
Probabilistic conflicts in a search algorithm for
estimating posterior probabilities in Bayesian

networks

David Poole
Department of Computer Science,
University of British Columbia,

2366 Main Mall,
Vancouver, B.C., Canada V6T 1Z4

Tel: (604) 822 6254
Fax: (604) 822 5485

Email: poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole

May 7, 1996

Abstract

This paper presents a search algorithm for estimating posterior proba-
bilities in discrete Bayesian networks. It shows how conflicts (as used in
consistency-based diagnosis) can be adapted to speed up the search. This al-
gorithm is especially suited to the case where there are skewed distributions,
although nothing about the algorithm or the definitions depends on skew-
ness of distributions. The general idea is to forward simulate the network,
based on the ‘normal’ values for each variable (the value with high proba-
bility given its parents). When a predicted value is at odds with the observa-
tions, we analyse which variables were responsible for the expectation fail-
ure — these form a conflict — and continue forward simulation considering
different values for these variables. This results in a set of possible worlds
from which posterior probabilities — together with error bounds — can be

1

derived. Empirical results with Bayesian networks having tens of thousands
of nodes are presented.

Abbreviated title: Probabilistic conflicts for searching Bayes nets

1 Introduction

This paper is about evidential reasoning as typified by the problem of diagnosis
(determining what is inside an artifact/patient based on observations) or recog-
nition. This paper combines two approaches to model-based diagnosis, namely
Bayesian networks [12, 30] and consistency-based diagnosis [13, 38, 9, 8].

Bayesian networks provide a general and natural representation for reasoning
under uncertainty. They have been successfully applied to such diverse areas as
medical diagnosis [15, 40, 26, 35], diagnosis of bottlenecks in computer systems
[1], circuit diagnosis [12, 41], fraud detection [10] and plan recognition [36].

Implementations of Bayesian networks have been placed into three classes [30,
17]:

1. Exact methods that exploit the structure of the network to allow efficient
propagation of evidence (e.g., [30, 25, 23]).

2. Stochastic simulation methods that give estimates of probabilities by gener-
ating samples of instantiations of the network (e.g., [16, 29, 21, 11, 22]).

3. Search-based approximation techniques that search through a space of pos-
sible values to estimate probabilities (e.g., [18, 4]).

The method presented in this paper falls into the last class. This paper provides a
search-based technique for computingposterior probabilities in arbitrarily-structured
discrete� Bayesian networks. The algorithm gives a way to bound the error of the
probability estimates.

Developed from logical notions of diagnosis, consistency-based diagnosis is
founded on the use of the conflict [38, 9, 8]. A conflict is a set of assumptions, the
conjunction of which is inconsistent with the observations and the system descrip-
tion. Consistency-based diagnosis has been used inmany application areas (see the

�All of the variables have a finite set of possible values. We do not consider variables with an
infinite set of possible values.

2

papers in [14]). While these have been developed in the context of logical system
descriptions, probabilities have been used to reduce the combinatorial explosion in
the number of logical possibilities [9, 7]. This paper can be seen in two ways. One
is as a way to add a notion of conflict to improve the speed and accuracy of a search
algorithm for Bayesian networks. The second is as a way to extend the languages
of consistency-based diagnosis to allow for probabilistic system descriptions. See
Appendix A.

The problem of approximating probabilities in Bayesian networks to within
any fixed error (less than ���) is NP-hard [3]. This means that there can be no gen-
erally efficient procedure for approximating posterior or even prior probabilities
in Bayesian networks. It does not mean that there are not classes of Bayesian net-
works forwhich there are efficient algorithms. One such class is the class of singly
connected Bayesian networks [30]. Another is the class of Bayesian networkswith
sufficiently skewed probability distributions (all probabilities in the Bayesian net-
work are close to one or zero); the skewness of the probabilities is what is being
exploited for efficiency by the algorithm in this paper (see [31]).

For practical efficiency we have to exploit some aspect of the problem. Two
possibilities are to exploit structure or distributions [5]. While the efficient exact
methods exploit aspects of the network structure, we instead exploit aspects of the
probability distribution to gain efficiency. The exact methods work well for sparse
networks (e.g., are linear for singly-connected networks [30]), but become ineffi-
cientwhen the networks become less sparse. They do not take the distributions into
account. The method in this paper uses no information about the structure of the
network, but rather has a niche for classes of problems where there are skewed dis-
tributions — conditional probabilities of variables given their parents are close to
one or zero (this includes the prior probabilities of variables without parents). The
algorithm is efficient for these classes of problems, but becomes very inefficient
as the distributions become less extreme — see [31] for a detailed average-case
complexity analysis of the simple version of the algorithm presented here (with-
out conflicts). This algorithm should thus be seen as having an orthogonal niche
to the algorithms that exploit the structure for efficiency. This paper does not con-
sider how to exploit both structure and distributions together [5], but rather tries to
see how far we can get without considering network structure.

The general idea can be stated simply. With skewed probabilities, there is a
‘normal’ value for each variable given its parents. By forward simulation on the
network, we instantiate variables in turn to their normal value. This can be done
quicklywith very little bookkeeping, andwhen probabilities are sufficiently skewed,

3

the most likely world(s) contain much of the probability mass. When evidence is
at odds with the predicted value, we analyse which variables are responsible for
this expectation failure — these form a conflict. We then consider the alternative
values for the variables in the conflict, and continue with the forward simulation.
Posterior probabilities with tight error bounds can be computed from the generated
assignments of values to the variables.

2 Bayesian Networks

We assume we have a set of random variables. Each random variable has an as-
sociated set of values. An atomic proposition is an assignment of a value to a
random variable; variableX having value c is written asX � c. A proposition is
made up of atomic propositions and the usual logical connectives.

ABayesian network [30] is a graphical representation of (in)dependence amongst
random variables. A Bayesian network is a directed acyclic graph where the nodes
represent random variables�. If there is an arc from variable B to variable A,B is
said to be a parent of A. The independence assumption of a Bayesian network is
that each variable is independent of its non-descendents given its parents.

Suppose we have a Bayesian network with random variables X�� ����Xn. The
parents of Xi are written as �Xi

�
D
Xi� � � � � �Xiki

E
. ki is the number of parents

of variableXi.
vals�Xi� is the set of possible values of randomvariableXi . IfC �

D
XC� � � � � �XCj

E
is a tuple of variables, then the set of values of C is the Cartesian product:

vals�C� � vals�XC��� � � � � vals�XCj��

Ifv �
D
vC�� � � � � vCj

E
� vals�C�, thenC � v (i.e.,

D
XC� � � � � �XCj

E
�
D
vC�� � � � � vCj

E
)

means the proposition

XC� � vC� � � � � �XCj � vCj �

Associated with the Bayesian network are conditional probabilities which give
the conditional probabilities of the values ofXi depending on the values of its par-
ents �Xi

. These consists of, for each vi � vals�Xi� and vij � vals�Xij�, proba-
bilities of the form

P �Xi � vijXi� � vi� � � � � �Xiki
� viki �

�We will use the terms node (in a Bayesian network) and random variable interchangeably —
which is meant at any time should be clear from the context.

4

For any probability distribution, we can compute a joint distribution by

P �X� � v� � � � � �Xn � vn� �
nY
i��

P �Xi � vijXi� � vi� � � � � �Xiki
� viki �

often written as

P �X�� � � � �Xn� �
nY
i��

P �Xij�Xi
��

This is often given as the formal definition of a Bayesian network.
We call an assignment of values to all the variables a possible world, and write

‘� j� Xi � vi’ ifXi is assigned value vi in world�. Let� be the set of all possible
worlds. The truth value of a proposition in a possible world is determined using
the standard truth tables. Possible worlds are important because the probability of
any proposition can be calculated from the probabilities of possible worlds:

P �g� �
X

w���wj�g

P �w��

3 Searching possible worlds

The idea behind our search algorithm is that we estimate conditional probabilities
by only enumerating a few of the possible worlds.

3.1 Ordering the variables

The first thing to do is impose a total ordering on the variables that is consistent
with the orderingof theBayesian network. We index the randomvariablesX�� ����Xn

so that the parents of a node have a lower index than the node. This can always be
done as the nodes in a Bayesian network form a partial ordering. If the parents of
Xi are �Xi

�
D
Xi� � � � � �Xiki

E
, the total ordering preserves ij � i.

3.2 Search Tree

We are now in a position to determine a search tree for Bayesian networks�.

�This search tree is the same as the probability tree of [20] and corresponds to the semantic
trees used in theorem proving [2, Section 4.4], but with random variables instead of complementary
literals.

5

x1=a x1=b

x3=t x3=f

x2=a
x2=b

x2=c

x3=t x3=f

x2=a
x2=b

x2=c

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: A search tree for three variables.

Definition 3.1 A partial description is a tuple of values hv�� � � � � vji where each
vi is an element of the domain of variableXi. (i.e., vi � vals�Xi�).

Partial description hv�� � � � � vji corresponds to the variable assignment X� �
v� � � � � �Xj � vj�

The variables of partial description hv�� � � � � vji, written vars�hv�� � � � � vji� is
the set fX�� � � � �Xjg.

The search tree has nodes labelled with partial descriptions, and is defined as
follows:

� The root of the tree is labelled with the empty tuple hi (where j � �).

� The children of node labelled with hv�� � � � � vji are the nodes labelled with
hv�� � � � � vj� vi for each v � vals�Xj���. In other words, the children of a
node correspond to the possible values of the next variable in the total or-
dering.

� The leaves of the tree are labelled with tuples of the form hv�� � � � � vni. These
correspond to possible worlds.

We will use the terms node and partial descriptions interchangeably — which is
meant at any time should be clear from the context.

For example, Figure 1 shows a search tree on three variables x� (withvals�x�� �
fa� bg), x� (with vals�x�� � fa� b� cg) and x	 (with vals�x	� � ft� fg). The total

6

ordering is x� � x� � x	. The numbers at the bottom of the tree represent the
possible worlds. For example, world
, defined by the partial description hb� a� ti,
corresponds to the proposition x� � b � x� � a � x	 � t.

We associate a probability with each partial description and so with each node
in the tree. The probability of the node labelled with hv�� � � � � vji is the probability
of the corresponding proposition which is

P �X� � v� � � � � �Xj � vj�

�
jY

i��

P �Xi � vijXi� � vi� � � � � �Xiki
� viki �

This is easy to compute; given the probability of the parent of the node, it can be
done in constant time.

The following lemma can be trivially proved, and is the basis for the search
algorithm.

Lemma 3.2 The probability of a node in the search tree is equal to the sum of the
probabilities of the leaves that are descendents of the node.

This lemma lets us bound the probabilities of possible worlds by only gener-
ating a few of the possible worlds and placing bounds on the sizes of the possible
worlds we have not generated.

3.3 Searching the Search Tree

To compute probability estimates, we expand part of the search tree, and generate
some of the most likely possible worlds. Figure 2 gives a generic search algorithm
that can be varied by changing which element is chosen from the queue. There are
many different search methods that can be used [27].

The algorithm maintains a priority queue Q of partial descriptions. Each time
through the loop an element of Q is removed; either it is a total description (i.e.,
where j � n) in which case it is added toW , the set of generated worlds, or else
its children are added to the queue.

If we let the algorithm run to completion it halts, and when it halts W is the
set of all partial descriptions corresponding to possible worlds. The correctness
doesn’t depend on the search strategy (i.e., which element is chosen from the queue
at each time).

7

Q �� fhig�
W �� fg�
While Q �� fg do

choose and remove hv�� � � � � vji from Q;
if j � n
thenW ��W � fhv�� � � � � vjig
else Q �� Q � fhv�� � � � � vj� vi � v � vals�Xj���g

Figure 2: Basic search algorithm

4 Estimating the Probabilities

If we let the above algorithm run to completion we have an exponential algorithm
for enumerating the possible worlds that can be used for computing the prior prob-
ability of any proposition or conjunction of propositions. This is not, however, the
point of this algorithm; we want to stop the algorithm part way through, and use
the worlds generated to estimate probabilities.

We useW , at the start of an iteration of the while loop, as an approximation to
the set of all possible worlds. This can be done irrespective of the search strategy
used.

4.1 Prior Probabilities

Suppose we want to compute P �g� for proposition g. At any stage (at the start of
an iteration of the while loop), the possible worlds can be divided into those that
are inW and those that will be generated from Q.

P �g� �
X

w���wj�g

P �w�

�

�
� X
w�W �wj�g

P �w�

�
A

�
� X
w���W �wj�g

P �w�

�
A

We can easily compute the first of these sums, and can bound the second. The
second sum is greater than or equal to zero and is less than or equal to the sum of
the probabilities of the partial descriptions on the queue (using Lemma 3.2). This

8

means that we can bound the probabilities of a proposition based on enumerating
just some of the possible worlds. Let

P g
W �

X
w�W �wj�g

P �w�

PQ �
X
��Q

P ����

Lemma 4.1 Pg
W � P �g� � P g

W PQ.

As the computationprogresses, the probabilitymass in the queuePQ approaches
zero and we get a better refinement on the value of P �g�. Note that PQ is mono-
tonically non-increasing through the loop (i.e PQ stays the same or gets smaller
through the loop — PQ decreases whenever an element with non-zero probabil-
ity is added to W and stays the same otherwise). This thus forms the basis of an
“anytime” algorithm for Bayesian networks.

4.2 Posterior Probabilities

If wewant to compute the posterior probability of some g given some observations
obs, we can use the definition of conditional probability,

P �gjobs� �
P �g � obs�

P �obs�

We can estimate the conditional probability from our our estimates of P �g �
obs� and P �obs�, (namely P g�obs

W and P obs
W) by noticing that each element of the

queue can go towards implying obs � �g, obs � g or �obs. We can easily prove
the inequality:

Lemma 4.2

P g�obs
W

P obs
W PQ

�
P g�obs
W

P obs
W

�
P g�obs
W PQ

P obs
W PQ

It can be proved that P �gjobs� has the following bound:

Theorem 4.3

P g�obs
W

P obs
W PQ

� P �gjobs� �
P g�obs
W PQ

P obs
W PQ

9

For a proof see Appendix B.
If we choose the midpoint as an estimate, the maximum error is

�

�

�
P g�obs
W PQ

P obs
W PQ

	
P g�obs
W

P obs
W PQ

�
�

PQ

��P obs
W PQ�

It is interesting that the error is independent of g. Thus when we are generating
possible worlds for some observation, and want to have posterior estimates within
some error, we can generate the requiredpossible worlds independently of the propo-
sition that we want to compute the probability of.

4.3 Refinements to the Search Algorithm

There are a number of refinements that can be carried out to the algorithmof Figure
2, independently of the search strategy.

If we are trying to determine the value of P ���, we don’t have to expand a par-
tial description if it can be determined whether � or �� is entailed by the partial
description (and so also by all of its descendents). When conditioning on our ob-
servations we can prune any partial description that is inconsistent with the obser-
vations — we know that all descendents of the partial description are inconsistent
with the observations, and so the probability of the pruned node can be removed
from consideration.

Figure 3 gives a refined algorithm for enumerating the possible worlds consis-
tent with obs. Here both Q and Wobs are sets of pairs h�� pi where � is a partial
description and p is the probability of �. Wobs is the set of the generated partial
descriptions that correspond to possible worlds in which obs is true. PQ and P obs

W

are the probabilities of Q and Wobs respectively. This algorithm shows explicitly
how these can be computed.

inconsistent�obs� hv�� � � � � vji� is true if obs is inconsistent with the partial de-
scription hv�� � � � � vji. If obs is a conjunction, then as this stage is not reached un-
less hv�� � � � � vj��i is consistent with obs; in this case obs is inconsistent with the
partial description iff obs contains a conjunct of the formXj � v�j where vj �� v�j.

At any stage at the start of the while loop, this algorithm directly gives PQ and
P obs
W . For any g, P g�obs

W can be computed by testing each member of Wobs to see
whether it is consistent with g. Alternatively, if g is known before the search is
commenced, it can be incorporated into the search (each partial description in Q
andWobs can be marked by whether it is consistent or inconsistent with g).

10

Q �� fhhi � �ig�
PQ � ��
Wobs �� fg�
P obs
W �� ��
While Q �� fg do

choose and remove hhv�� � � � � vji � �i fromQ;
if inconsistent�obs� hv�� � � � � vji�
then PQ �� PQ 	 �
else if j � n

thenWobs ��Wobs � hfhv�� � � � � vji � �ig�
P obs
W �� P obs

W �;
PQ �� PQ 	 �

else Q �� Q � fhhv�� � � � � vj� vi � �P �Xj�� � vjX� � v�� � � � �Xj � vj�i
� v � vals�Xj���g

Figure 3: Search algorithm for finding worlds in which obs is true.

For the rest of this paper we consider only the problem of generating the ap-
propriate worlds and the error bounds, as this is the difficult computational task.

5 A Diagnosis Example

In this section we describe how the search procedure can be applied to a simple
circuit diagnosis problem (as in [7]), fromwhich we can learn what problems arise.
The translation of the circuit into a Bayesian network will follow that of Geffner
and Pearl [12].

The circuit is a sequence of one-bit adders, cascaded to form a multiple-bit
adder. We chose this example as it is simple to extend to large systems and also
because it was used in [7].

Note that there is an efficient algorithm for such an example using clique tree
propagation [25, 23] that exploits the structure of the network to allow local prop-
agation of conditioning information. A slight variant of the example would make
clique tree propagation not work nearly as well. For example, if we add another
circuit to the output of the adders, the algorithm in this paper would work the same,

11

i3

i2

i1

x1
x2

a2

a1 o1

Figure 4: 1 bit adder

but the clique tree propagation would require larger cliques.

5.1 Representation

Figure 4 shows a one bit adder. Figure 5 shows a corresponding Bayesian network
under the assumption that the gates fail independently.

In this Bayesian network the random variable out-a� is a binary random vari-
able with vals�out -a� � � fon� o� g; out -a� � on means that the output of gate
a� is on, and out -a� � o� means the output of gate a� is off. The variables i�,
i�, i	, out-a�, out-x�, etc., have the same values. The random variable a�ok has
four possible values: vals�a�ok� � fok � stuck� � stuck� � abg; a�ok � ok means
gate a� is working correctly, a�ok � stuck� means gate a� is broken and always

12

i2 i1i3

out-a1

a1ok

o1ok

a2ok

x2ok

x1ok

out-x1

out-o1

out-a2

out-x2

Figure 5: Bayesian network for a 1 bit adder

13

a�ok i	 out-x� out-a�
on off

ok on on 1 0
ok on off 0 1
ok off on 0 1
ok off off 0 1
stuck� – – 1 0
stuck� – – 0 1
ab – – 0.5 0.5

Figure 6: Conditional probability table for variable out-a�.

a�ok
ok stuck� stuck� ab

0.99999 0.0000049 0.0000049 0.0000002

Figure 7: Conditional probability table for variable a�ok.

produces on, a�ok � stuck� means gate a� is broken, and always produces off ,
and a�ok � ab means the gate is in an abnormal state that could produce either
value. The other ok variables have the same set of values.

The value of out-a� depends on the values of the variables, i	, out-x�, and
a�ok. The conditional probabilities for the variable out-a� follow the table in Fig-
ure 6. The conditional probabilities for the outputs of other gates is similar.

The value of a�ok does not depend on any other variables. The values for the
variable follow the table in Figure 7.� The probabilities for other ok variables are
similar.

These one-bit adders can be cascaded to formmultiple bit adders. This is done
in the circuit by connecting the output of gate o� in one adder to input i	 of the fol-
lowing adder. In the Bayesian network, this is done by having multiple instances

�The numbers are made up. It may seem as though these probabilities are very extreme, but a
1000 bit adder (with 5000 components), is only ��� reliable, if all of the gates are as reliable as
that given in this table.

14

out-o�k�� i	k
on off

on 1 0
off 0 1

Figure 8: Conditional probability table for input 3 of adder k.

of the network for the one-bit adder with the value of i	 depending on the vari-
able out-o� for the previous instance of the adder. The table for the probabilities
is given in Figure 8. The value of the output of gate x� of bit k, is called the output
of bit k; the value of the output of o� is called the carry.

5.2 Computation

Suppose we apply the algorithm of Figure 3 to our cascaded adder example with
the partial description with the highest prior probability chosen each time through
the loop. First theworldwith all gates being ok is generated followedby theworlds
with single faults, then the double stuck-at faults are generated, etc. These are
pruned whenever they are found to be inconsistent with the observations. This is
similar to the candidate generator phase of [7]. From this candidate generation, we
can compute all of the probabilities that we need to.

To see what computational problem arises, consider a 1000-bit adder. Suppose
all the inputs are zero, and all outputs, except bit k, are zero, and bit k outputs one
(this example is from [7]). We first choose the most likely values of all variables
(e.g., the ok state for all of the status nodes) up to the variable that represents the
output of bit k. The output of bit k, which is predicted to be zero, is inconsistent
with the observations. At this stage, we prune the search (Section 4.3) and consider
the single-fault possible worlds. For each bit after bit k, we have already assigned a
single fault (to account for the error in bit k), thus for each of these gates, we only
consider the ok state. For the gates before bit k, we consider each of the single-
fault states. Most of these are useless since they will need to be combined with a
fault to account for the error at bit k.

Learning what we can about expectation failure and using this information for
pruning the search is the basis for the conflicts developed in the following sections.

15

6 Search Strategy and Conflicts

The above example assumed a simple search strategy, but was not as good as it
could be because we did not use the information that we discovered during the
search. Here we present a solution to the search inefficiency by incorporating a
notion of conflict analogous to that used in consistency-based diagnosis [9, 38, 8].

A ‘conflict set’ of Reiter [38] (a ‘conflict’ of de Kleer andWilliams [9]) is a set
of components such that, given the system description and the observations, not
all of the components can be normal�. In the probabilistic case, ‘normality’ corre-
sponds to a variable being assigned a value that maximises its probability given its
parents. Conflicts corresponds to sets of variables all of which cannot be normal
given the observations. We exploit the fact that some (presumably large) propor-
tion of the probability mass on the variables in a conflict is inconsistent with the
observations. In this paper we will use a probabilistic bound to define a notion of
conflict that can be used in our search algorithm.

In order to make this most flexible and useful, the definitions do not appeal to
normality; a conflict can be based on any values of the variables being in conflict.
Like de Kleer, Mackworth and Reiter [8], we generalise conflicts to not depend on
normality, although our notion of a conflict is very different to their’s as it does
not appeal to a logical specification of a system description, but rather extracts a
conflict directly from a Bayesian network and an observation.

6.1 Bounding Functions

For each partial description � � Q, we use an estimate ofP ���obs� rather than an
estimate of P ��� in the computation. A notion of ‘conflict’ will be used to refine
this estimate.

Lemma 6.1

P �obs� � P obs
W

X
��Q

P �� � obs�

See Appendix B for a proof of this lemma.

�See Appendix A for a description of the relationship between the consistency-based diagnosis
work and the probabilistic framework presented here.

16

Lemma 6.2

P g�obs
W � P �g � obs� � P g�obs

W
X
��Q

P �� � obs�

Definition 6.3 A bounding function for observation obs is a function f obs such
that if � is a partial description, fobs��� is a number satisfying

P �� � obs� � fobs��� � P ����

Define the queue mass induced by fobs to be fobsQ �
P

��Q f
obs���. Bounding

function f is tighter than bounding function f � if f��� � f ���� for all �.

The following theorem is analogous to Theorem 4.3, with a similar proof.

Theorem 6.4 If fobs is a bounding function for obs, then

P g�obs
W

P obs
W fobsQ

� P �gjobs� �
P g�obs
W fobsQ

P obs
W fobsQ

�

The error bound is
fobsQ

��P obs
W fobsQ �

which is smaller than the previous estimate if fobs��� � P ��� for some � � Q.
Tighter bounding functions give smaller error bounds.

In the next sections we define a notion of a conflict that allows us to tighten
bounding functions.

6.2 Overview of Algorithm

The general idea behind the algorithm is that we proceed much as the algorithm in
Figure 3, but choosing the partial description in the queue depending on the value
of its bounding function. Initially the bounding value we use is the probability of
the partial description.

When we find an expectation failure (the partial world we are considering is
inconsistent with the observations), we try to extractwhat informationwe can from
this expectation failure. This information is in terms of what is called a conflict.
Conflicts are used to make tighter bounding functions for elements of the queue.

17

Q �� fhig�
W �� fg�
C �� fg�
While Q �� fg do

choose and remove hv�� � � � � vji from Q;
if inconsistent�obs�Xj � vj�
then C �� C � fextract conflict�obs� hv�� � � � � vji�g
else if j � n

thenW �� W � fhv�� � � � � vjig
else Q �� Q � fhv�� � � � � vj� vi � v � vals�Xj���g

Figure 9: Search algorithm for finding worlds in which conjunctive obs is true.

By choosing the most likely partial descriptions at any time, we are effectively
considering the “normal” values (the values whose conditional probabilities given
values for the parents are high) first, and want to extract probability bounds from
these.

The revised search algorithm is shown in Figure 9. Here C is the set of con-
flicts that are used to define the “best” element ofQ. For simplicity of exposition,
we have used the simpler representation of Figure 2. The actual algorithm incor-
porates the improvements of Figure 3 into Figure 9.

There are a number of issues to be discussed:

1. How can a conflict be defined with only probabilistic information, and with-
out imposing an a priori constraint that all of the probabilities are extreme
(as in [34])?

2. How can conflicts be used by the search algorithm?

3. How can conflicts be discovered?

4. How does the use of conflicts affect the estimation of probabilities?

5. How much does the use of conflicts save in search time?

6. In practice, how often can we detect a small set of variables that form a con-
flict?

18

In this paper we answer all but the last of these questions. The last question we
cannot answer until we have built many more systems for many diverse applica-
tions.

We assume for the rest of this paper that observations are conjunctions of as-
signments of values to different variables. It is straightforward to extend this anal-
ysis to the case where observations are conjunctions of disjunctions of assignments
of values to the same variable (i.e., of the form

V
i�Xi � v�
� � �
Xi � vk�). It is

not clear how the results could be extended to more general forms of observations,
but it is also not clear how one could actually observe more complex formulae.

6.3 Conflicts

The main idea of a conflict is that there is some set of variables such that we can say
that some proportion of the probabilitymass on these variables will be inconsistent
with the observations. Conflicts can be used to define a tighter bounding function
to prune the search (Theorem 6.12).

Definition 6.5 If C is a set of variables, define the predecessors of C to be

C� � fXjX is a variable, and ��Y � C such thatX � Y � and X �� Cg

whereX � Y means that variableX is before Y in the total ordering of variables.

We need to generalize a conflict from being a set of variables such that all of
the variables being ‘normal’ is inconsistent the observations. The generalisation
is that the sum of the probabilities of the values consistent with the observations
is less than some � (for all values of the ancestors of these variables). This is the
basis of the following definition:

Definition 6.6 Given a Bayesian network and an observation obs, a conflict is a
pair hC� �i where C is a tuple of variables and � � � � � such that

max
a�vals	C�

�
BBBBBBB�

X
v � vals�C�

consis�C � v � C� � a� obs�

P �C � vjC� � a�

�
CCCCCCCA
� �

where consis�C � v �C� � a� obs� is true if C � v �C� � a is consistent with
the observations. � is called the bound of the conflict.

19

Conflicts hC�� ��i and hC�� ��i are independent if C� � C� � fg. If they are
independent, there is no single variable that can account for both conflicts. A set
of conflicts is independent if they are pairwise independent.

The use of independent conflicts is given by the lemma:

Lemma 6.7 If hC�� ��i and hC�� ��i are conflicts such that C� � C� � fg then
hC� � C�� �� � ��i is a conflict.

Example 6.8 Suppose we have a Bayesian network, where amongst the variables
are i
 and o
, and suppose that i
 has no parents and o
 has i
 as its only parent.
Suppose they are both Boolean variables that can take values from fon,offg, where
the probabilities for the network are P �i
 � on� � ���, P �o
 � onji
 � on� �
��� and P �o
 � onji
 � off� � ���. With the observation i
 � on � o
 � on,
there are two independent conflicts, namely hhi
i � ���i and hho
i � ���i. These are
independent and so there is a conflict hhi
� o
i � ����i.

Because of these variables, the prior probability of obs must be at most ����.
Moreover, if � is a partial description that does not include variables i
 or o
, then
P �� � obs� � P ��� � ����. It is this last feature that we exploit for our search
algorithm.

Example 6.9 Suppose we have variables i
 and o
 as in example 6.8, but with
P �i
 � on� � ��
, P �o
 � onji
 � on� � ��� and P �o
 � onji
 � off� � ���.
With the observation i
 � on � o
 � on, there are two independent conflicts,
namely hhi
i � ��
i and hho
i � ���i. These are independent and so there is a conflict
hhi
� o
i � ����i. The waywe have defined the notion of a conflict does not demand
that the conflicts are only for the “normal” values of the variables. The conflicts
here can be discovered by our algorithm below (if we are searching for more than
the most likely possible world), and can be used in exactly the same way as the
more extreme conflicts.

Example 6.10 In our example of Section 5, with all inputs zero, and bit �� having
output one and all other outputs being zero, there is a conflict:
h h out-x���, x�ok��, i	��, out-o���, o�ok��, out-a���, a�ok��, i���, out-a���, a�ok��,
out-x���, x�ok��, i���, out-x���, x�ok��, i���, i��� i, ������	 i.

Example 6.11 Suppose that in our cascaded adder example, the inputs to the cir-
cuit were observations rather than defined as part of the circuit. This is useful if we
do not know the inputs at the time the circuit is built, or if some inputs are unknown

20

during the diagnosis. We need prior probabilities such as P �i�k � on� � ���. For
every bit k for which input � is known, hfi�kg� ���i is a conflict. Although the
prior probabilities of diagnoses becomes very small quickly, the use of these con-
flicts can prune the search as though the observations of the inputs were given as
part of the network.

6.4 Refining the bounding function

Weuse a conflict to update the bounding function. The simplest idea is that fobs�hv�� � � � � vji�
is the product of P �hv�� � � � � vji� and the the bound of a conflict that does not in-
volve the variables fX�� � � � �Xjg. This result is formalised in the following theo-
rem:

Theorem 6.12 Given observation obs, and a set of conflicts, the function fobs de-
fined by

fobs��� � P ����minf� � hC� �i is a conflict such that C � vars��� � fgg

is a bounding function of obs, where vars��� is the set of variables assigned values
in the partial description �.

This theorem is proved in Appendix B.
We want the bounding function to be as tight as possible, and so want the con-

flict with the smallest bound. Typically this conflict is the product of independent
conflicts that involve variables that are afterXj in the total ordering.

A discovered conflict updates the bounding function for all the variables before
(in the total variable ordering) the conflict. The bounding functions of elements of
the queue evolves as computation progresses and conflicts are found.

Example 6.13 Just using the conflicts of Example 6.8, the conflict hhi
� o
i � ����i
means that if �� is a partial description on the priority queue that does not contain
i
 or o
, then fobs���� � P ���������. Thus �� contributes much less to the error
estimate of the priority queue — all of the estimated probabilities have a smaller
error bound. If �� contains i
 but not o
, then fobs���� � P ����� ���.

Because the error estimates are much tighter using conflicts and the bounding func-
tion, fewer iterations are needed to obtain the same error bound.

�A more sophisticated version is developed in Section 6.8.

21

6.5 Extracting conflicts

We have now seen how to use conflicts, but it is not much use without being able
to find them. Rather than building an architecture (such as an ATMS [6]) to find
conflicts, we would like to extract them from our normal search. When we have
predicted something which turns out to be inconsistent with the observations, we
would like to learn from this, and extract conflicts from such expectation failures.

We would expect to be able to extract conflicts from expectation failures as an
expectation failure gives us set of variables and values (a partial description)which
are inconsistent with the observations. We will try to find a subset of these variable
assignments that is also a conflict.

Definition 6.14 Partial description � � hv�� � � � � vii is minimally inconsistent
with observation obs if X� � v� � � � � � Xi � vi is inconsistent with obs and
X� � v� � � � � �Xi�� � vi�� is consistent with obs.

A minimally inconsistent partial description � � hv�� � � � � vii partitions the
conjuncts in the observation into:

obs��, the conjunction of those variable assignments of obs involving variables
before i in the total ordering. This conjunction is consistent with �, as � is
minimally inconsistent.

obs��, the variable assignment in obs involving variableXi. obs�� is inconsistent
with �.

obs��, the conjunction of those variable assignments involving variables after i
in the total ordering. This conjunction is consistent with � (as obs�� and �
mention a disjoint set of variables).

Definition 6.15 hC� �i is a counter to formula f with respect to observation obs
and partial description � if P �f jC� � v� � � whenever consis�C� � v� obs���.

This notion of a counter is useful, because we can compute conflicts fromcoun-
ters and we can extract counters from expectation failure in our search. The fol-
lowing theorem shows how to extract conflicts from counters:

Theorem 6.16 If hC� �i is a counter to obs�� with respect to observation obs and
minimally inconsistent partial description � then hC� �i is a conflict with respect to
obs.

22

For a proof see Appendix B.
Note that not all conflicts are from counters. Counters are meant to find those

conflicts that can be extracted from expectation failure.

6.6 Extracting Counters

If � � hv�� � � � � vii is minimally inconsistent with obs then, by our assumption of
the form of observations (Section 6.2), obs�� is of the formXi � v for some v.

In this section we define the procedure extract counter�Xi � v� obs� ��where
Xi � v is an assignment which is inconsistent with �.

We will prove that extract counter�Xi � v� obs� �� will return a counter to
formulaXi � v with respect to observation obs and partial description� whenever
Xi � v is inconsistent with �.

We have to find some C so that we can bound P �Xi � vjC� � a�.
If Xi has parents �Xi

, we use the independence assumption of Bayesian net-
works. By construction wewill ensure thatC� does not containXi or any ancestor
of Xi, and so

P �Xi � vjC� � a� �
X

u�vals	�Xi

P �Xi � vj�Xi
� u�� P ��Xi

� ujC� � a�

For this to be small, each product should be small. We would like to use our expec-
tation failure to lead us to conflicts with a small bound. For each u � vals��Xi

�
wemake �u be a bound on the value of P ��Xi

� ujC� � a� andCu to be the extra
elements needed to be added to the counter in order to achieve the bound. We want
to construct these values so that P �Xi � vjC� � a� is small.

In order to bound P ��Xi
� ujC� � a�, consider three cases for each u �

vals��Xi
�:

1. If obs j� �Xi
�� u, then let hCu� �ui � hfg� �i.

2. � j� �Xi
� u. As � considered the most likely assignments of values to

variables, and it did not assign v to Xi, we expect P �Xi � vj�Xi
� u� to

be low. In this case, we will return P �Xi � vj�Xi
� u� as this product’s

contribution�. Let hCu� �ui � hfg� �i.

�This heuristic highlights the strength and the weakness of the approach presented in this paper.
It means that we only need to consider the values assigned to variables in the current partial descrip-

23

3. If � �j� �Xi
� u, then there is some Xij � �Xi

such that � �j� Xij � uij .
In this case, we have a choice: we can either (a) let hCu� �ui � hfg� �i or (b)
choose one such Xij , and let

hCu� �ui � extract counter�Xij � uij � obs� ���

(a)will typically produce a smaller counter set, and (b)will typically produce
a smaller bound. If P �Xi � vj�Xi

� u� � �, then it is clear we should
do (a). If the bound returned by extract counter is greater or equal to 1,
we should also choose (a). In all our experiments these was the only cases
where we chose (a).

Note that the first two cases cannot co-occur as � is consistent with the observa-
tions. Also if �Xi

� u is observed, then � j� �Xi
� u and we do not include the

observed variable in the conflict found.
The value returned is then

extract counter�Xi � v� obs� ��

�

�
fXig �

�
u�vals	�Xi

Cu�
X

u�vals	�Xi

P �Xi � vj�Xi
� u�� �u

�
�

Note that ifXi has no parents, then this is the degenerate form of case 2, and
extract counter�Xi � v� obs� �� returns hfXig� P �Xi � v�i.

Figure 10 gives pseudo-code for extract counter.

Theorem 6.17 If � �j� Xi � v then extract counter�Xi � v� obs� �� returns a
counter toXi � v with respect to observation obs and partial description �.

For a proof see Appendix B.
This theorem shows that the algorithm will give a counter (and so give us a

conflict), no matter which choice is made in the third case. Note that whether the
conflicts returned are minimal or not does not affect the correctness of the algo-
rithm; it only affects the efficiency. We could potentially search for the choices that

tion, and do not need to consider other variable assignments. If we tried to find a smaller bound
on the contribution of the product it would mean that we need to consider values other than those
we have already explored— there are only a linear (in the number of variables) number of assign-
ments of values to variables in the current partial description, but exponentially many alternative
assignments of values to variables.

24

function extract conflict�obs� hv�� � � � � vji�
observed�Xj � v�;
return extract counter�Xj � v� obs� hv�� � � � � vji��

function extract counter�Xi� v� obs� ��
C �� fXig�
p �� ��
if �Xi

� hi then return hfXig� P �Xi � v�i endif;
for each u � vals��Xi

�
if consis��Xi

� u� obs� and P �Xi � vj�Xi
� u� 	 �

then if consis��Xi
� u� ��

then p �� p P �Xi � vj�Xi
� u�

else suppose u �
D
vi�� � � � � viki

E
choose ij such that � j� Xij �� vij ;
let hC�� P�i �� extract counter�Xij � vij� obs� ��;
if P� � �
then C �� C � C�;

P �� P P �Xi � vj�Xi
� u�� P�

else P �� P P �Xi � vj�Xi
� u�

endif
endif

endif
endfor;

return hC� pi

Figure 10: Procedures extract conflict and extract counter.

25

will lead to the conflict with lowest bound. Our experiments were with a greedy
algorithm that chooses the first one found. There is a tradeoff between the com-
putational effort in finding minimal conflicts, and the extra pruning that minimal
conflicts allow.

Note that sometimes extract counter may fail to find a useful counter if, for
example, � contains some small probability values. This will manifest itself in
returning a bound that is larger than one. The counters may also not be very useful
if they are not independent of other counters found.

6.7 Empirical Case Study

The algorithms described above are independent of the search strategies used, al-
though the conflict algorithms only make sense if we pursue the most likely al-
ternatives at each step. This does not, however mean that we have to choose the
element of the queue with the lowest bounding function at each stage. One promis-
ing idea is to use a depth-first search, always choosing the most likely child of the
current partial description (i.e., hill-climbing with backtracking), adding any par-
tial description whose bounding function is below a threshold to a pseudo queue
(where we do not store the element in the queue, but keep track of the sum of the
bounding functions of the elements that we throw away). We can decrease the
threshold to get more accurate results. This is reminiscent of iterative-deepening
search [24], but as we are not concernedwithfinding themost likely possible world,
but a set ofmost likelyworlds, we do not have toworry about decreasing the thresh-
old to the maximum value it could obtain. Any threshold will give correct results
— a smaller threshold will give more accurate results (and take longer). All of the
results presented here are for using one threshold.

The experiments we carried out were limited to understanding the behaviour of
the algorithm on cascaded n-bit adder example, with all inputs zero and all output
bits being zero, except for the output of bit k (i.e., the value of x�k) which had
value one. We only used the stuck-at faults and no ab faults (see Section 5), in
order to make the results more comprehensible — with the use of ab faults, the
results are similar to that presented here. We ran the program using a bounded
depth-first search (pruning the depth-first search when the f -value gets below a
threshold), generating the �most likely possible worlds�. Note that an n-bit adder

�These correspond to x�okk � stuck�, x�okk � stuck�, o�okk�� � stuck�, a�okk�� �
stuck� and a�okk�� � stuck�.

26

error bit 2 25 50 75 100

run time (no conflicts) 10.8 43.2 145.2 315.3 558.8
run time (with conflicts) 15.5 12.8 9.7 6.6 3.6
error (no conflicts) 0.00249 0.00937 0.0303 0.0618 0.0997
error (with conflicts) 0.00249 0.00261 0.00273 0.00285 0.00298

Figure 11: Running time and posterior error as a function of error bit in a ���-bit
adder, with threshold of 0.000001 that produces 5 most likely worlds.

has �n gates and corresponds to a Bayesian network with �	n nodes.
All times are based on a SICStus Prolog program running on a NeXTstation (a

68040-based machine). All times are in seconds. The code is available from the
author.

As discussed in Section 5.2, the main problem with the search algorithm with-
out conflicts, for our example, was how the runtime depended on the bit k that was
faulty. Figure 11 shows how run time depends on the bit chosen for the program
with no conflicts and for the programwith conflicts. This was for the ���-bit adder
(Bayesian network with �	�� nodes). The difference in times for error bit � indi-
cates the overhead in using conflicts (as conflicts for this case give us nothing).
This table also gives the error in posterior probability estimation. This shows the
power of the use of the bounding function to give a smaller probability bound.

Consider how the program that uses conflicts runs: we pursue one world until
bit k, then pursue � worlds separately from bits k to n. Thus we may estimate the
time as proportional to k ��n	 k�. This fits the experimental results extremely
well.

The second experiment was with the asymptotic behaviour as the size of the
network was increased. Figure 12 shows the run-time for finding the � most likely
possible worlds, as a function of circuit size. In each of these the error bit was the
middle bit of the circuit (i.e., k � n

�). This was chosen as it is the average time
over all of the error bits (see Figure 11). Note the linear time that was predicted by
the k ��n 	 k� formula. Also the posterior error is approximately linear in the
size of the circuit.

Finally, the results from double errors, are very similar. For a 100-bit adder,
with ones observed at bits 	� and
�, the program took 34 seconds to find the 25
most likely possible worlds.

27

bits 100 500 1000 2000 3000
gates 500 2500 5000 10000 15000
nodes 1300 6500 13000 26000 39000
run time 9.7 46.2 92.1 182.8 271.3
error 0.00273 0.0135 0.0267 0.0519 0.0758

Figure 12: Running time and posterior error as a function of size of multiple-bit
adder for the algorithm with conflicts with threshold of 0.000001.

6.8 Distributed Conflicts

The above analysis works well when the conflicts are clustered together. This was
also a property of the example of the preceding section. We prune the bounding
function for all variables that come before (in the total ordering of variables) all of
the variables in the conflict.

We can also prune the bounding function for variables that come between (in
the total ordering of nodes) variables in a conflict. The idea is to consider the re-
maining probability mass that the conflict promises, and use this as the bound.

Definition 6.18 If � � hv�� � � � � vji is a partial description and hC� �i is a conflict
then the contribution of C to � is�

C � fXj��� � � � �Xng�
�Q

i�j�Xi�C P �Xi � vijXi� � vi� � � � � �Xiki
� viki �

�

Note that sometimes the contribution of a conflict to a partial description may
contain a bound that is greater than one. In such cases, the contribution is of no
use. The theorem below explicitly allows us to ignore these contributions that do
not help.

We build a bounding function from contributions of conflicts to partial descrip-
tions. The theorem below is analogous to Theorem 6.12.

Theorem 6.19 Any function fobs��� constructed in the followingway is a bound-
ing function for obs. For each �, select a sequence hC�� ��i � � � � � hCk� �ki of contri-
butions of conflicts to partial description �, such that each �i � � andCi�Cj � fg
for i �� j. Let fobs��� � P ����

Qk
i�� �i.

28

For a proof see Appendix B.
For example, suppose we have exactly one memberXi of a conflict that is be-

fore node Xj in the total ordering of variables and we are considering partial de-
scription � (with j elements). IfXi was assigned a high probability in �, then the
rest of the probabilitymass of the conflict that is inconsistent with the observations
must be borne by variables after Xi, and thus after Xj . If Xi was assigned a low
probability in �, then proportionately less (if any at all) of the probability of the
conflict can be taken into account for determining the bounding function for �.

6.9 Using overlapping conflicts

For the example of Section 6.7 we just found one conflict for each expectation fail-
ure and used it. In this example, there are multiple conflicts due to that fact that
there are two ways the or-gate o� could have output a one.

Example 6.20 One other conflict for Example 6.10 is:
h h out-x���, out-x�ok��, out-x���, out-x�ok��, i���, i���, i	��, o���, o�ok��, out-
a���, a�ok��, i���, out-a���, a�ok��, i	��, o���, o�ok��, out-a���, a�ok��, i���, out-
a���, a�ok��, i	��, o���, o�ok��, out-a���, a�ok��, i���, out-a���, a�ok��, i	��� � � � i,
�����
�� i.

The intersection of the set of variables of the two given conflicts is fout-x���,
x�ok��, i	��, out-o���, o�ok��, out-a���, a�ok��, out-a���, a�ok��, out-i���, out-
x���, x�ok��, i���, i���g.

The variables that can have other values (with non-zero probability) are the
ok variables. What is interesting is that the five ok variables in the intersection
correspond exactly to the variables that have different values in the fivemost likely
possible worlds. This is not a coincidence.

The intersection does not form a conflict. However, for every variable in the
intersection to have a normal value, there must be a double error; there must be an
abnormal probability assignment in each of the conflicts.

It may seem as though we need a new concept to characterise such sets of vari-
ables where the only worlds in which all of the variables do not have normal values
have extremely low probability (corresponding to double errors). There is how-
ever, no need to do this; the current algorithm can use both conflicts so that it only
considers other values for variables outside of the intersection when it is consider-
ing extremely unlikely worlds.

29

When we consider the bounding function for variables not in either conflict,
we use the first conflict as it has the smallest bound. When we consider variables
not in the intersection of the conflicts, we can use the whichever conflict the vari-
able is not in for the bounding function. It is only when considering variables in
the intersection that the bounding function is discounted by the contribution of the
conflicts. Thus the general principle of using the conflicts that provide the small-
est bounding functions handles the intersection of conflicts appropriately, without
needing any extra machinery.

7 Comparison with other systems

The branch and bound search is very similar to the candidate enumeration of de
Kleer’s focusing mechanism [7]. We have considered a purely probabilistic ver-
sion of de Kleer’s conflicts. We have extended the language to Bayesian networks
(see Appendix A). We also can bound the errors in our probabilistic estimates,
which de Kleer cannot do. One of the features of our work is that finding minimal
conflicts is not essential to the correctness of the program, but only to efficiency.
Thus we can explore the idea of saving time by finding useful, but non-minimal
conflicts quickly.

The use of search to bound the probabilities in a Bayesian network is closely
related to bounded conditioning [19], where a the values for the cutset variables in
a Bayesian network are enumerated, and the polytree algorithm [28] is used for the
resulting singly connected networks. Instead of enumerating the variables of the
cutsets, we enumerate all of the variables. This makes the algorithm much sim-
pler, and allows for fast processing. Bounded conditioning has no analogue to the
conflicts of this paper.

Shimony and Charniak [39], Poole [32] and D’Ambrosio [4] have proposed
back-chaining search algorithms for Bayesian networks. None of these are nearly
as efficient as the one presented here. Even if we consider finding the single most
normalworld, the algorithmhere corresponds to forward chainingon definite clauses
(see [33]), which can be done in linear time, but backward chaining has to search
and takes potentially exponential time.

This paper deliberately takes the extreme position of seeing how far we can get
when we exploit the distributions and not the structure of the network. Hopefully
this can shed light on the algorithms that use both structure and distribution to gain
efficiency (e.g., [4]).

30

8 Conclusion

This paper presented a simple search strategy for estimating posterior probabilities
in Bayesian networks which can give a tight bound on the error. We then showed
how a notion of conflict borrowed frommodel-based diagnosis can be used to im-
prove efficiency and accuracy.

For most purposes (when we do not want to have very accurate probabilities),
the algorithm has the following gestalt feel. We forward simulate the Bayesian
network (by choosing the most likely values for each variable) until we find a pre-
dicted value that is inconsistent with the observations. When we find such an ex-
pectation failure, we extract a conflict from this failure. We only consider non-
normal values for the variables in the conflict, and keep doing a forward simu-
lation. We repeat this for each expectation failure, until we can find a consistent
Bayesian network assignment (i.e., the forward simulation has assigned a value to
all variables) for each of the non-normal assignments of the conflicts (removing
each world that gets too unlikely). We use the worlds produced to predict con-
ditional probabilities with a given error. When the distributions are skewed this
produces small error bounds.

The main complexity is in the forward simulation which can be done in time
linear in the number of variables (assuming a bounded number of parents for each
variable), and finding conflicts which can be done in time linear to the size of the
conflict found (finding a minimal conflict is more expensive). This needs to be
done the number of times equal to the product of the size of the conflicts found. In
the worst case this reduces to the algorithm without conflicts, (but with the extra
(linear) cost of finding the conflicts) which has good expected complexity when
there are sufficiently skewed distributions [31].

One of the aims of this work is to unify model-based diagnosis (e.g., [7]) and
probabilistic modelling (e.g., [30]). Although they may look very different, a co-
herent synthesis is possible, which I hope I have showed in this paper.

A A Comparison of Representations

In this appendix we describe the relationship of the above definition of Bayesian
networks to the formalizations ofmodel based diagnosis of Reiter [38] and deKleer,
Mackworth and Reiter [8], and to de Kleer’s incorporation of probabilities into
model-based diagnosis [7].

31

In the frameworks of [38] and [8], a system is described in terms of a triple
hSD�COMPS�OBSi, where SD is the system description, COMPS is the set
of components and OBS is a set of observations.

In the probabilistic framework the given probabilities serve the same purpose
as SD. Those worlds which are inconsistent with SD will have probability �. In-
stead of writing the formula

out�G� � on type�G� � and gate � in��G� � on

�in��G� � on � ok�G�

we write�

P �out�G� � on j type�G� � and gate � in��G� � on

�in��G� � on � st�G� � ok� � ��

The probability also places a measure over the remaining worlds. The prob-
abilistic framework is more general in that it allows for ‘noise’; for example, it
allows us to state that some output is rarely true, as well as being able to state that
it is never true. This is even more important for domains where there is no certain
knowledge, such as medical diagnosis.

In the probabilistic framework, there is no correspondence toCOMPS of [38]
and [8]. The observations of both frameworks, however, are identical.

A possible world here can be compared with the formulaD�Cp�Cn�, a ‘state’
of the system [8], which is

�
	

c�Cp

AB�C�

�
��

c�Cn

�AB�C�

�

The main difference is thatD�Cp�Cn� does not specify the value of all variables.
A state remains agnostic about internal values (those which do not follow from
the status of components). A possible world specifies not only the status of com-
ponents, but of all values. For example, the value of the output of an abnormal
gate may not be specified by the state of the system. However, there will be dif-
ferent possible worlds for each of the values of the output. We are interested in
having these different possible worlds because they have different properties and

�Here we use the random variable (term) st�G� to be the status of G. This has values, for ex-
ample, ok, stuck�, stuck�, ab. Thus ok�G� will be the same as st�G� � ok.

32

predictions. Even without ruling out any of the states of the components, different
possible worlds may be ruled out (by having a prior probability of zero, or being
inconsistent with the observations) by considering values of other variables and
observations. Because he did not treat these as different worlds, de Kleer [7] had
to resort to the dynamic use of Bayes rule and maximum entropy. We do not need
to do this. Having a slightly smaller grain size of possible worlds means we can
treat all values symmetrically. It also means that we can get good estimates of the
errors in our probability estimates. Rather than just being able to return the most
likely diagnoses, we can use the most likely possible worlds to estimate arbitrary
conditional probabilities within some bound.

de Kleer et. al. [8] do not specify what a component is (what is a component
is input to their formalism). One way we can make their framework closer to the
probabilistic one is to invent new components within their framework. These com-
ponents will be oracles that determine the values that are unspecified in the state.
These can be compared to the use of ‘stuck at zero’ (stuck�) and ‘stuck at one’
(stuck�) failure states. This invention of ‘causal hypotheses’ can be done in gen-
eral to produce exactly the worlds in Bayesian networks [33].

Note that because a possible world specifies the values of all variables, there is
no difference between a possible world which is consistent with a formula f and
one which entails f . That is, for possible world �, � j� f iff � �j� �f (this can be
easily proved by induction on the size of formula f). In either case we say that f
is true in the possible world.

A diagnosis of [8] corresponds to a possible world, with non-zero probability,
in which obs is true.

de Kleer et. al. [8] consider how to characterise the set of diagnoses of the sys-
tem. In the probabilistic framework, we considerwhat wewant to dowith the diag-
noses. We want the diagnoses in order to make decisions. These are, for example,
decisions to replace components, to seek more information, to apply treatments, to
give tests, etc. Decision theory (see, e.g., [37]) gives a normative theory of what
decisions to make. There is a well developed theory about what tests provide the
best information and the expected value of making a test or of carrying out a par-
ticular action. In order to make good decisions we need the probability of various
formulae given the observations. Approximating these probabilities within some
error is the task considered in this paper.

33

B Proofs
Theorem 4.3

P g�obs
W

P obs
W PQ

� P �gjobs� �
P g�obs
W PQ

P obs
W PQ

Proof: Consider what happens to the elements of the queue. Let � be the propor-
tion of the possible worlds that are descendents of elements of the priority queue
in which obs � �g is true. Let
 be the proportion in which obs � g is true. Then
�
 is the proportion in which obs is true.

As all of the possible worlds are either inW or are descendents of elements of
the priority queue, we have

P �gjobs� �
P g�obs
W
PQ

P obs
W ��
�PQ

Wewant tomaximise this formula under the constraints that � � � � �, � �
 � �
and � � �
 � �. There are no internal extrema in this formula, and so the
maxima occur at the extremes. These are � �
 � �, � � � �
 � � and
� � � �
 � �, which correspond to the three values in Lemma 4.2, and the
theorem follows directly from Lemma 4.2. �

Theorem 6.1

P �obs� � P obs
W

X
��Q

P �� � obs�

Proof:

P �obs� �
X

w���wj�obs

P �w�

�

�
� X
w�W �wj�obs

P �w�

�
A

�
� X
w���W �wj�obs

P �w�

�
A

34

� P obs
W

X
��Q

�
� X
w���W �wj�obs��

P �w�

�
A

� P obs
W

X
��Q

P �� � obs�

�

Theorem 6.12 Given observation obs, and a set of conflicts, the function fobs

defined by

fobs��� � P ����minf� � hC� �i is a conflict such that C � � � fgg

is a bounding function of obs.

Proof: The only thing non-trivial to prove is that P �� � obs� � P ��� � �. Let
C� � fX�� � � � �Xng	C	C�. LetC�� � C��fXj��� � � � �Xng. There is a iso-
morphismbetween the set of possible worlds consistentwith� and f

D
C�� C�C��

E
�

hv�� v� v�i � � � hv�� v� v�i � vals�
D
C�� C�C��

E
�g.

The idea of the proof is that the variables can be partitioned into the sets C�,
C , C�� and fX�� � � � �Xjg. We first sum out the variables in C�, then sum out the
variables in C��.

P �� � obs�

�
X

�����j���obs

P ���

�
X

hv��v�v�i�vals	hC� �C�C��i

consis	hC��C�C��i�hv��v�v�i�obs

P �
D
C�� C�C��

E
�
D
v�� v� v�

E
� ��

�
X

hv��v�v�i�vals	hC� �C�C��i

consis	hC��C�C��i�hv��v�v�i�obs

�
BB�

P �C� � v�j
D
C�C��

E
� hv� v�i � ��

�P �C � vjC�� � v� � ��
�P �C�� � v�j��� P ���

�
CCA

� P ����
X

hv��v�v�i�vals	hC��C�C��i

consis	hC�C��i�hv�v�i�obs

�
BB�

P �C� � v�j
D
C�C��

E
� hv� v�i � ��

�P �C � vjC�� � v� � ��
�P �C�� � v�j��

�
CCA

35

� P ����
X

hv�v�i�vals	hC�C��i

consis	hC�C��i�hv�v�i�obs

P �C � vjC��
� v� � ��� P �C��

� v�j��

� P ����
X

v�vals	C

consis	hC�C�i�hv�ai�obs

P �C � vjC� � a�

� P ���� �

�

Theorem 6.16 If hC� �i is a counter to obs�� with respect to observation obs and
minimally inconsistent partial description � then hC� �i is a conflict with respect to
obs.

Proof: Suppose hC� �i is a counter to obs�� with respect to observation obs and
partial description �.

� � P �obs��jC� � a�

�
X

v�vals	C

consis	C�v�obs��

P �C � vjC� � a�

�
X

v�vals	C

consis	C�v�C��a�obs

P �C � vjC� � a�

�

Theorem 6.17 If � �j� Xi � v then extract counter�Xi � v� obs� �� returns a
counter toXi � v with respect to observation obs and partial description �.

Proof: First, the algorithm stops, as there are finitely many values of the parents,
and so the for-loop is evaluated finitely many times, and each recursion reduces the
number of parents of the node by at least one, and so there is no infinite recursion.

We can inductively assume that the theoremholds for all subcalls to extract counter.

36

To show that hC� �i returnedby extract counter�Xi � v� obs� �� satisfiesP �Xi �
vjC� � v� � � whenever consis�C� � v� obs���.

We use the following lemma: consis�C� � v� obs��� implies C� � v j�
obs��. This is because C does not include any variable in obs�� and C� � v as-
signs a value to every variable beforeC in the total ordering of variables. To show
this, consider that a variableXj is only added toC when extract counter�Xj � � ��
is called, and this is never called ifXj is assigned a value in obs�� . IfXj is assigned
a value in obs��, then eachXj � v is either inconsistent with obs or is entailed by
�, and so there is no call to extract counter with this variable.

Suppose consis�C� � v� obs��� andXi has parents�Xi
. For eachu � vals��Xi

�,
we know that P ��Xi

� ujC� � a� � �u whenever consis�C� � v� obs��� by
the inductive assumption and because all probabilities are � �. Then,

P �Xi � vjC� � a� �
X

u�vals	�Xi

P �Xi � vj�Xi
� u�� P ��Xi

� ujC� � a�

�
X

u�vals	�Xi

P �Xi � vj�Xi
� u�� �u

� �

�

Theorem 6.19 Any functionfobs��� constructed in the followingway is a bound-
ing function for obs. For each �, select a sequence hC�� ��i � � � � � hCk� �ki of contri-
butions of conflicts to partial description �, such that each �i � � andCi�Cj � fg
for i �� j. Let fobs��� � P ����

Qk
i�� �i.

Proof: Let C � C��� � ��Ck, and � �
Qk

i�� �i. Let C
�
i be the part of the conflict

fromwhichCi is a contribution, which is covered in � � hv�� � � � � vji, and ��i be the
corresponding bound (i.e., hCi � C �

i� �
�
ii forms a conflict, andC

�
i � fX�� � � � �Xjg).

To showP ���obs� � P �����. All of the proof of Theorem 6.12 goes through
up to the last step.

P �� � obs�

� P ����
X

v�vals	C

consis	hC�C�i�hv�ai�obs

P �C � vjC� � a�

37

� P ����
X

hv������vki�vals	hC� �����Cki

consis	hC������Ck �C�i�hv������vk�ai�obs

kY
i��

P �Ci � vijC
� � a�

� P ����
kY
i��

X
vi�vals	Ci

consis	hCi�C�i�hvi�ai�obs

P �Ci � vijC
� � a�

� P ����
kY
i��

X
vi�vals	Ci

consis	hCi�C�i�hvi�ai�obs

P �Ci � vijC
� � a��

P �C �
i � v�ij�C�

i
� �v�

i
�

P �C �
i � v�ij�C�

i
� �v�

i
�

� P ����
kY
i��

�
BBBBBBB�

X
vi�vals	Ci

consis	hCi�C�i�hvi�ai�obs

P �Ci � vijC
� � a�� P �C �

i � v�ij�C�

i
� �v�

i
�

�
CCCCCCCA

P �C �
i � v�ij�C�

i
� �v�i

�

� P ����
kY
i��

��i
P �C �

i � v�ij�C�

i
� �v�i

�

� P ���� �

�

Acknowledgements

Thanks to Andrew Csinger and Michael Horsch for valuable comments on this
paper. This research was supported under NSERC grant OGPOO44121, and un-
der Project B5 of the Institute for Robotics and Intelligent Systems. The code re-
ferred to in this paper is available by anonymous FTP from ftp.cs.ubc.ca
in the directory/ftp/local/poole/code/BN-search, and from the URL
http://www.cs.ubc.ca/spider/poole.

38

References

[1] J. S. Breese and R. Blake. Automating computer bottleneck detection with
belief nets. In S. Besnard and S. Hanks, editor, Proc. Eleventh Conf. on Un-
certainty in Artificial Intelligence, pages 36–45, Montreal, August 1995.

[2] C. L. Chang and R. C. T. Lee. Symbolic Logical and Mechanical Theorem
Proving. Academic Press, New York, 1973.

[3] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

[4] B. D’Ambrosio. Real-time value-driven diagnosis. In Proc. Third Inter-
national Workshop on the Principles of Diagnosis, pages 86–95, Rosario,
Washington, October 1992.

[5] B. D’Ambrosio. Incremental probabilistic inference. In Proc. Ninth Conf.
on Uncertainty in Artificial Intelligence, pages 301–308, Washington, D.C.,
July 1993.

[6] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127–
162, March 1986.

[7] J. de Kleer. Focusing on probable diagnoses. In Proc. 9th National Confer-
ence on Artificial Intelligence, pages 842–848, Anahiem, Cal., July 1991.

[8] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and
systems. Artificial Intelligence, 56:197–222, 1992.

[9] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intel-
ligence, 32(1):97–130, April 1987.

[10] K. J. Ezawa and T. Schuermann. Fraud/uncollectible debt detection using a
Bayesian network based learning system: A rare binary outcome with mixed
data structures. In P. Besnard and S. Hanks, editor, Proc. Eleventh Conf.
on Uncertainty in Artificial Intelligence, pages 157–166, Montreal, August
1995.

[11] R. Fung and B. Del Favero. Backward simulation in Bayesian networks. In
R. Lopez deMantaras and D. Poole, editor, Proc. Tenth Conf. on Uncertainty
in Artificial Intelligence, pages 227–234, Seattle, July 1994.

39

[12] H. Geffner and J. Pearl. An improved constraint-propagation algorithm for
diagnosis. In Proc. 10th International Joint Conf. on Artificial Intelligence,
pages 1105–1111, Milan, August 1987.

[13] M. R. Genesereth. The use of design descriptions in automated diagnosis.
Artificial Intelligence, 24(1-3):411–436, December 1984.

[14] W. Hamscher, L. Console, and J. de Kleer, editors. Readings in model-based
diagnosis. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[15] D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert sys-
tems: Part I. The Pathfinder project. Methods of Information in Medicine,
31:90–105, 1992.

[16] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic
logic sampling. In J. F. Lemmer and L. N. Kanal, editor, Uncertainty in Arti-
ficial Intelligence 2, pages 149–163. Elsevier Science Publishers B.V., 1988.

[17] M. Henrion. An introduction to algorithms for inference in belief nets. In
M. Henrion, et al., editor, Uncertainty in Artificial Intelligence 5, pages 129–
138. North Holland, 1990.

[18] M. Henrion. Search-based methods to bound diagnostic probabilities in very
large belief networks. In Proc. Seventh Conf. on Uncertainty in Artificial
Intelligence, pages 142–150, Los Angeles, Cal., July 1991.

[19] E. J. Horvitz, H. J. Suermondt, and G. F. Cooper. Bounded conditioning:
Flexible inference for decisions under scarse resources. In Proceedings of
the Fifth Workshop on Uncertainty in Artificial Intelligence, pages 182–193,
Windsor, Ontario, August 1989.

[20] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and
J. Matheson, editors, The Principles and Applications of Decision Analysis,
pages 720–762. Strategic Decisions Group, CA, 1981.

[21] T. Hrycej. Gibbs sampling in Bayesian networks. Artificial Intelligence,
46:351–363, 1990.

[22] M. Hulme. Improved sampling for diagnostic reasoning in Bayesian net-
works. In P. Besnard and S. Hanks, editor, Proc. Eleventh Conf. on Uncer-
tainty in Artificial Intelligence, pages 315–322, Montreal, August 1995.

40

[23] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in
causal probabilistic networks by local computations. Computational Statis-
tics Quaterly, 4:269–282, 1990.

[24] K. E. Korf. Depth-first iterative deepening: an optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, September 1985.

[25] S. L. Lauritzen andD. J. Spiegelhalter. Local computationswith probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society, Series B, 50(2):157–224, 1988.

[26] B. Middleton, M. Shwe, D. E. Heckerman, M. Henrion, E. J. Horvitz,
H. Lehmann, and G. F. Cooper. Probabilistic diagnosis using a reformula-
tion of the INTERNIST-1/QMR knowledge base II: evaluation of diagnostic
performance. Methods of Information in Medicine, 30:256–267, 1991.

[27] J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

[28] J. Pearl. Fusion, propagation and structuring in belief networks. Artificial
Intelligence, 29(3):241–288, 1986.

[29] J. Pearl. Evidential reasoning using stochastic simulation of causal models.
Artificial Intelligence, 32(2):245–257, May 1987.

[30] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[31] D. Poole. Average-case analysis of a search algorithm for estimating prior
and posterior probabilities in Bayesian networks with extreme probabilities.
In Proc. 13th International Joint Conf. on Artificial Intelligence, pages 606–
612, Chambery, France, August 1993.

[32] D. Poole. Logic programming, abduction and probability: A top-down any-
time algorithm for computing prior and posterior probabilities. New Gener-
ation Computing, 11(3–4):377–400, 1993.

[33] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1):81–129, 1993.

41

[34] D. Poole. The use of conflicts in searching Bayesian networks. InProc. Ninth
Conf. on Uncertainty in Artificial Intelligence, pages 359–367, Washington,
DC, July 1993.

[35] M. Pradhan, G. Provan, B.Middleton, andM. Henrion. Knowledge engineer-
ing for large belief networks. In R. Lopez de Mantaras and D. Poole, editor,
Proc. Tenth Conf. on Uncertainty in Artificial Intelligence, pages 484–490,
Seattle, July 1994.

[36] D. V. Pynadath and M. P. Wellman. Accounting for context in plan recog-
nition, with application to traffic monitoring. In P. Besnard and S. Hanks,
editor, Proc. Eleventh Conf. on Uncertainty in Artificial Intelligence, pages
472–481, Montreal, auf 1995.

[37] H. Raiffa. Decision Analysis. Addison-Wesley, 1968.

[38] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, April 1987.

[39] S. E. Shimony and E. Charniak. A new algorithm for finding MAP assign-
ments to belief networks. In Proc. Sixth Conf. on Uncertainty in Artificial
Intelligence, pages 98–103, Cambridge, Mass., July 1990.

[40] M. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J. Horvitz,
H. Lehmann, and G. F. Cooper. Probabilistic diagnosis using a reformulation
of the INTERNIST-1/QMR knowledge base I: Probabilistic model and infer-
ence algorithms. Methods of Information in Medicine, 30:241–255, 1991.

[41] S. Srinivas. A probabilistic approach to hierarchical model-based diagnosis.
In R. Lopez de Mantaras and D. Poole, editor, Proc. Tenth Conf. on Uncer-
tainty in Artificial Intelligence, pages 538–545, Seattle, July 1994.

42

