Tsimmis appears to �ounder� but we should emphasize that it is
an atypical example� contrived for the sake of illustration�

Suppose we wanted to know Sally�s o�ce and department� That is�

q	�O�D� �� office�sally�O� � dept�sally�D��

Using the views of Example �� IM would �nd that the only minimal solution to
the query q� is

answer�O�D� �� v	�sally�O�D��

However� using the Tsimmismediator med of Example ��� we can only express
our query as�

q
�O�D� �� epo�sally�P�O� � edm�sally�D�M��

The reason for this awkwardness is that each mediator exports a speci�c collec�
tion of objects� We do not have the freedom to penetrate� in our query� to the
terms used by the mediator�s sources�

The mediator med would process query q� by expanding each subgoal� The
result would be the pair of rules�



answer�O�D� �� v��sally�P��M�� � v	�sally�O�D� �

v��sally�P	�M	� � v	�sally�O�D��

answer�O�D� �� v
�sally�P�� � v	�sally�O�D� �

v��sally�P	�M� � v	�sally�O�D��

Of course� the MSL optimizer will eliminate redundant terms and simplify this
solution� However� it cannot completely eliminate the subgoals using the irrele�
vant views v� and v�� As a result� it produces an empty answer in the case that
we do not know a phone or manager for Sally�

Let us again emphasize that the apparent failure of Tsimmis in Example ��
is due only to the fact that we contrived the mediator to export inconvenient
objects� The motivation for the design of Tsimmis is that the mediators it cre�
ates may perform some very complex processing of source data to produce its
exported objects� It may not be feasible to de�ne or create objects for every
conceivable query� In comparison� IM is limited in the way it can combine its
sources� since it must rely on the particular search algorithm of Section  to
combine sources�

��� Further Comparisons of IM and Tsimmis

In addition to the di�erences in query processing discussed in Section ���� there
are a number of other ways in which IM and Tsimmis di�er�

Levels of Mediation� IM is designed to have two levels� the sources and the
	global mediator�
 In contrast� Tsimmis assumes that there is an inde�nite num�
ber of levels� as the output of one mediator can be a source for a higher�level
mediator� Of course� it would in principle be possible for one IM application to
be a source for another� However� then we would have to wrap the �rst appli�
cation� de�ning for it a �xed set of views that it exported� We thus might face
the same sort of awkwardness that we explored in Example �� in the context of
Tsimmis�

Adding Sources� IM makes it quite convenient to add new sources� One must
write a wrapper for the sources and de�ne its views and constraints in terms
of the global concepts� However� no change to the query�processing algorithm is
needed� The new views will be used whenever they are appropriate for the query�
In contrast� new Tsimmis sources not only must be wrapped� but the mediators
that use them have to be rede�ned and their MSL de�nitions recompiled� The
administrator of the system must �gure out whether and how to use the new
sources�

Semistructured Data� As we have mentioned� Tsimmis supports the notion
that data does not have a �xed or uniform schema� we call such data semistruc�
tured� Objects with the same label� say employee� may have di�erent sets of



information available� and even the same information may appear with di�erent
structures in di�erent objects� For example� some employees may be retired and
have no salary subobject� Others may have an integer salary� Others may have
a structured salary including base� weekly commissions� and so on� The MSL
language has been designed to allow the mediator�implementor to deal with the
lack of schema� The reader will �nd more on the important issue of handling
semistructured data in �A����

Constraints� Only IM has an explicit mechanism for describing special prop�
erties of the information that a particular source will supply and using that
information in its query�processing algorithm�

Automatic Generation of Components� Tsimmis has stressed the auto�
matic generation of both wrappers ��P���b�� and mediators ��P����� In a sense�
IM has no need for automatic generation of mediators� since each application
has one 	mediator
 and the query�processing algorithm it uses is the same as
that of any other IM application� Tsimmis wrapper�generation technology could
be used to wrap IM sources� although the di�erence in the models and languages
�OEM�MSL versus Description Logic� makes direct adaptation impossible�

��� Extensions of the Query	View Model of Mediation

Both IM and Tsimmis have concentrated on conjunctive queries as the principal
model of both queries and views� However� there has been some exploration in
both projects of the possibility of using more powerful languages for de�ning
views� The natural 	next step
 is to use recursive Datalog programs to generate
in�nite families of views� While describing a simple source by a �nite set of views
or rules is adequate� sources that support a rich query language �e�g�� an SQL
database� are better described by in�nite families of queries�

Example ��� Suppose the source is an on�line bibliography that allows queries
in which one or more properties are speci�ed� We might describe the source by
the recursive program of Fig� ��

answer�X� �� book�X� and QUALS�X��

QUALS�X� �� QUALS�X� � Q�X��

QUALS�X� �� Q�X��

Q�X� �� property�X� �pname� �value��

Fig� �� A recursive program generating views



There are several things we must understand about the notation in Fig� ��
First� predicates QUALS and Q are expected to be expanded in all possible
ways� generating an in�nite set of conjunctive queries� each of the form

answer�X� �� book�X� � property�� �

property�� � ��� � property��

That is� each query asks for books X that satisfy certain properties�
The variables  pname and  value are parameters that are intended to be

�lled in for each property� allowing the CQ to match queries in which particular
properties are required to have speci�c values� A typical query is�

query�X� �� book�X� � property�X� author� crichton� �

property�X� subject� dinosaurs��

The idea has been explored in the context of Tsimmis in �P���b�� It also has
been proposed as an extension to IM in �LRU���� In each case the satisfactory
incorporation of recursively generated� in�nite view sets requires extending the
previously known algorithms for containment of conjunctive queries and Datalog
programs�

� Conclusions

Both IM and Tsimmis o�er interesting approaches to the di�cult problems of
information integration� Moreover� they both draw upon similar� fairly ancient
ideas from database logic� such as conjunctive query containment� as well as
new ideas in database theory� They di�er in a number of ways� including the
underlying logic� the approach to semistructured data� and the query processing
algorithm� Each represents an exciting direction for further research in database
systems and for the creation of a new class of information�processing tools�
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