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Abstract
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right� providing a compromise between heuristic and epistemic ad�
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with only �unconditionally� independent hypotheses can represent any
probabilistic knowledge� and argues that it is better to invent new hy�
potheses to explain dependence rather than having to worry about
dependence in the language�
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� Introduction

Probabilistic Horn Abduction ���� ��� is a framework for logic�based abduc�
tion that incorporates probabilities with assumptions	 This is being used as
a framework for diagnosis ���� that incorporates both pure Prolog �
�� and
Bayesian Networks �
�� as special cases	 This paper expands on ���� ��� and
develops the formal underpinnings of probabilistic Horn abduction� shows
the strong relationships to other formalisms and argues that it is a good
representation language in its own right	 It can be motivated in a number of
dierent ways�
Determining what is in a system from observations �diagnosis and recogni�

tion� is an important part of AI	 There have been many logic�based proposals
as to what is a diagnosis ���� ��� �
� ��� ���	 One problem with all of these
proposals is that for any diagnostic problem of a reasonable size there are
far too many logical possibilities to handle	 For example� when considering
fault models ���� ���� there is almost always an exponential number of logical
possibilities �e	g	� each component could be in one of its normal states or in
the unknown state�	 For practical problems� many of the logically possible
diagnoses are so unlikely that it is not worth considering them	 There is a
problem� however� in removing the unlikely possibilities a priori �those with
a low prior probability�� it may happen that the unlikely occurrence is the
actual truth in the world	 Analysis of the combinatorial explosions would
however tend to suggest that we need to take into account probabilities of
the diagnoses ��
� ��� 
��� and not even generate the unlikely diagnoses �i	e	�
those with a low posterior probability�	
In a dierent strand of research� Bayesian networks �
��� have proven to

be a good representation for the sort of probabilistic independence found
in many domains	 While the independence of Bayesian networks has been
expressed in logic �e	g	� �
��� there has not been a mapping between logical
speci�cations of knowledge and Bayesian network representations� where the
logic is not at the meta�level to the probabilistic knowledge	 This paper
describes what could be termed as a logic of discrete Bayesian Networks�
where the logic expresses the object level knowledge and the independence of
Bayesian networks is an emergent property of the representation	 In the un�
certainty community there has also been a need to extend Bayesian networks
to beyond a propositional language ��� �� ���	 Probabilistic Horn abduction
is naturally non�propositional� and provides a natural extension of Bayesian
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networks to a non�propositional language	
The work presented in this paper should be contrasted with other at�

tempts to combine logic and probability in very powerful languages �e	g	�
�
��	 We are trying to �nd the simplest language that is useful for our pur�
poses� rather than combine many dierent features onto one framework	 Our
goal in this research is to investigate a simple yet powerful logic	
The representation proposed in this paper is interesting in its own right

as a compromise between epistemic and heuristic adequacy �

�	 It extends
pure Prolog in a simple way to include probabilities	 While all of the hy�
potheses are independent� by inventing new hypotheses� we can represent
any probabilistic dependency	 This simplicity allows us to experiment with
a minimalist representation and only extend it when we need to	 It is inter�
esting to see how far we can go with a very simple representation language�
only adding to it when it fails to do what we it want to do	

��� A Motivating Example

Before we present the language and the assumptions behind the representa�
tion� we �rst give an example to show what sorts of things we can represent	
The example is based on the three cascaded inverters of ����	 Figure �

shows the connections of the inverters	

i1 i2 i3

out(i3)in(i1)

Figure �� Three cascaded inverters	

The language is an extension of pure Prolog	 We can write Prolog�like
de�nite clauses to represent the general knowledge of the domain� and the
speci�c instances known about the particular con�guration�

val�out�G�� on� T �� ok�G� � val�in�G�� o�� T ��
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val�out�G�� o�� T �� ok�G� � val�in�G�� on� T ��
val�out�G�� V� T �� shorted�G� � val�in�G�� V� T ��
val�out�G�� o�� T �� blown�G��
val�in�G�� V� T �� conn�G�� G� � val�out�G��� V� T ��
conn�i�� i���
conn�i�� i
��

Here val�P� V� T � means that port P has value V at time T � in�G� is the
input port of gate G and out�G� is the output port of gate G	 ok�G� means
G is working properly� shorted�G� means that G is shorted and acts as a
wire� and blown�G� means that G always outputs the value o�	
The language also has a �disjoint declaration� that de�nes a set of disjoint

and covering hypotheses that have probabilities associated with them�

disjoint��ok�G� � ����� shorted�G� � ���
� blown�G� � �������
disjoint��val�in�i��� on� T � � ���� val�in�i��� o�� T � � ������

The �rst gives the prior probabilities of the states of gates	 The second gives
the prior probabilities of the inputs to the �rst gate	 In our language� dier�
ent instances of disjoint declarations are probabilistically �unconditionally�
independent� and so we have stated that the gates break independently� and
that the values of the input to gate i� is independent of the states of the
system	
The sorts of things that we can ask� and for which we have given enough

information to compute include�

� What is the probability that gate i� is ok given that the input to i� is
o� and the output of i
 is o� at time t��

P �ok�i��jval�in�i��� o�� t�� � val�out�i
�� o�� t���

�The answer is �	���	

� If the input of i� were on what is the probability that the output of i

will be o� �

P �val�out�i
�� o�� t��jval�in�i��� on� t���

�The answer is �	����	
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� What was the probability that the input to i� was on at time t� given
that the output to i� was o at time t� and given that the output of i

was o and the input of i� was o at time t��

P �val�in�i��� on� t��jval�out�i��� o�� t���val�out�i
�� o�� t���val�in�i��� o�� t���

�the answer is �	���	

Each of these answers is computed in terms of explanations� namely argu�
ments with premises from the possible hypotheses	 We assume independence
amongst the hypotheses so that the prior probability of an explanation is ob�
tained by multiplying the probabilities of the hypotheses in the explanation	
For example� the explanations of the observation val�in�i��� o�� t�� �

val�out�i
�� o�� t��� together with their prior probability are�

Explanation� �val�in�i��� o�� t��� ok�i
�� ok�i��� shorted�i���
Prior � �	��
��

Explanation� �val�in�i��� o�� t��� ok�i
�� shorted�i��� ok�i���
Prior � �	��
��

Explanation� �val�in�i��� o�� t��� shorted�i
�� ok�i��� ok�i���
Prior � �	��
��

Explanation� �val�in�i��� o�� t��� blown�i
��
Prior � �	�����

Explanation� �val�in�i��� o�� t��� ok�i
�� ok�i��� blown�i���
Prior � �	������

Explanation� �val�in�i��� o�� t��� shorted�i
�� blown�i���
Prior � �	���
���

Explanation� �val�in�i��� o�� t��� shorted�i
�� shorted�i��� shorted�i���
Prior � �	�����
��

Explanation� �val�in�i��� o�� t��� shorted�i
�� shorted�i��� blown�i���
Prior � �	���������
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By the way the knowledge base was constructed� these explanations are
disjoint and covering� and so we can compute the prior probability of

val�in�i��� o�� t�� � val�out�i
�� o�� t���

by summing the probabilities of these explanations� which here is �	�����	

� Probabilistic Horn Abduction

In this section we develop the language� the assumptions behind it and a
�semantics� of the language in terms of abduction	 A more formal semantics
is provided in Appendix A	 The language is designed to be usable and does
not allow us to state what cannot be computed in a straight forward manner	
The initial language is translated into an abductive framework with a

number of assumptions about the knowledge base	 The appendix gives a
more formal model�theoretic semantics and demonstrates the equivalence
between the two	

��� The Probabilistic Horn abduction language

Our language uses the Prolog conventions �����

De�nition ��� A term is either a variable �starting with an upper case let�
ter�� a constant �starting with a lower case letter� or is of the form f�t�� � � � � tn�
where f is a function symbol �starting with a lower case letter� and each ti
is a term	 An atomic symbol �atom� is of the form p or p�t�� � � � � tn� where
p is a predicate symbol �starting with a lower case letter� and each ti is a
term	

De�nition ��� A de�nite clause is of the form� a� or a � a� � ��� � an�
where a and each ai are atomic symbols	

De�nition ��� A disjoint declaration is of the form

disjoint��h� � p�� � � � � hn � pn���

where the hi are atoms� and the pi are real numbers � � pi � � such that
p� � � � � � pn � �	 Any variable appearing in one hi must appear in all of
the hj �i	e	� the hi share the same variables�	 The hi will be referred to as
hypotheses or assumables	
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De�nition ��� A probabilistic Horn abduction theory �which will be
referred to as a �theory�� is a collection of de�nite clauses and disjoint dec�
larations such that if a ground atom h is an instance of a hypothesis in one
disjoint declaration� then it is not an instance of another hypothesis in any
of the disjoint declarations	

Given theory T � we de�ne

FT the facts� is the set of de�nite clauses in T together with the clauses of
the form

false� hi � hj

where hi and hj both appear in the same disjoint declaration in T � and
i �� j	 Let F �

T be the set of ground instances of elements of FT 	

HT the hypotheses� the set of hi that appears in some disjoint declaration
in T 	 Let H �

T be the set of ground instances of elements of HT 	

PT is a function H �
T �� ��� ��	 P �h�i� � pi where h�i is a ground instance of

hypothesis hi� and hi � pi is in a disjoint declaration in T 	 P �h
�
i� will

be the prior probability of h�i	

Where T is understood from context� we omit the subscript	
The disjoint declarations allow a very restricted form of integrity con�

straints ����	 It allow binary integrity constraints �the conjunction of two
hypotheses is false� such that the ground instances of hypotheses form mutu�
ally exclusive and covering groupings that correspond to random variables	
A theory will de�ne a set of represented atoms that are a subset of the

atoms of T 	 The represented atoms will often be not listed explicitly� but
will be left implicit �they will typically be instances of hypotheses and heads
of clauses�	 The represented atoms are those about which the theory can
answer questions	 Questions about atoms not in the represented atoms will
be beyond the scope of the theory	 The theory is not expected to be able to
answer queries outside of its scope	

��� Abduction

We �rst give the language an abductive characterisation� using the normal
de�nition of the de�nite clauses	 This is used to make explicit our assump�
tions and to build the theory in a natural manner	 In Appendix A� we give
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a model theoretic characterisation that incorporates our assumptions� and
show the equivalence of the formulations	
The formulation of abduction used is a simpli�ed form ���� of Theorist

���� �
�	 It is simpli�ed in being restricted to Horn clauses	 This can also
be seen as a generalisation of an ATMS �with prede�ned nogoods� ���� to be
non�propositional�	
An abductive scheme is a pair hF�Hi where

F is a set of Horn clauses	 Variables in F are implicitly universally quanti�
�ed	 Let F � be the set of ground instances of elements of F 	

H is a set of �possibly open� atoms� called the �assumables� or the �possible
hypotheses�	 Let H � be the set of ground instances of elements of H	

De�nition ��� ���� ��� If g is a closed formula� an explanation of g from
hF�Hi is a set D of elements of H � such that

� F �D j� g and

� F �D �j� false	

The �rst condition says that D is su�cient to imply g� and the second says
that D is possible	

De�nition ��� A minimal explanation of g is an explanation of g such
that no strict subset is an explanation of g	

��� Assumptions about the rule base

In order to be able to simply interpret our rules probabilistically we make
some assumptions about the rules and some probabilistic independence as�
sumptions about the hypotheses	
The �rst assumption is syntactic� about the relationship between hy�

potheses and rules�

Assumption ��� There are no rules in F whose head uni�es with a member
of H	

�A main di�erence is in the philosophy of use� We assume that the Horn clauses are
representing the object level knowledge� rather than� as in an ATMS� acting as a back end
of a problem solver �����
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This does not seem to be a very severe restriction� in practice	 It says
that we do not want rules to imply a hypothesis	 Presumably� if we had rules
for h� the only reason that we would want to make h a hypothesis is if it was
possible that h just happens to be true �without any other �cause��	 In this
case we can replace h in H by the hypothesis h happens to be true and add
the rule

h� h happens to be true

Assumption ��	 �acyclicity ���� If F � is the set of ground instances of ele�
ments of F � it is possible to assign a natural number to every ground atom
such that for every rule in F � the atoms in the body of the rule are strictly
less than the atom in the head	

This assumption is described as natural by Apt and Bezem ���	 It is a
generalisation of the hierarchical constraint of Clark ���	 It implies that there
are no in�nite chains when backchaining from any ground goal	 This does
not restrict recursion� but does mean that all recursion must be well founded	
These assumptions are made implicitly in ��
�� are explicit in ��� �who

make the hierarchical constraint rather than the acyclic constraint�� but are
relaxed in ����	
When using abduction we often assume that the explanations are cover�

ing	 This can be a valid assumption if we have anticipated all eventualities�
and the observations are within the domain of the expected observations
�usually if this assumption is violated there are no explanations�	 This is
also supported by recent attempts at a completion semantics for abduction
��
� �� ���	 The results show how abduction can be considered as deduction
on the �closure� of the knowledge base that includes statements that the
given causes are the only causes	 We make this assumption explicit here�

Assumption ��
 The rules in F � for every ground non�hypothesis repre�
sented atom are covering	

That is� if the rules for a in F � are

a� B�

a� B�
			

a� Bm
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if a is true� one of the Bi is true	 The completion of a is

a 	 B� 
 � � � 
Bn

Thus the covering assumption �	� says that Clark�s completion ��� is valid
for every non�assumable	
If the rules for a are not covering� we create a new hypothesis

a is true for some other reason and add the rule

a� a is true for some other reason�

Lemma ���� ��� Under assumptions ���� ��� and ���� if expl�g� T � is the
set of all minimal explanations of g from hFT �HT i� and comp�T � is F �

T aug�
mented with the completion of every ground instance of every non�assumable
�including Clark	s equational theory 
���� then

comp�T � j�

�
�g 	

�
ei�expl�g�T �

ei

�
A

The next assumption has to do with the status of explanations

Assumption ���� The bodies of the rules in F � for an atom are mutually
exclusive	

Given the above rules for a this means that Bi�Bj is always false for each
i �� j	 To ensure that this assumption holds we can add extra conditions to
the rules	 See section �	
Note that� whereas assumptions �	� and �	� are syntactic assumptions

about the theory that can be automatically checked� assumptions �	� and
�	�� are statements about the world� and not about the knowledge base�	
We do not require FT j� ��Bi � Bj�	 The language is not powerful enough
to state such constraints	 For example� it may be the case that the value

�There is� however� a syntactic condition that can be used to check whether assumption
���� has been violated� This is when we can derive the bodies of two rules for an atom
from a set of assumptions that are not inconsistent� For example� if fa� nag and fb� nbg are
disjoint and covering sets of assumptions �and so a and b are independent by assumption
����	� and we have rules fc � a� c � bg� then we know the disjoint bodies assumption ����
has been violated� as a and b cannot be both exclusive and independent�
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on some wire is functional �the value cannot be both on and o at the same
time�	 We cannot state this in our language	 This is a deliberate design
decision to make the language as simple as possible	 See section �	� for the
rationale behind the design decisions	
N	B	 The assumptions here are not intended to be enforced by the system	

It is up to the user �or some other system� to enforce these constraints	 The
status of these assumptions is that if you follow the constraints� then we
make claims about the interpretability of the system	 If these assumptions
are violated then we make no guarantees	

Lemma ���� Under assumptions ��� and ��� minimal explanations of
atoms or of conjunctions of atoms are mutually exclusive �no two expla�
nations can both be true��

Lemma �	�� does not hold for arbitrary formulae	 In particular� the minimal
explanations of a disjunction are not necessarily disjoint	

��� Probabilities

Associated with each possible hypothesis is a prior probability	 We use this
prior probability to compute arbitrary probabilities	
The following is a corollary of lemmata �	�� and �	��

Lemma ���� Under assumptions ���� ���� ��� and ��� if expl�g� T � is the
set of minimal explanations of conjunction of atoms g from probabilistic Horn
abduction theory T �

P �g� � P �
�

ei�expl�g�T �

ei�

�
X

ei�expl�g�T �

P �ei�

Thus to compute the prior probability of any g we sum the probabilities
of the explanations of g	
To compute arbitrary conditional probabilities� we use the de�nition of

conditional probability�

P ��j�� �
P �� � ��

P ���
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To �nd arbitrary conditional probabilities P ��j��� we �nd P ���� which is
the sum of the explanations of �	 To compute the probability P �� � ��� we
sum over the explanations of � � �	 Note that the explanations of � � � are
also explanations of �	 We can �nd the explanations of � � � by explaining
� from the explanations of �	 Thus arbitrary conditional probabilities can
be computed from summing the prior probabilities of explanations	
It remains only to compute the prior probability of an explanation D of g	

We assume that logical dependencies impose the only statistical dependencies
on the hypotheses	 In particular we assume�

Assumption ���� Ground instances of hypotheses that are consistent �with
FT � are probabilistically independent	

N	B	 We mean that the hypotheses are unconditionally independent	
They may become dependent given observations �i	e	� when conditioning on
observations�	

Example ���� If we have the disjoint declarations

disjoint��p�X� � ���� q�X� � ������

disjoint��r�Y � � ����� s�Y � � �������

then p�t� is independent of r�u� for all ground terms t and u	 p�t� is inde�
pendent of q�u� for all dierent ground terms u and t	 p�t� is independent of
p�u� for all dierent ground terms u and t	
Thus p�a� is dependent on q�a� �they are exclusive�� but p�a� is indepen�

dent of q�b�	 p�a� is also independent of p�b�	

Under assumption �	��� if D � fh�� ���� hng is a minimal explanation� then

P �h� � ��� � hn� �
nY

���

P �hi�

To compute the prior of the minimal explanation we multiply the priors of
the hypotheses	
Assumption �	�� implies the unique names assumption if there are parametrized

hypotheses	 If h�X� is a parametrized hypothesis with each instance hav�
ing probability p� and t� and t� are dierent ground terms� assumption �	��



Probabilistic Horn abduction and Bayesian networks �


implies P �h�t�� � h�t��� � p�	 If t� � t�� then h�t�� � h�t�� 	 h�t��� but
P �h�t��� � p� a contradiction to the fact that probabilities are a measure
over propositions� and that logically equivalent terms should have the same
probability �
��	 Thus� we are assuming that t� �� t� for dierent terms t�
and t�	 This assumption is the unique names assumption ����	 Note that
it is for the probabilistic calculation that we are making the unique names
assumption	
Appendix A gives the formal semantics for probabilistic Horn abduction�

and justi�es� in another way� the results of this section	

��� Rationale for the design choices

The language presented so far is quite weak in some respects	 In this section
we discuss why the language is as it is	 The general theme is that the language
is a simple extension to pure Prolog that lets us consistently interpret the
numbers on hypotheses as probabilities	 We have disallowed anything that
will make this interpretation di�cult	 For example� we have not allowed the
logic to be expressive enough to be able to prove that there is a dependency
amongst the hypotheses beyond the disjointness of our random variables	
This simplicity makes the language semantically transparent� and allows

for simple implementations	 It is still powerful enough to express many of
the causal and probabilistic interactions that we want to express	 This work
should be seen as an exercise in minimalist representations � we try to
understand the limitations of very restricted languages and only add extra
power if we can show we cannot do what we want with the tools available to
us	

����� Language for specifying random variables

The �rst thing to notice is that we allow a very restricted and stylised form
of integrity constraints to be speci�ed by the use of the disjoint declaration	
This is in contrast to earlier versions ���� ��� where we allowed arbitrary
integrity constraints	 The more expressive language in ���� ��� allows us to
represent what the current version allows� however it lets us represent what
we cannot interpret probabilistically� and makes the proof procedures more
complicated without providing visible advantage	
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For example� if fa�� a�� a�g and fb� nbg each form a disjoint and covering
sets of propositions �random variables�� then we cannot treat these as inde�
pendent if we can state false� a��b	 All we know here is that the variables
are not independent � there are only ad hoc methods to allow us to provide
the joint distribution	 The current formulation does not give the power to
state such constraints	 The logical formulae provide no constraints on the
hypotheses beyond the disjointedness of the values in the disjoint declaration	
A second� but related� problem with general integrity constraints� has to

do with making implicit assumptions by the use of integrity constraints	 For
example� if we have false � a � b� when we are using a� we are implicitly
assuming the negation of b and should pay the cost �in terms of making any
explanation containing a less likely�	 This occurs at an extreme level when
we have fb� nbg disjoint hypotheses whose probability sums to �� and have
false � a � b and false � a � nb	 Here it should follow that a cannot
occur �or at least with probability zero� and should be pruned from other
explanations	
We also made sure that all atoms in disjoint declarations share the same

variables	 To see the problem with not requiring this� consider the �illegal�
declaration

disjoint��p � ���� q�X� � ��
���

Given this declaration� p would be disjoint and covering with q�a� and p
disjoint and covering with q�b�	 This would then place a dependence between
q�a� and q�b�	 Given that the hypotheses are disjoint and covering� if q�a� is
true� then p is false� and so q�b� is true	 Similarly if q�a� is false� p is true
and q�b� is false	 Thus all instances of q�X� would always have the same
truth value	 Then we may as well remove the variable �as the truth does
not depend on the value of the variable�	 We have restricted the variables
in disjoint assertions in order to avoid such tricky interactions that the user
of the system may not be aware of� and so that an implementation does not
need to look for them	
The language is also not powerful enough to state the constraints on the

legal input	 When we wanted the bodies of the rules to be disjoint� we did
not require that we could prove the disjointedness of the bodies	 We required
that they be disjoint in the domain under consideration	 Similarly� we require
the rules to be covering� but cannot check this	 This should not be seen as a

�This was pointed out to me by Mark Wallace of ECRC�
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defect in this language � there will always be true things that the language
is too weak to state �e	g	� the �niteness of integers cannot be stated in the
�rst order predicate calculus�	 This restriction was a conscious decision to
allow us to build e�cient implementations� and to avoid di�cult to interpret
statements as described above	

����� Assumptions concerning the knowledge base

Assumption �	� that says that hypotheses cannot form the head of rules is
important to ensure that we can treat the hypotheses as independent	 If
we could prove some hypothesis �based on other assumptions� it would not
be consistent that the hypotheses are independent	 It is also important to
ensure minimal explanations are disjoint	 If we have a and b as hypotheses�
and have b� a as well as c� b	 There are two minimal explanations of c�
namely fag and fbg	 These cannot be disjoint as one implies the other �and
are equivalent under the Covering Assumption �	��	
To see the importance of the acyclicity assumption �	� consider the facts

F � fa � d � b� a � c� d � ag� and possible hypotheses H � fb� cg	
Assumption �	� is violated in this example	 Here there is one explanation
for a� namely c� but under assumption �	�� we can prove a� b 
 c� and not
a� c	 This violates the conclusion of Lemma �	��	
Assumptions �	� and �	�� are needed so that we can have disjoint and

covering hypotheses	 This means that we just sum the probabilities of the
hypotheses	

����� Negation

The language provided does not have explicit negation	 It does� however�
give us an implicit negation	
For example� suppose we have the theory

a� h��

b� h��

disjoint��h� � p�� h� � � p����

Under the covering assumption �	�� we have a 	 h� and b 	 h�	 The disjoint
declaration essentially tells us that h� 	 �h�	 Thus we have a 	 �b	
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Thus� although we cannot state negation� we can interpret one atom as
being the negation of another	 The reason that we don�t want to have explicit
negation is that this would allow the logic to imply a dependence amongst
variables that violates the independence assumption �	��	 Once this occurs�
it is more di�cult to interpret the probabilities	 For example� a � h� and
�a� h� places a dependence on h� and h�	
For each atom we can create its negation	 For each atom a� a is another

atom which we interpret as the negation of a	 Syntactically� a is just another
atom	
If we have a disjoint declaration

disjoint��h� � p�� h� � p�� � � � � hn � pn���

we can create the negation of any hypothesis� say h�� by using

h� � h�
			

h� � hn

The other hypotheses can be negated analogously	
If we have rules for a

a � b�� � � � � � b�n��
			

a � bk� � � � � � bknk �

we can de�ne atom ri to correspond to the i�th body� and have rules a� r�
through a� rk	 There are also k rules of the form ri � bi� � � � � � bini	
We can de�ne the atom a that is the negative of a as

a� r� � � � � � rk

ri is de�ned as

ri � bi��

ri � bi� � bi��
			

ri � bi� � � � � � bi�ni��� � bini�
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These de�nitions will be well grounded by the acyclicity of the rule base	
We have added bij to all of the rules after the j�th to ensure the rules are
disjoint �see Section �	��	
Note that just because some atom a is represented� it does not mean that

the negation of a need be represented	 There are however� some cases for
which it is useful to create the negation of atoms �see Section �	��	
This negation is an extension to a simple form of the negation of Barbuti

et	 al	 ���� which is used for negation as failure	

� Representing Bayesian networks

In this section we give the relationship between Bayesian networks and our
probabilistic Horn abduction	 We show how any probabilistic knowledge
that can be represented in a discrete �and �nite� Bayesian network� can be
represented in our formalism	 We also demonstrate the alternate� namely
that any propositional probabilistic Horn abduction theory is equivalent to
a Bayesian network	
A Bayesian network �
�� is a directed acyclic network where the nodes

represent random variables� and the arcs represent a directly in�uencing re�
lation	 We will use the term �RV� to mean random variable so as to avoid
confusion with the Prolog�style variable	 If there is arc from RV b to RV a
then b is said to be a parent of a	
Suppose we have a discrete� Bayesian network with random variables

a�� ���� an� such that random variable ai can have values vi��� ���� vi�ri	 We rep�
resent random variable ai having value vi�j as the proposition ai�vi�j�	
Suppose RV ai has parents �ai � fai�� � � � � ainig in a Bayesian network	

The independence assumption embedded in a Bayesian Network �
�� is that
a RV is independent of its non�descendents given its parents	 That is�

P �aij�ai � v� � P �aij�ai�

where v is a RV �or conjunction of RVs� such that ai is not an ancestor of v
�or any conjunct in v�	

�I�e�� all the random variables have a discrete and 
nite set of values� Probabilistic
Horn abduction cannot handle random variables with in
nite domains� General Bayesian
networks have no such restriction�
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The formal de�nition of a Bayesian network is often given in terms of the
joint distribution of all of the RVs�

P �a�� � � � � an� �
nY
i��

P �aij�ai�

A discrete Bayesian network is represented by Probabilistic Horn abduc�
tion rules that relates a RV with its parents�

ai�V �� ai��V�� � ��� � aini �Vni� � c ai�V� V�� ���� Vni�

The intended interpretation of c ai�V� V�� ���� Vni� is that ai has value V be�
cause ai� has value V��			� and aini has value Vni 	
Associated with the Bayesian network is a conditional probability table

which gives the conditional probabilities of the values of a depending on the
values of �ai � fai�� � � � � ainig	 This will consist of probabilities of the form

P �ai � vi�jjai� � v�� � � � � aini � vni� � pj

such that

�v�� � � � � vni

�
�

riX
j��

P �ai � vi�jjai� � v�� � � � � aini � vni�

�
A � �

where vi��� ���� vi�ri are the possible values for RV ai This is translated into
assertions

disjoint��c a�vi��� v�� v�� ���� vni� � p�� � � � � c a�vi�ri� v�� v�� ���� vni� � pri ��

Example ��� Consider a representation of the Bayesian network of Figure

	�� with the following conditional probability distributions�

P �fire� � ����

P �smokejfire� � ���

P �smokej�fire� � ����

P �tampering� � ����

P �alarmjfire � tampering� � ���
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P �alarmjfire� �tampering� � ����

P �alarmj�fire � tampering� � ����

P �alarmj�fire � �tampering� � ������

P �leavingjalarm� � ����

P �leavingj�alarm� � �����

P �reportjleaving� � ����

P �reportj�leaving� � ����

��
�

�
�

�

Q
Q
Q
Q
Q
Q
Qs

�
�

�
�
�
���

Q
Q
Q
Q
Q
QQs

tampering

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

fire

leaving

smokealarm

�
�
�
�

report

Figure �� A Bayesian network for a smoking alarm	

The following is a probabilistic Horn abduction representation of this
Bayesian network�

disjoint��fire�yes� � ����� fire�no� � �������

smoke�Sm�� fire�Fi� � c smoke�Sm�F i��

disjoint��c smoke�yes� yes� � ���� c smoke�no� yes� � ������

disjoint��c smoke�yes� no� � ����� c smoke�no� no� � �������
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disjoint��tampering�yes� � ����� tampering�no� � �������

alarm�Al�� fire�Fi� � tampering�Ta�� c alarm�Al� F i� Ta��

disjoint��c alarm�yes� yes� yes� � ����� c alarm�no� yes� yes� � �������

disjoint��c alarm�yes� yes� no� � ����� c alarm�no� yes� no� � �������

disjoint��c alarm�yes� no� yes� � ����� c alarm�no� no� yes� � �������

disjoint��c alarm�yes� no� no� � ������� c alarm�no� no� no� � ���������

leaving�Le�� alarm�Al�� c leaving�Le�Al��

disjoint��c leaving�yes� yes� � ����� c leaving�no� yes� � �������

disjoint��c leaving�yes� no� � ������ c leaving�no� no� � ��������

report�Le�� leaving�Al�� c report�Le�Al��

disjoint��c report�yes� yes� � ����� c report�no� yes� � �������

disjoint��c report�yes� no� � ����� c report�no� no� � �������

Note that here instead of creating c fire and making it equivalent to
fire� we just made fire a hypothesis	

��� Equivalence Results

The basic equivalence result is the equivalence between joint distributions
and explanations of the RVs having particular values�
Let P be the probability function sanctioned by a Bayesian network	 Let

T be the corresponding probabilistic Horn abduction theory	 Let PT be the
probability function de�ned by the translation of a Bayesian network into
the probabilistic Horn abduction framework	 The aim is to show that P and
PT are the same	
The de�nition of the Bayesian network distribution is using the joint

probability for all values in the network	 This corresponds to a conjunction
of values for all RVs	

Lemma ��� Suppose a�� � � � � an are all of the RVs in a Bayesian network�
with T as the corresponding probabilistic Horn abduction theory� then

P �a� � v� � � � � � an � vn� � PT �a��v�� � � � � � an�vn��
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Proof� By de�nition of a Bayesian network�

P �a� � v� � � � � � an � vn� �
nY
i��

P �ai � vijai� � vi�� � � � � aini � vini �

By de�nition of c ai in the translation

P �ai � vijai� � vi�� � � � � aini � vini � � PT �c ai�vi� vi�� � � � � vini ��

There is only one explanation of a��v�� � � � � � an�vn�� namely
fc ai�vi� vi�� � � � � vini �� � i � ���ng	 Thus we have

P �a� � v� � � � � � an � vn� �
Y

P �ai � vijai� � vi�� � � � � aini � vini �

�
Y

PT �c ai�vi� vi�� � � � � vini ��

� PT �a��v�� � � � � � an�vn��

�

The equivalence between P and PT now follows directly	 These two mea�
sures agree on all of the combinations of values for all of the RVs� they both
obey the probability axioms �Theorem A	�
 shows PT obeys the probabil�
ity axioms�� and so they agree on all formulae	 Thus we have the following
theorem�

Theorem ��� If H is a set of assignments to random variables in a Bayesian
Network� and H� is the analogous propositions to H in the corresponding
probabilistic Horn abduction theory T � then

P �H� � PT �H
���

This should not be too surprising as the set of explanations of any for�
mula correspond to an assignment of values for the ancestors in the Bayesian
network	 We can compute the values of any hypothesis by summing over the
values of the ancestors of the hypothesis	
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��� Propositional Abduction in Bayesian Networks

The preceding section showed how any Bayesian network can be represented
directly in terms of �propositional� probabilistic Horn abduction	
The opposite is also true	 Every propositional probabilistic Horn abduc�

tion theory corresponds directly to a Bayesian network	 Here we give the
mapping	
Each disjoint declaration maps to a random variable	 These form roots

�they have no ancestors� of the Bayesian network	
Every atom de�ned by rules also corresponds to a random variable	
If we have rules for a

a � b�� � � � � b�n��
			

a � bk� � � � � bknk �

we can de�ne atom ri to correspond to the i�th body� and have rules a� r��
through a� rk as well as k rules of the form ri � bi� � � � � bini 	
We also create nodes for the ri �we don�t have to but it makes the condi�

tional probability tables simpler�	
We make arcs between going from the bij to ri� and give the conditional

probability table for a conjunction	 We make arcs going from the ri to a�
giving the conditional probability table for a disjunction	
When we do this mapping and then use the translation of the previous

section to get back from the Bayesian network to a probabilistic Horn abduc�
tion theory� we get essentially the same probabilistic Horn abduction theory	
This new theory has many new atoms �corresponding to negations� which
may not have existed in the original theory� but must exist in the Bayesian
network� which can be ignored	 There also will be many more disjoint dec�
larations� but these will correspond to extreme distributions �one value has
probability ��� and can also be ignored �or partially evaluated away�	
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� Discussion

��� Independence and dependence

It may seem at �rst that only allowing independent hypotheses places a re�
striction on what we can represent	 People claim that there are dependencies
amongst hypotheses in the world	 The claim in this paper is that the world
can be represented so that all of the hypotheses are independent	 This appar�
ent con�ict can be resolved by noticing that the world does not determine
what the hypotheses are	 Just as� when de�ning n�dimensional Euclidean
spaces� we can de�ne the space with non�orthogonal axes� we can also de�ne
the space with orthogonal axes	 When we do so everything becomes simpler	
Just because we can axiomatise a world using dependent hypotheses does
not mean that we cannot de�ne the world using independent hypotheses	
The justi�cation for this claim is based on noticing that Bayesian networks

�that can represent arbitrary probabilistic interaction� can be represented
in our framework that uses only independent hypotheses	 Note however
that� as there can be an exponential number of independent values given n
probabilistic hypotheses� we may have to create an exponential number of
independent hypotheses in the probabilistic Horn abduction framework	 We
are not claiming that we are getting something for nothing	
Note that others have also noticed the universality of just having inde�

pendent hypotheses	 For example� consider Reichenbach�s principle of the
common cause�

�If coincidences of two events A and B occur more frequently
than their independent occurrence� 			 then there exists a common
cause for these events 			� ���� p	 ��
�	

When there is a dependency amongst random variables� we invent a hy�
pothesis to explain that dependence	 Thus the assumption of independence�
while it gives a restriction on the knowledge bases that are legal� really gives
no restriction on the domains that can be represented	
While we have the ability invent hypotheses� we don�t need to consider

non�independent hypotheses	 I would argue that it is much simpler and more
natural to invent new hypotheses to explain dependence rather than having
to worry about dependence in the language	
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��� Abduction and Prediction

When computing the prior probability of a hypothesis� we �nd the explana�
tions for that hypothesis	 This corresponds to the use of �abduction� ����	
If we consider conditional probability� as we normally do� we have

P ��j�� �
P �� � ��

P ���

�

P
ei�expl�����T �P �ei�P
ei�expl���T �P �ei�

We can generate expl�� � �� T � by explaining � from the elements of
expl��� T �	 This corresponds to the combination of abducing to causes and
default reasoning to predictions from these causes ���� ��� ���	 The results of
this paper� give extra evidence that this forms the �right� characterisation of
causal reasoning	 Abducing the causes and then assumption�based reasoning
from causes to predicting what should follow� is the common feature of both
Bayesian networks �see also� for example� Shachter and Heckerman ����� and
recent assumption�based logical schemes ���� ��� ���	
There is another close similarity between the abductive approaches and

the network propagation scheme of Pearl �
��	 Finding the explanations of
some g conceptually corresponds to working �up� the Bayesian network from
g	 Given evidence �� we �rst �nd expl��� T �	 This conceptually involves
searching up ��nding ancestors� the tree from �	 The next step involves
�nding expl�� � �� T �	 This can be obtained from explaining � from the
explanations of �	 If we want to compute this for all �� we can do this
by working down ��nding descendents� the tree from the explanations of �	
This ��phase approach is analogous to Pearl�s network propagation scheme�
with the initial moving up the tree corresponding to � messages� and the
second phase of moving down the tree from the explanations corresponds to
the � messages of Pearl �
��	 Given this analogy� it is also easy to see why
the upward � messages result in both � and � messages �as we need to carry
out both phases of the computation of the conditional probability�� while the
� messages only result in other � messages �we are in the second phase of
computing the conditional probability� namely �nding the explanations from
those explanations of the observations�	 It is not clear� however� how far this
analogy can be pushed	
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��� Causation

There have been problems associated with logical formulations of causation
�
��	 There have been claims that Bayesian networks provide the right inde�
pendencies for causation �
��	 This paper provides evidence that abducing
to causes and making assumptions as to what to predict from those assump�
tions ���� ��� is the right logical analogue of the independence in Bayesian
networks �as described in section �	��	
One of the problems in causal reasoning that Bayesian networks overcome

�
�� is in preventing reasoning such as �if c� is a cause for a and c� is a cause
for �a� then from c� we can infer �c��	 This is the problem that occurs� for
example� in the Yale shooting problem ����	 Our embedding says that this
does not occur in Bayesian networks as c� and c� must already be known to
be disjoint	
Figure 
 gives a Bayesian network for the Yale shooting problem�

holds(alive,do(shoot,do(wait,do(load,0))))

holds(alive,do(wait,do(load,0)))holds(loaded,do(wait,do(load,0)))

holds(alive,do(load,0))holds(loaded,do(load,0))

holds(alive,0)

Figure 
� Bayesian network for the Yale shooting problem	

The following is translation of the above diagram into a probabilistic Horn

�Pearl ���� has a similar graphical representation� although it was not explicitly a
Bayesian network� Here we have used a situation calculus type representation�
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abduction theory	�

holds�alive� do�shoot� S��� holds�alive� S�� holds�loaded� S��

holds�alive� do�shoot� S��� holds�alive� S��

holds�alive� do�shoot� S��� holds�alive� S�� holds�loaded� S��

holds�X� do�wait� S��� holds�X�S��

holds�loaded� do�load� S���

holds�alive� do�load� S��� holds�alive� S��

holds�alive� do�load� S��� holds�alive� S��

holds�alive� ���

holds�loaded� ���

The following formula can be proved�

holds�alive� do�shoot� do�wait� do�load� ������

The solution that is derived from the Bayesian network representation
is very similar to logic programming solutions to the frame problem �see
e	g	� ���� ��� using the equivalence of our negation to negation as failure for
acyclic theories ��� and� considering the completion of the program� to the
recent deductive solutions to the frame problem proposed by Reiter ���� and
Elkan ����	
The probabilistic Horn abduction representation allows us to consistently

add probability to the temporal representations	 For example� we could add
that there is a ���� probability of the person dying� and a ���
 probability of
the gun becoming unloaded during a wait operation� and a ����� probability
of the gun becoming spontaneously loaded while waiting �this is why it is
dangerous to play with guns��

holds�alive� do�wait� S��� holds�alive� S�� alive persists�S��

holds�alive� do�wait� S��� holds�alive� S��

holds�alive� ���

holds�alive� do�wait� S��� holds�alive� S�� dies�S��

�The atom holds��� �	 represents the negation of holds��� �	� Here we have explicitly
added the rules for the negations of the atoms �see Section ����	� The rules have been
generalised where appropriate�
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disjoint��alive persists�S� � ����� dies�S� � ������

holds�loaded� do�wait� S��� holds�loaded� S� � loaded persists�S��

holds�loaded� do�wait� S��� holds�loaded� S� � spontaneously loads�S��

holds�loaded� do�wait� S��� holds�loaded� S� � becomes unloaded�S��

holds�loaded� do�wait� S��� holds�loaded� S� � unloaded persists�S��

disjoint��loaded persists�S� � ����� becomes unloaded�S� � ���
���

disjoint��unloaded persists�S� � ������ spontaneously loads�S� � ��������

This formulation gets other persistence problems right	 For example� if
we happened to observe that the person is alive after the shooting� then the
gun must have become unloaded	 If there were a number of wait operations�
the unloading could have occurred at any of them	

� Representational Methodology

Once we have a tool� it is important to know how to use it	 The problem
of a representational methodology ���� is an important and much overlooked
part of automated reasoning research	
It may seem that the assumptions used in designing probabilistic Horn

abduction were so restrictive that the system would be useless for real prob�
lems	 In this section� I argue that this is not the case	
The general idea is to use de�nite clauses to write a simulation �in the

�causal� direction ����� based on dierent possible hypotheses	 This ax�
iomatisation must follow the assumptions about the rule base and about the
independence of hypotheses� but we argue in this section that this is not too
di�cult	
Indeed it is arguable� that rather than sti�ing the imagination of the

axiomatiser to write �what is true� in their domain� placing restrictions on
the representation language provides guidance to how to go about thinking
about the domain	 One of the aims of restricting the language is to make it
easier to write and understand an axiomatisation of the world	 Whether this
is true in practice� however� remains to be seen	
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��� Disjoint and Covering Explanations

For our probabilistic analysis �section �	��� we assumed that the explanations
were disjoint and covering	 If we want our probabilities to be correct� we must
ensure that the rules for an atom are disjoint and covering	
If the rules for an atom a are not covering� we can invent another cause

for the goal representing �all the other possible causes� of the atom ���� ����
and add

a� a true for some other reason�

and make a true for some other reason into a hypothesis	
Although disjointedness of rules places a restriction on the knowledge

base� it does not place a restriction on the sorts of knowledge that we can
represent	 In general� suppose we have rules�

a � b��
			

a � bn�

Create bi as the proposition that is the negation of bi �see Section �	�	
�� we
can make sure the rules are disjoint by transforming them into

a � b��

a � b� � b��

a � b� � b� � b��
			

a � b� � � � � � bn�� � bn�

Thus we make the rules disjoint� by ordering the rules and making sure
that the bodies of rules are false if the bodies of preceding rules are true	
Syntactically� this seems to increase the complexity of n rules to have

n�n
��
� atoms in the body	 While this is true� there are only �n  � dierent

atoms that need to be explained	 Thus� in practice� the complexity need only
increase linearly not as a square	

Example ��� Suppose we want to represent an �and�gate� that should have
value � if either of the inputs are zero	 Suppose we represent the proposition
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that port G has output V at time T as val�G�V� T �	 We can ensure that the
explanations are disjoint locally by ensuring that only one body can ever be
true�

val�out�G�� off� T � � and gate�G� � ok�G�

�val�input��� G�� off� T ��

val�out�G�� off� T � � and gate�G� � ok�G�

�val�input��� G�� on� T �

�val�input��� G�� off� T ��

val�out�G�� on� T � � and gate�G� � ok�G�

�val�input�on�G�� �� T �

�val�input��� G�� on� T ��

Note that the third conjunct in body of the second rule �the �val�input��� G�� on� T ���
is there to ensure that the bodies are disjoint	
This has repercussions in biasing the most likely explanation to the �rst

rule� which is more general than the others	 This problem of the most likely
diagnosis depending on the representation seems endemic to approaches that
try to �nd the diagnosis �either explanation or interpretation� that is �most
likely� �
�� ���	 We avoid this problem by not placing importance in the
most likely explanations� but only in how they contribute to the probability
of propositions	

��� Causation Events

When representing knowledge for abduction ���� ���� we have to be able to
make sure that we can imply the observations	 In general a fault or disease
doesn�t imply a particular observation	 For example� having a cold does not
imply sneezing� but could cause sneezing	 A gate being in an unknown state
does not imply any particular value for the output of the gate	 To solve this
problem we introduce another hypothesis that the cold caused the sneezing	
In the other example� we have to hypothesise that the gate is producing a
particular value	 This idea is analogous to the notion of a �causation event�
of Peng and Reggia ����	
The cold causing sneezing could be written as

sneeze� cold � cold caused sneeze
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Following Peng and Reggia ����� one way to implement the causation
events� is to use the relations has disease�D� to mean that the patient has
disease D� actually causes�D�M� to mean that disease D �actually caused�
manifestation M � and has manifestation�M� to mean that the patient has
manifestation M 	
We can say that a manifestation is caused by the disease that actually

causes it by�

has manifestation�M� � has disease�D�

�actually causes�D�M��

The conjunction

has disease�D� � actually causes�D�M�

corresponds to Peng and Reggia�s ���� causation eventM � D	
We have the disjoint declarations for each i� j�

disjoint��actually causes�di�mj� � pij � didnt actually cause�di�mj� � qij��

where pij corresponds to the the �conditional causal probability� ��causal
strength�� of ����� and qij � �  pij 	 pij can be seen as the fraction of the
cases where di is true that di �actually causes� mj	
We also have the possible hypotheses

disjoint��has disease�di� � pi� doesnt have disease�di� � qi��

where pi is the prior probability of the disease di� and qi � �  pi	
To implement this we still have to worry about making the rules disjoint	

This is done in the same way as in section �	�	 If manifestationm has possible
causes d�� � � � � dk� we write�

has manifestation�m� � has disease�d��

�actually causes�d��m��

has manifestation�m� � has disease�d�� � doesnt have disease�d��

�actually causes�d��m��
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has manifestation�m� � has disease�dk�

�doesnt have disease�d�� � � � �

�doesnt have disease�dk���

�actually causes�dk�m��

The advantage of making these disjoint is that we are now able to interpret
�actually causing� observationally for the cases where there are two possible
causes	 Here we arbitrarily assign the �actual cause� to the �rst disease	
It is now easy to interpret the notion of �actually causing�� as there is no
ambiguity in any data	 This makes the concept of �actual cause� into an
observational notion for which we can collect statistics and do not need a
theory of causation that is deeper than the theory we want to represent	

����� Hypotheses with indeterminate output

There is one case where we have to be concerned about causation events as
well as the problem of parametrizing possible hypotheses and the interaction
with the independence assumption	 I have argued elsewhere ���� ��� that
there is much power obtainable and subtlety involved in parametrizing hy�
potheses appropriately	 In this section we expand on previous analysis �����
and show how probabilities aect parametrization considerations when using
causation events by considering some case studies	
As an example� suppose we have a gate G that takes two values as input�

and outputs a value that can be in the range � to n	 Suppose we want to
represent the gate being in an unknown state� �this is applicable whether
or not we have fault models ���� ����	 Suppose we represent the proposition
that gate G has output V at time T as val�G�V� T �	
We cannot represent the hypothesis that the gate is in the unknown state

by using the hypothesis u�G� and the fact

val�out�G�� V� T �� u�G��

The problem is that the above fact states that a gate in the unknown state
produces all values of output� rather than saying that it produces some out�

�The unknown state is a state that we do not know anything about� This state is
di�erent to the ok state and other fault states� It does not mean that the gate is in some
state� but we do not know what state it is in�



Probabilistic Horn abduction and Bayesian networks 
�

put	 Knowing a gate is in an unknown state does not imply any value for
the output	
When there are no probabilities involved ���� ��� we parametrize the hy�

pothesis by the values on which it depends	 This could be done by having the
hypothesis produces�G�V� T � �interpreted as �gate G is faulty and produces
value V at time T�� and the rule

val�out�G�� V� T �� produces�G�V� T ��

We would say that a port has only one value at a time by having the disjoint
declaration��

disjoint��ok�P � � p�� produces�P� v�� T � � p�� � � � � produces�P� vr� T � � pr���

Suppose we know that gate g� has probability � of being in the unknown
state	 Then p� � �  �	 If we assume that each possible output value has
equal chance� and that there are r possible output values� then pi� the prior
probability that it produces output value vi is ��r for � � i � r	
When we have more than one observation� there is another problem	 For

the probabilities we assumed that the hypotheses were independent	 We
would not expect that

P �produces�g�� �� t��jproduces�g�� �� t��� � P �produces�g�� �� t���

Once we know that the gate is in an unknown state at time t� it should not
be so unlikely that it is in an unknown state at time t�	 The fact that the
gate is in an unknown state is independent of the time	 We would not expect
that the gate has probability �k of being in the unknown state for k periods
of time� rather we would expect that the gate has probability � of being in
an unknown state	
To work in general� we need a mixture of the above two ideas	 Suppose a

gate G has probability of � of being in the unknown state� and that there are
r possible output values� each of which has an equal prior chance of being
produced by a gate in the unknown state	 This can be represented as the

�Here we have assumed that there are no fault states other than the unknown state�
These could be added to this declaration without changing the point of the discussion�

�Of course� probabilistic Horn abduction can represent either alternative�
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hypotheses��

disjoint��produces�P� v�� T � �
�
r
� � � � � produces�P� vr� T � �

�
r
���

disjoint��ok�G� � p�� � � � � u�G� � ����

and the rule

val�out�G�� V� T �� u�G� � produces�G�V� T ��

u�G� means G is in the unknown state� and produces�G�V� T � means that
given gate G is broken� it produces value V at time T 	 The system assumes
once that the gate is broken� and then makes other assumptions of what
values it is producing at dierent times	
The atom produces�G�V� T � can be seen as a �causation event�� that we

invent because being in an unknown fault state does not imply any particular
value	

����� Intermittent versus nonintermittent faults

Because of the way we parametrized the hypotheses� the above representation
of faults says that the output is a function of only the time	 The hypothesis
produces�G�V� T � and the above rules places no constraints on the values of
the outputs at dierent times	 This is a way to represent the fact that the gate
can have an intermittent fault �it depends only on the time of observation�	
There is no constraint that says the gate produces the same output when
given the same inputs at dierent times	
We can give the non�intermittency assumption by saying that the fault

depends only on the input and not on the time	 This can be done instead by
having the hypothesis prod�G�V� I�� I�� �meaning gate G produces output V
when given I� and I� as input� and a rule

val�out�G�� V� T � � u�G� � prod�G�V� I�� I��

�val�input��� G�� I�� T �

�val�input��� G�� I�� T ��

�	Here we assume a uniform distribution of values� Any other distribution could be
given�
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xor1(N)
xor2(N)

and1(N)

and2(N)

or1(N)

input(1,adder(N))

input(2,adder(N))

input(3,adder(N))

output(1,adder(N))

output(2,adder(N))

Figure �� One bit adder� adder�N�	

��� Two Examples

In this section we show the complete theories for two non�trivial examples	

Example ��� This �rst example is an implementation of cascaded one bit
adders �Figures � and ��� to form a ripple adder	
The axiomatisation is adapted from the consistency�based axiomatisation

of Genesereth ����	

off

adder(1) adder(s(1)) adder(s(s(1)))

Figure �� Three cascaded adders
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val�P� V� T � means that port P has value V at time T 	 We use as simple
a representation of time as is needed	 In this case we need to be able to
have dierent observations at dierent times� and use constants to denote
dierent times	
We �rst axiomatise how gates work	 We must axiomatise how normal

gates as well as faulty gates work ��
� ���	
Each of the gates can be in one of four states �ok� stuck on� stuck o or

unknown�	 When the gate is in the unknown u state it can produce either
value with equal probability	 We also used the intermittency assumption	

val�output�G�� off� T ��
gate�G� and� � ok�G� � val�input��� G�� off� T ��

val�output�G�� off� T ��
gate�G� and�� ok�G� � val�input��� G�� on� T ��
val�input��� G�� off� T ��

val�output�G�� on� T ��
gate�G� and� � ok�G� � val�input��� G�� on� T � �
val�input��� G�� on� T ��

val�output�G�� on� T ��
gate�G� or� � ok�G� � val�input��� G�� on� T ��

val�output�G�� off� T ��
gate�G� or� � ok�G� � val�input��� G�� off� T ��
val�input��� G�� off� T ��

val�output�G�� on� T ��
gate�G� or� � ok�G� � val�input��� G�� off� T ��
val�input��� G�� on� T ��

val�output�G�� off� T ��
gate�G�xor� � ok�G� � val�input��� G�� off� T ��
val�input��� G�� off� T ��

val�output�G�� on� T ��
gate�G�xor� � ok�G� � val�input��� G�� off� T ��
val�input��� G�� on� T ��

val�output�G�� on� T ��
gate�G�xor� � ok�G� � val�input��� G�� on� T ��
val�input��� G�� off� T ��
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val�output�G�� off� T ��
gate�G�xor� � ok�G� � val�input��� G�� on� T ��
val�input��� G�� on� T ��

val�output�G�� on� T �� stuck��G��
val�output�G�� off� T �� stuck��G��
val�output�G�� V� T �� u�G� � produced�G�V� T ��

val�P� V� T �� conn�Q�P � � val�Q�V� T ��

Note how we have made the rules disjoint� by adding extra conditions	
For example� the second rule includes the condition val�input��� G�� on� T �
that is there just to make sure the rules are disjoint	 Treated as a de�nite
clause in isolation this rule is true without this second condition	
We also specify the random variables as outlined in the preceding section	

Note that this implies that the gates fail independently	

disjoint��ok�X� � ������ u�X� � ���������� stuck��X� � ���������� stuck��X� � ���������
disjoint��produced�X� on� T � � ���� produced�X� off� T � � ������

We axiomatise how the gates in an adder are connected� and what gates
there are in an adder	

conn�input��� adder�N��� input��� xor��N����
conn�input��� adder�N��� input��� and��N����
conn�input��� adder�N��� input��� xor��N����
conn�input��� adder�N��� input��� and��N����
conn�input�
� adder�N��� input��� xor��N����
conn�input�
� adder�N��� input��� and��N����
conn�output�xor��N��� input��� xor��N����
conn�output�xor��N��� input��� and��N����
conn�output�and��N��� input��� or��N����
conn�output�and��N��� input��� or��N����
conn�output�xor��N��� output��� adder�N����
conn�output�or��N��� output��� adder�N����
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conn�output��� adder�N��� input�
� adder�N����� succ�N�N���
val�input�
� adder����� off� T ��

gate�xor��N�� xor��
gate�xor��N�� xor��
gate�and��N�� and��
gate�and��N�� and��
gate�or��N�� or��

succ�N� s�N���

The relation succ�N�N�� is used to state when one gate is next to another	
This allows us to observe arbitrarily large cascaded adders	
In order for us to be able to observe inputs and to be able to predict

expected values from unknown inputs we can make the inputs to the gates
to be random variables	 �The alternative is to write as facts what the inputs
to the gates are �����	

disjoint��val�input��� adder�N��� on� T � � ���� val�input��� adder�N��� off� T � � ������
disjoint��val�input��� adder�N��� on� T � � ���� val�input��� adder�N��� off� T � � ������

We can specify an observation such as that �� � �� gave ���� as

val�input��� adder����� off� t��

� val�input��� adder�s������ on� t��

� val�input��� adder����� on� t��

� val�input��� adder�s������ on� t��

� val�output��� adder����� on� t���

� val�output��� adder�s������ off� t��

� val�output��� adder�s������ off� t��

Example ��� The second example is of the framework for depiction and
image interpretation of Reiter and Mackworth ����	 Here we interpret simple
line drawings of a map	 These consist of lines and areas that depict roads�
rivers� shores� lakes and land	 Our axiomatisation is based on the abductive
representation of ����	
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scene image

linear���X�� road� chain�X�
linear���X�� river�
linear���X�� shore�
area���X�� land� region�X�
area���X�� water�
joins���X�� ��Y �� E� tee�X�Y�E�
flowsto���X�� ��Y ��
docross���X�� ��Y �� chi�X�Y �
source���X�� N� open�X�N�
petersout���X�� N�
linear���X�� shore� closed�X�
roadloop���X��
beside���X�� ��Y �� bounds�X�Y �
inside���X�� ��Y �� � outside���X�� ��Z�� encloses�Y�X�Z�

Figure �� Image�scene predicates	

We axiomatise how scene objects could have produced image objects	
Given an image we conjecture scene elements that could have produced that
image	
The main dierence between this axiomatisation and those of ���� ��� is

that we have to make constructive derivations of the image	 Rather than
starting with all interpretations� and use consistency to prune those that are
impossible� we make sure that we can only generate possible explanations	
This follows the methodology given earlier in this section	
Following Reiter and Mackworth ����� for each image object I we assume

a scene object ��I� which it depicts	
Figure � gives the correspondences between image and scene predicates	
We �rst allow one to write the building blocks of explanations	 area�S� land�

means that the scene object S is land� given that it is a region	 The proba�
bilities re�ect that in our �made�up� domain� �� of the areas are water and

� are land	

region�I�� area���I�� T ��



Probabilistic Horn abduction and Bayesian networks 
�

disjoint��area�S� land� � ��
� area�S�water� � ������

Similarly linear�S� T � means that linear scene object S is of type T � where
T is one of road� river or shore	 Linear scene objects are depicted as chains
in the image	

chain�I�� linear���I�� T ��
disjoint��linear�S� road� � ���� linear�S� river� � ���� linear�S� shore� � ��
���

We now have axioms that describe how structured image objects �joins
of chains and boundaries between chains and regions� could be produced in
terms of scene objects	

tee�X�Y�E� means that end E of chain X ends at chain Y 	 This can
either be because X depicts a road that joins Y � or X depicts a river that
starts at Y � or X depicts a river that �ows into �river or shore� Y 	 We
arbitrarily number ends of chains with a � or a �� and one end of a river
needs to be a mouth and one a source of the river	

tee�X�Y�E�� joins���X�� ��Y �� E� � linear���X�� road��
tee�X�Y�E�� joins���X�� ��Y �� E� � linear���X�� river��

linear���Y �� road� � source���X�� E��
tee�X�Y�E�� linear���X�� river�� canflowto���Y �� �

flowsto���X�� Y � �mouth���X�� E��
canflowto�S�� linear�S� river��
canflowto�S�� linear�S� shore��
disjoint��joins�S� T�E� � ����� notjoins�S� T�E� � �������
disjoint��mouth�S� �� � ����mouth�S� �� � ������
disjoint��flowsto�R�S� � ���� notflowsto�R�S� � ������
disjoint��source�R� �� � ���� source�R� �� � ������

Similarly we can handle two chains crossing �a �chi� � 	� in the image	
Here again we just use the notion of a causal event to make the implication
always true	 Here we arbitrarily decided that all types of crossing are equally
likely	

chi�X�Y �� crossable���X�� ��Y �� � docross���X�� ��Y ���
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crossable�X�Y �� linear�X�XT � � linear�Y� Y T � � crosstype�XT� Y T ��
crosstype�road� road��
crosstype�road� river��
crosstype�river� road��
crosstype�road� shore��
crosstype�shore� road��
disjoint��docross�X�Y � � ���� dontcross�X�Y � � ������

We can also have a chain being open or closed	 Note here that the prob�
abilities tell us that all shores form closed loops� and some� but very few
roads form loops	 It is also more likely that a river ends nowhere than a
road does �to have a road ending we have to hypothesise that the road peters
out� whereas for a river we have to hypothesis that the end is a source of the
river�	

open�X�N�� linear���X�� river�� source���X�� N��
open�X�N�� linear���X�� road� � petersout���X�� N��
disjoint��petersout�X�E� � ���� doesntpeterout�X�E� � ������
closed�X�� linear���X�� shore��
closed�X�� linear���X�� road� � roadloop���X���
disjoint��roadloop�X� � ����� notloop�X� � �������

We can also have a chain bounding an area� and reason about what areas
can be inside or outside loops	 Image predicate encloses�Y�X�Z� means that
region Y is interior to chain X� and region Z is exterior to chain X	

bounds�X�Y �� linear���X��XT � � area���Y �� Y T � �
beside���X�� ��Y �� � possbeside�XT� Y T ��

possbeside�road� land��
possbeside�river� land��
possbeside�shore� land��
possbeside�shore�water��
disjoint��beside�X�Y � � ���� notbeside�X�Y � � ������
disjoint��inside�X�Y � � ���� outside�X�Y � � ���� noside�X�Y � � ������
encloses�Y�X�Z�� outside���X�� ��Z�� � inside���X�� ��Y �� � linear���X��XT ��

area���Y �� Y T � � area���Z�� ZT �� possreg�Y T�XT�ZT ��
possreg�land� road� land��
possreg�land� shore�water��
possreg�water� shore� land��
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An image becomes an observation that we condition on	 For example�
the image of �gure � is represented as the observation

chain�c�� � chain�c�� � chain�c
� � region�r�� � region�r�� �
tee�c�� c�� �� � bounds�c�� r�� � bounds�c�� r�� � bounds�c�� r��
� encloses�r�� c�� r��� open�c�� �� � closed�c�� � open�c
� �� �
tee�c
� c�� �� � bounds�c
� r��

c1

c2

c3
r1

r2

1
01

0

Figure �� A simple image	

There are four explanations of this observation	 These are given here with
their corresponding prior probability�

Explanation� flinear���c��� shore�� linear���c��� river�� linear���c
�� river��
area���r��� water�� area���r��� land�� flowsto���c��� ��c����mouth���c��� ���
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beside���c��� ��r���� beside���c��� ��r���� beside���c��� ��r���� outside���c��� ��r����
inside���c��� ��r���� source���c��� ��� source���c
�� ��� flowsto���c
�� ��c����
mouth���c
�� ��� beside���c
�� ��r���g
Prior � ����
� � �����

Explanation� flinear���c��� shore�� linear���c��� river�� linear���c
�� road��
area���r��� water�� area���r��� land�� flowsto���c��� ��c����mouth���c��� ���
beside���c��� ��r���� beside���c��� ��r���� beside���c��� ��r���� outside���c��� ��r����
inside���c��� ��r���� source���c��� ��� petersout���c
�� ��� joins���c
�� ��c��� ���
beside���c
�� ��r���g
Prior � ����� � �����

Explanation� flinear���c��� shore�� linear���c��� road�� linear���c
�� road��
area���r��� water�� area���r��� land�� joins���c��� ��c��� ��� beside���c��� ��r����
beside���c��� ��r���� beside���c��� ��r���� outside���c��� ��r����
inside���c��� ��r���� petersout���c��� ��� petersout���c
�� ��� joins���c
�� ��c��� ���
beside���c
�� ��r���g
Prior � ��
 � �����

Explanation� flinear���c��� road�� linear���c��� road�� linear���c
�� road��
area���r��� land�� area���r��� land�� joins���c��� ��c��� ��� beside���c��� ��r����
beside���c��� ��r���� beside���c��� ��r���� outside���c��� ��r����
inside���c��� ��r���� petersout���c��� ��� roadloop���c���� petersout���c
�� ���
joins���c
�� ��c��� ��� beside���c
�� ��r���g
Prior � ��� � ����	

The prior probability of the image is the sum of the prior probabilities of
these four explanations� namely ������ � �����	 We can use these explana�
tions to compute arbitrary conditional probabilities	 For example�

P �linear���c��� river�jimage� �
����
� � ����� � ����� � �����

������ � �����
� �������

��� Arbitrary Individuals

One of the problems considered in ����� is that of when there can be arbi�
trary individuals that aect a value� and the individuals present can only be
determined at run time	
As an example� consider the problem of a �re alarm going o� where it

goes o if it was set o by one of the individuals present	 All of the individuals
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can independently set o the alarm	 We cannot write rules such as

alarm�sounds�� present�P � � set o� alarm�P ��

as the disjoint rules condition is violated	 This is related to the problem in
�rst order logic of being able to count the number of people present given
just a database of relations of the form present�P �	 We cannot prove there
are � people present just because we have present�P � true for � instances of
P � unless we have stated that everyone else is not present	 Like �rst�order
logic� we cannot represent such knowledge	
We can however encode the problem so that we can count the number of

people present	 This is by forcing us to write present�L� where L is a list of
the people present	
We can now represent the problem by���

alarm�sounds� � present�L� � one set o� alarm�L��

alarm�quiet� � present�L� � none set o� alarm�L��

one set o� alarm��HjT �� � set o� alarm�H��

one set o� alarm��HjT �� � didnt set o� alarm�H�

�one set o� alarm�T ��

none set o� alarm��HjT �� � didnt set o� alarm�H�

�none set o� alarm�T ��

none set o� alarm�����

disjoint��set o� alarm�P � � p�� didnt set o� alarm�P� � p����

Here p� is the probability that a person would have set o an alarm given
that no one before them had already set o the alarm	 p� � � p�	

� Comparison with Other Systems

Before comparing the work in this paper with other proposals� we should
note that in this paper we have described a representation� and not a way

��Here we use the Prolog syntactic sugar for lists ����� �j� is just a binary function
symbol� �� is a constant� We use the notational convention that ��j���� is written as ��� ��
for any sequence of symbols � and ��



Probabilistic Horn abduction and Bayesian networks ��

to compute posterior probabilities	 There are many ways that could be used
to compute posterior probabilities� we could use some form of stochastic
simulation �e	g	� ������ search �e	g	� ���� ����� or even using the mapping to
Bayesian networks to translate ground instances of the theory into some
secondary structure for propagating evidence �e	g	� ���� �
��	 We thus only
compare the representation to other proposals� and not any implementations	

��� Other logic�based abductive schemes

There are many other proposals for logic�based abduction schemes �e	g	� ��
�
��� ����	 These however consider that we have to �nd all of the diagnoses	
In practice there are prohibitively many of these	 It is also not clear what
to do with all of the explanations� there are too many to give to a user� and
the costs of tests to determine which of the diagnoses is the �real� diagnosis
is usually not outweighed by the advantages of �nding the real diagnosis
�see Ledley and Lusted ���� for an early description of the importance of
probabilistic and value information in diagnosis�	 We provide an answer to
the problem of what to do with the explanations� we use them to compute
posterior probabilities that can be used for making decisions	
The closest version of abduction to that presented here is that of Goebel

et	 al	 ����� where there is also the simple abductive scheme where we do not
need to do any chaining in order to determine inconsistency	 Essentially we
have added probabilities to that scheme under certain assumptions about the
knowledge base and independence	

��� Probability and diagnosis

de Kleer and Williams ��
� ��� and Peng and Reggia ���� both incorporate
probabilistic knowledge to �nd the most likely diagnoses� but do not provide
as �exible and simple a representation language as the one here	
de Kleer and Williams ��
� ��� have explored the idea of using probabilis�

tic information in consistency�based diagnosis �see ��
� ��� for comparisons
between abductive and consistency�based diagnoses�	
The major dierences between their approach and the one presented in

this paper is that they dier in what they want to �nd the probability of	 de
Kleer and Williams �nd the most likely interpretations �assignment of values
to all hypotheses�	 This is the same as the diagnoses of Peng and Reggia
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���� and the composite beliefs of Pearl �
��� but is dierent from the diag�
noses of de Kleer� Mackworth and Reiter ����	 We �nd the probabilities of
explanations� we remain agnostic about the value of �irrelevant� hypotheses	
de Kleer and Williams cannot distinguish between diagnoses that dier in
substantial ways from those that dier only in varying values that are irrel�
evant to the diagnosis	 In our system� hypotheses that are not part of an
explanation are irrelevant and are ignored	 We do not place such an impor�
tance on the explanations� but rather on using the explanations to compute
probabilities �see ���� for some of the issues involved in considering what we
want to compute the probability of�	
Peng and Reggia ���� also consider an abductive de�nition of diagnosis

and incorporate probabilities� and best��rst search	 One dierence is that
they are trying to �nd probabilities of interpretations� but we are using ex�
planations to �nd the probabilities of atoms	 The main dierence is in the
underlying language	 They use the notion of �hyper�bipartite� graphs made
up of causation relations on sets of manifestations �can be observed�� disor�
ders �can be hypothesised�� and pathological states	
One way to look at what they are doing is to consider it as a restriction

of the system presented here where the language is propositional and allows
only one element in the body of a clause	 It is� however� not expressed in a
logical language	
Hobbs et	 al	 ���� have devised a �cost�based abduction� for interpre�

tation of natural language	 Their scheme is similar to the one presented
here� but they use costs associated with assumptions rather than probabil�
ities	 These costs can be seen as �log probabilities ���	 One can view the
current work as extending Hobbs et	 al	�s to derive posterior probabilities in
a consistent manner	

��� Logic and Bayesian networks

The representation of Bayesian networks is related to the work by Charniak
and Shimony ��� �
�	 Instead of considering abduction� they consider models
that consist of an assignment of values to each random variable	 The label
of ��
� plays an analogous role to our hypotheses	 They however� do not use
their system for computing posterior probabilities	 It is also not so obvious
how to extend their formalism to more powerful logics	
Horsch and Poole ����� Breese ��� have de�ned systems that incorporate
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Prolog style rules and Bayesian networks	 These were designed to allow for
dynamic construction of Bayesian networks	 The rules of ���� cannot be in�
terpreted logically but are macros that map into Bayesian network structure	
The rules of Breese ��� are Prolog�style rules that are used to build a net�
work	 The output of the Prolog is a Bayesian network �or more generally
is an in�uence diagram� that can be passed to a Bayesian network solver	
Ours diers in that the Prolog like rules form the Bayesian network them�
selves	 We would need another� meta�level� program to transform our Prolog
rules into Bayesian networks for a traditional Bayesian network interpreter
to solve	

��� Horn abduction and Dempster�Shafer

This work is also closely related to recent embeddings of Dempster�Shafer
theory in ATMS ���� ���	 One dierence between our embedding of Bayesian
networks and Dempster�Shafer is in the independence assumptions used	
Dempster�Shafer theory assumes that dierent rules are independent	 We
assume they are exclusive	 Another dierence is that these embeddings do
not do evidential reasoning �by doing abduction�� determining probability of
hypotheses given evidence� but rather only determine the �belief� of propo�
sitions from forward chaining	

��� Argument systems

Doyle ���� and Loui �
�� have argued that decisions can be best seen in
terms of arguments for and against some propositions	 Other have viewed
nonmonotonic reasoning in terms of arguments ���� ��� 
�� ���	 The ex�
planations that we use can be seen as premises for logical arguments	 We
determine the probability of some proposition by coming up with arguments
for the proposition	 Rather than treating argument�based systems as an al�
ternative to probabilistic reasoning� we treat the argument�based system as
a representation for probabilistic reasoning	

��� Logic programming and uncertainty

There have been other attempts to incorporate uncertainty into logic pro�
gramming	 These have typically not considered probability� but other uncer�
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tainty calculi such as certainty factors ����	 Ng and Subrahmanian �
�� have
combined logic programming and probability by allowing us to axiomatise
probability in logic� and then use Prolog�style rules to give the probabilistic
information	 The Prolog rules reason about the probability� at much more
of a meta�level than that proposed here	 They can write down any inde�
pendence assumptions and any conditional probability statements with the
system giving no guidance as to what to write	 In other work� Ng and Sub�
rahmanian �
�� have considered how to incorporate statistical probability �
�
into logic programming	 This should be seen as complementary to the work
in this paper	

� Conclusion

This paper has presented a pragmatically�motivated simple logic formula�
tion that includes de�nite clauses and probabilities over hypotheses	 This
was designed to be a compromise between representational adequacy� ease to
interpret semantically what the knowledge means� and ease of implementa�
tion	 It is suggested that this simple tool provides a good representation for
many evidential reasoning tasks	
This is supported by the demonstration that probabilistic Horn abduc�

tion forms a logic of discrete Bayesian networks	 There is a direct mapping
between the knowledge in a Bayesian network and the knowledge in a prob�
abilistic Horn abduction theory	
This is also interesting because it provides a link to earlier work on the use

of assumption�based reasoning for default reasoning ���� ��� ���	 One of the
ways of viewing default reasoning is where an adversary chooses the assump�
tions	 One way of viewing the probabilistic Horn abduction is as an instance
of assumption�based reasoning� but where nature chooses the assumptions	
This paper also demonstrates the correspondence between the observations
that need to be explained in abduction ����� and what is conditioned on in
Bayesian probability	
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A Formal Semantics

In this section we give the formal semantics for our language	 As the lan�
guage is very simple� the semantics will be correspondingly simple	 The
semantics will basically be that of Bacchus �
�� restricted to our language�
and incorporating our assumptions	
The logical statements will restrict the possible worlds� and the probabili�

ties will provide measures over the possible worlds	 The language is specially
designed so that the logical facts neither implies a hypothesis nor implies the
negation of a hypothesis	 This means that we can treat the logic part and
the probabilistic part of our semantics independently	
The tricky thing we have to worry about is that there are potentially

in�nitely many independent hypotheses� with non�extreme �i	e	� not equal to
� or �� probabilities	 If we have one function symbol and one parametrized
hypothesis h�X� with non extreme probability� we have in�nitely many inde�
pendent hypotheses of the form h�t� for each ground term t	 Once we have
this� the probability of each possible world will be zero	 Thus� we cannot just
sum over the possible worlds to determine the probability of a proposition
�as is done in �
��	 We instead provide a measure over sentences that can
be described in our language �as in ����	 As we have made sure that the
logic provides no constraints on the probabilities� we only need to consider
sentences made of hypotheses in order to de�ne the probability space	
As discussed in section �	�� we make the unique names assumption	 This

is speci�ed formally by making the domain we consider be the set of ground
terms in the language �similar the Herbrand Universe �
���	

De�nition A�� A semantic structure is a tuple hW�D�
� �� P �i� where

W is a non�empty set	 Elements of W are called possible worlds	

D is a non�empty set �of individuals�	 D here is the set of ground terms in
the language	


 is a function that maps each n�ary function symbol to an element of
Dn �� D �in particular 
 maps each constant to an element of D�	
We can extend 
 to ground terms� by the use of the recursive scheme

�f�t�� � � � � tn�� � 
�f��
�t��� � � � � 
�tn��	 In particular 
 is the identity
function so that 
�t� � t for any term t	 Because the mapping does
not depend on the world� these form �rigid designators�	
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� is a ��� function such that ��w� maps each n�ary predicate symbol into a
subset of Dn	

P � is a function from H �� ��� ��	

De�nition A�� We de�ne the semantic relation j�hW�D�����P �i between pos�
sible worlds and formulae�
The �rst case is for atoms

w j�hW�D�����P �i p�t�� � � � � tn� if h
�t��� � � � � 
�tn�i � ��w��p��

The second is for conjunctions between atoms in the bodies of rules� as
well as for conjunctions of de�nitions in our theory�

w j�hW�D�����P �i b� � b� i w j�hW�D�����P �i b� and w j�hW�D�����P �i b�

The third rule de�nes the truth of de�nitions� and incorporates the as�
sumptions about disjointedness and coveringness�

If b�� � � � � bn are all the bodies de�ning a

w j�hW�D�����P �i �a� b�� � � � � � �a� bn�

if
�
w j�hW�D�����P �i a and �i �w j�hW�D�����P �i bi� and �j �� i �w �j�hW�D�����P �i bj�

�

or
�
w �j�hW�D�����P �i a and �j �w �j�hW�D�����P �i bj�

�

The fourth rule de�nes the �disjoint� assertion	

w j�hW�D�����P �i disjoint��h� � p�� � � � � hm � pm��

if �i �w j�hW�D�����P �i hi� and �j �� i �w �j�hW�D�����P �i hj�

and �i P ��hi� � pi

De�nition A�� The set of possible worlds given theory T � denoted WT is
de�ned as

WT � fw � W � w j�hW�D�����P �i T
�g

where T � is the set of ground instances of elements of T 	

In order to interpret the probabilities of possible worlds� we create the
algebra of subsets ofWT that can be described by �nite formulae of instances
of hypotheses	
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De�nition A��

!hW�D�����P �i � f� � WT � �formula f���w � � w j�hW�D�����P �i f�g

By formula we mean a �nite formula make up of conjunctions and disjunc�
tions of elements of H �	

The elements of !hW�D�����P �i form a sample space ���	 Elements of !hW�D�����P �i

are closed under �nite union� and complementation �given that we can com�
plement any hypothesis by using the disjunct of the remaining hypotheses�	
Like Bacchus ���� we do not require sigma�additivity of our sample space	
Because our language is so weak� we do not need countable unions	

De�nition A�� An interpretable DNF formula of hypotheses is a for�
mula of the form

n�
i��

ki�
j��

hij

where hij is a ground instance of a hypothesis such that�

�	 for each i� there is no j� �� j� such that fhij�� hij�g is a subset of an
instance of a disjoint declaration in T �i	e	� fhij�� hij�g does not form
part of an integrity constraint�	

�	 for each i� �� i� there exists j�� j� such that fhi�j�� hi�j�g are in an
instance of a disjoint declaration in T �i	e	� the disjuncts are disjoint�	


	 For no i� �� i� is it the case that fhi��� � � � � hi�ki�g � fhi��� � � � � hi�ki�g	

Lemma A�� Every �nite formula make up of conjunctions and disjunctions
of elements of H � is equivalent� given T �i	e	 they describe the same subset
of WT � to an interpretable DNF formula	

Proof� To satisfy the �rst and third conditions we can remove
inconsistent conjuncts and any supersets of other formulae	 The
resulting formula is equivalent to the original	

Suppose C� and C� are conjuncts that do not satisfy the second
condition	 Suppose� without loss of generality that C� �

Vk�
j�� h�j	

Each h�j is in a disjoint declaration	 Let Dj be the disjunct of
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the hypotheses in the instance of a disjoint declaration in which
h�j appears	 Each Dj is true in all elements of WT 	 Thus� C� �Vk�
j��Dj is equivalent to C� given T 	 Distribute C��

Vk�
j��Dj into

DNF� remove the conjunct that is a superset of C�� replace C�

by this disjunct	 We now have removed a violation of the second
condition and have an equivalent formula	 This can be done for
all violations of the second formula	 �

We can de�ne a measure over the syntactic formulae as follows�

De�nition A�� If
Wn
i��

Vki
j�� hij is an interpretable DNF formula� hij � H

and P � is a function from H �� ��� ��� then de�ne the function �P � by

�P �

�
�

n�
i��

ki�
j��

hij

�
A �

X
i

Y
j

P ��hij�

The following lemma shows that equivalent formulae will always have the
same measure	

Lemma A�	 If f� and f� are interpretable DNF formulae such that f� 	 f�
then �P ��f�� � �P ��f��	

Proof� Consider the set of all instances of hypotheses that ap�
pear in either f� or f�	 This subset ofH � is �nite	 Each hypotheses
in this set appears in a ground instance of a disjoint declaration	
Let D be the set of all such disjoint declarations	 Each disjoint
declaration corresponds to a disjunct of the hypotheses of the dis�
junct declaration	 Each conjunct in f� and f� has elements from a
subset D	 We can extend each conjunct to coverD� by conjoining
to each hypothesis the disjunct of each disjoint declaration that is
not represented in the conjunction	 We then distribute to DNF	
This procedure does not change the probability of any conjunct
�as the probabilities of the disjunct of each disjoint declaration
sum to one� and we can distribute multiplication over addition�	

Once this procedure is carried to the two equivalent formulae�
they will be syntactically identical �up to commutativity and as�
sociativity�� as any dierence can be extended into a possible
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world in which they have a dierent value	 This cannot happen
as they are equivalent	

Thus they must have the same measure	 �

We can use this measure over formulae to induce a measure over the
elements of !hW�D�����P �i�

De�nition A�
 Suppose � � !hW�D�����P �i and � can be described by for�
mula f�	 Suppose f� is equivalent to interpretable DNF formula

W
i

V
j hij�

then de�ne
�hW�D�����P �i��� �

X
i

Y
j

P ��hij�

The following lemma can be easily proven given Lemma A	� showed that
that above function is well de�ned	

Lemma A��� �hW�D�����P �i is a well�de�ned probability function� obeying
the axioms of probability�

�	 �hW�D�����P �i��� � � for all � � !hW�D�����P �i

�	 �hW�D�����P �i�WT � � �	


	 If ����� � fg then �hW�D�����P �i������� � �hW�D�����P �i������hW�D�����P �i�����
for all ��� �� � !hW�D�����P �i

De�nition A��� If T is a probabilistic Horn abduction theory� and a is a
formula� the probability of a given T � written PT �a� is de�ned as�

PT �a� � �hW�D�����P �i�fw � WT � w j�hW�D�����P i ag�

The following lemma shows that PT does indeed coincide with P �	

Lemma A��� If h is a ground hypothesis de�ned in T then PT �h� � P ��h��

Proof�

PT �h� � �hW�D�����P �i�fw � WT � w j�hW�D�����P i hg�

fw � WT � w j�hW�D�����P i hg is described by h� and so� by de�ni�
tion of �hW�D�����P �i� PT �h� � P ��h�	 �
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Theorem A��� If A is a ground atom or conjunction of ground atoms�

PT �A� �
X

ei�expl�A�T �

Y
hij�ei

P �hij�

where expl�A�T � is the set of minimal explanations of A from theory T �

In other words� the semantics justi�es our use of summing the explana�
tions to �nd the prior probability of a proposition	

Proof� For this proof we treat A as a set of atoms as well as
the conjunction of these elements	 What is meant should be clear
from context	

Based on the acyclicity of T � we de�ne a well founded ordering
over sets of occurrences of atoms in T �	 Because T � is acyclic
�assumption �	��� there is an assignment of natural number to
occurrences atoms in T � such that the elements of the body of a
rule are less than the head of the rule	 Call this number the depth
of the rule	 Because there are no rules with a hypothesis as head
�assumption �	��� we can consistently assume that all hypotheses
have depth zero	

The induction ordering is based on the lexicographic ordering of
pairs hd� ni where d is the depth of the element of the set with
maximal depth� and n is the number of elements of this depth	
Each time through the recursion either d is reduced or d is kept
the same and n is reduced	 This is well founded as both d and n
are non�negative integers	

For the base case� where d � �� A is a conjunction of hypothe�
ses	 If A is inconsistent then there are no explanations� and the
models of WT can be described by false� the empty disjunct�
and so PT �A� � �	 If A is consistent� then there is one minimal
explanation for A� namely A itself� so

X
ei�expl�A�T �

Y
hij�ei

P �hij� �
Y
h�A

P �A�

Because the space de�ned by A has A as its interpretable DNF
formula� we have

PT �A� �
Y
h�A

P �A��
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For the inductive case� suppose d  � and a is a proposition in
A with greatest depth	 Let R � Anfag	 As d  �� a is not a
hypothesis	 Suppose there are m rules de�ning a�

a� B�

a� B�
			

a� Bm

Under the ordering above Bi �R � d� and so we can inductively
assume the lemma for Bi � R	 Thus

PT �Bi �R� �
X

ei�expl�Bi�R�T �

Y
hij�ei

P �hij�

Now the minimal explanations of a are obtained from the minimal
explanations of the Bi� in particular

expl�fag �R�T � �
m�
i��

expl�Bi �R�T �

Also� as far as the semantics are concerned a 	
W
iBi	 Thus� by

additivity �lemma A	���� and the fact that the Bi are disjoint

PT �fag � R� �
mX
i��

PT �Bi �R�

�
mX
i��

X
ei�expl�Bi�R�T �

Y
hij�ei

P �hij�

�
X

ei�
Sm

i��
expl�Bi�R�T �

Y
hij�ei

P �hij�

�
X

ei�expl�fag�R�T�

Y
hij�ei

P �hij�

As A � fag �R the theorem is proved	 �
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