
The Independent Choice Logic for modelling
multiple agents under uncertainty∗

David Poole†

Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C., Canada V6T 1Z4

poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole

April 18, 1997

Abstract

Inspired by game theory representations, Bayesian networks, influence
diagrams, structured Markov decision process models, logic programming,
and work in dynamical systems, the independent choice logic (ICL) is a
semantic framework that allows for independent choices (made by various
agents, including nature) and a logic program that gives the consequence of
choices. This representation can be used as a specification for agents that
act in a world, make observations of that world and have memory, as well
as a modelling tool for dynamic environments with uncertainty. The rules
specify the consequences of an action, what can be sensed and the utility
of outcomes. This paper presents a possible-worlds semantics for ICL, and
shows how to embed influence diagrams, structured Markov decision pro-
cesses, and both the strategic (normal) form and extensive (game-tree) form

∗Thanks to Craig Boutilier and Holger Hoos for detailed comments on this paper. This work
was supported by Institute for Robotics and Intelligent Systems, Project IC-7 and Natural Sciences
and Engineering Research Council of Canada Operating Grant OGPOO44121.

†Scholar, Canadian Institute for Advanced Research

1

of games within the ICL. It’s argued that the ICL provides a natural and con-
cise representation for multi-agent decision-making under uncertainty that
allows for the representation of structured probability tables, the dynamic
construction of networks (through the use of logical variables) and a way to
handle uncertainty and decisions in a logical representation.

1 Introduction

This paper presents the Independent Choice Logic (ICL), a logic for modelling
multiple agents under uncertainty. It’s inspired by game theory [53; 32; 17],
Bayesian networks [35; 7], influence diagrams [23; 22], probabilistic Horn ab-
duction [36], structured representations of Bayesian networks and Markov de-
cision processes [5; 8; 7], agent modelling and dynamical systems [29; 57; 51;
48] and logical modelling of action and change [27; 50; 45].

First we motivate ICL from a number of different perspectives, then show
how it fits within the paradigms of knowledge representation (Section 1.1). In
separate subsections we present the foundations of ICL based on agents (Section
1.2), game theory (Section 1.3), influence diagrams (Section 1.4) and logic (Sec-
tion 1.5). We then build the formal definition of the representation in Section 2.
The majority of this paper presents examples of the use of the logic, including
showing how influence diagrams, Markov decision processes, and the strategic
and extensive forms of games can be represented.

Bayesian or belief networks [35] provide a useful representation for reason-
ing under uncertainty. Bayesian networks are a representation of independence
amongst random variables. The Bayesian network model doesn’t constrain how a
variable depends on its parents, nor does it specify a representation for the condi-
tional probability of a variable given its parents in the network. The conditional
probabilities of variables given their parents are typically represented as tables,
but can often be specified more compactly in terms of trees [7] or rules [36].
Rules are more compact than trees (unless the trees can have shared structure and
redundant tests), in the sense that there are some functions where the tree rep-
resentation is exponentially larger than the rule representation, but the converse
doesn’t hold1. Rules have the added advantage that there is a natural extension to

1As we allow negation as failure in the rules, the rules can be seen as a DNF definition of
a concept (using Clark’s completion [11]). It is known that DNF formulae sometimes entail an
exponential blow up in size when converted to decision trees [46]. Decision trees can be converted
simply to rules, with a rule for each leaf in the decision tree whose body corresponds to the path

2

the first-order case [36]. This paper builds on probabilistic Horn abduction [36],
a first-order rule-based representation for Bayesian networks, allowing negation
as failure and fewer restriction on the rules than in probabilistic Horn abduction.
This paper extends the probabilistic framework to include utilities and decisions
made by multiple agents, so that not only can the knowledge base be expressed
compactly by rules, but agents’ policies can also be expressed by rules.

Logic has become the primary focus of knowledge representation in AI. This
is because it provides a way to give meaning to symbols and a way to specify
what you want to compute independently of how it’s computed [42]. It has often
been argued (e.g., [33]) that any general representation scheme must be at least
as rich as the first-order predicate calculus. One of the problems with the first
order predicate calculus is the way it handles uncertainty; all it has available is
disjunction. This is a rather blunt instrument and doesn’t do justice to all of the
subtleties involved in reasoning under uncertainty. Rather than adding uncertainty
to the first-order predicate calculus [3; 24; 20; 19], which would entail having both
disjunctive and probabilistic uncertainty, this paper proposes that we should use
probability and decision theory, instead of disjunction, to handle uncertainty. In
the ICL, we start with a logic doesn’t include any uncertainty and is definitive on
all propositions (every theory entails exactly one of p or ¬p for all propositions
p). Agents own alternatives, which are sets of propositions. An agent gets to
choose one value from each alternative that it owns. Nature is a special agent; the
alternatives owned by nature have a probability distribution over them. The logic
gives the consequences of the choices made by nature and the agents. This allows
us to have the advantages of logic, with symbols that can be given denotations,
specifications of valid consequences and first-order representations, but also lets
us use the normative tools of decision/game theory notions to determine what an
agent should do.

Models of dynamical systems (see e.g., [29; 44]) have traditionally been de-
scribed in terms of state spaces, for example treating state spaces in terms of vec-
tors of states and state transition functions in terms of matrices. It’s often much
more convenient to describe a state space in terms of propositions, and describe
the state transition function in terms of these propositions. The state transition
function can be stated concisely in terms of Bayesian networks [12] or even more
concisely by trees [5; 8] or rules [40], never referring to the explicit state. The
number of variables is logarithmic in the size of the state space. The effects of
actions are typically local, the value of a variable depending only on a few other

to the leaf.

3

variables. This provides the potential to take advantage of the compactness of the
propositional representation. In the ICL we specify state transition functions in
terms of rules. One advantage of rules is that they are closer to the traditional
AI representations such as the situation calculus [31] (see [40]). The first-order
nature of the rules, with explicit reference to the stage or situation make the rules
perspicuous. The rule based representation also helps clarify the close relationship
between regression planning and dynamic programming.

1.1 Knowledge Representation

There are two different views of what a knowledge representation should be.

• The first is that a knowledge representation should let users state whatever
knowledge they have in a reasonably natural way. Under this view it isn’t
appropriate for the designer of a knowledge representation to specify how
a piece of knowledge should be encoded. Reasoning can conclude what
logically follows from the stated facts or can fill in missing facts in a com-
mon sense manner. An example of this view is in the use of the first-order
predicate calculus for knowledge representation. It’s a rich enough lan-
guage to let us state many facts about the world, but with primitive means
to handle uncertainty. Within this tradition, logics have been developed to
handle uncertainty and multiple agents making decisions [3; 24; 20; 19; 15;
21]. Missing facts can be inferred using default reasoning [30], or by mak-
ing maximum entropy or random worlds assumptions [4]. What’s important
is that the user can add whatever they like to the knowledge base, and the
representation should be able to make appropriate inferences.

• The second view is that a knowledge representation should provide a high-
level symbolic modelling language that makes some things easier to state.
Under this view a knowledge representation should specify how to model
a domain. It should guide users as to how they should think about the do-
main, what they should say; and once some choices have been made, it pre-
scribes what information needs to be specified. An example is Bayesian net-
works [35], which provide a modelling tool for representing independence
amongst random variables. The user needs to specify the random variables
of interest, the values these variables can take, and the dependency amongst
these variables. Once these are specified the Bayesian network model pre-
scribes what probabilities need to be specified.

4

It is important not to confuse these, as judging a knowledge representation by the
inappropriate criteria will lead to an unfair judgment. The knowledge represen-
tation in this paper should be seen as an instance of the second. We don’t expect
that people will be able to just throw any knowledge in. For example, missing
rules have a particular meaning; if you want to assert ignorance there are specific
ways to do it.

1.2 Agents

An agent is something that acts in the world. An agent can, for example, be a
person, a robot, a worm, the wind, gravity, a lamp, or anything else. Purposive
agents have preferences—they prefer some states of the world to other states—
and act in order to (try to) achieve worlds they prefer. The non-purposive agents
are grouped together and called “nature”. Whether an agent is purposive or not is a
modelling assumption that may or may not be appropriate. For example, for some
applications it may be appropriate to model a dog as purposive, and for others it
may suffice to model a dog as non-purposive.

Agents can have sensors, (possibly limited) memory, computational capabili-
ties and effectors. Agents reason and act in time.

An agent should react to the world; it has to condition its actions on what’s
received by its sensors. These sensors may or may not reflect what’s true in the
world;2 sensors can be noisy, unreliable or broken; and even when sensors are
reliable there is still ambiguity about the world from sensors’ readings. An agent
can only condition its actions on what it knows, even if it’s very weak such as
“sensor a appears to be outputting value v”. Similarly actuators may be noisy,
unreliable, slow or broken. What an agent can control is what message (command)
it sends to its actuators.

An agent can be seen as an implementation of a transduction [57; 47; 48;
39], a function from input (sensor readings) history into outputs (action attempts
or actuator settings) at each time point. These are causal in the sense that the
output can only depend on current inputs and previous inputs and outputs; they
can’t be conditional on future inputs or outputs.

A policy or strategy is a specification of what an agent will do under various
contingencies. That is, it’s a representation of a transduction. A plan is a policy

2Of course if there is no correlation between what a sensor reading tells us and what’s true in
the world, and the preferences of the agent depend on what’s true in the world (as they usually do),
it may as well ignore the sensor.

5

that includes either time or the stage as part of the contingencies conditioned on.
Our aim is to provide a representation in which we can define perception,

actions and preferences for agents. This can be used to define a policy, the notion
of when one policy is better than another (according to that agent’s preferences),
and so an appropriate notion of an optimal policy for an agent. Once we have
defined what an optimal policy is, we can use exact and approximation algorithms
to build policies for agents.

We want to model agents and their environments with the same language. The
language should provide a decision theoretic, or game theoretic (for more than one
agent) framework that can be used to build agents that can be shown to be optimal
(as in [48]) or at least to have a specification of the expected utility of an agent.
A planner in this framework is a program that generates a (possibly stochastic)
transduction for an agent to execute. The output of the planner should be suitable
for actually controlling an agent. It has to be more than a sequence of steps that
is the output of traditional planners. Here we consider reactive agents that have
internal state. This paper doesn’t consider the problem of building a planner. Even
for the single-agent propositional case, the problem of finding an optimal policy
is computationally prohibitive [25], but this is more a property of the problem
than of the representation. By having a rich representation we can discuss the
complexity of various restrictions and build approximation algorithms.

Under this view, beliefs, desires, intentions, and commitments [51] aren’t es-
sential to agenthood. It may, however, be the case that agents with beliefs, desires,
intentions, and commitments that, for example, communicate by way of speech
acts [51], perform better by some measure than those that do not. We don’t want
to define agenthood to exclude the possibility of formulating and testing this em-
pirical claim.

In this paper we provide a representation that can be used to model the world,
agents (including available sensors and actuators) and goals (in terms of the agents
utilities in different situations) that will allow us to design optimal (or approxi-
mately optimal) agents.

1.3 Game Theory

Game theory [53; 32; 17] is a theory of multi-agent reasoning under uncertainty.
The general idea is that there is a set of players (agents) who make moves (take
actions) based on what they observe. The agents each try to do as well as they can
(maximize their utility).

Game theory is designed to be a general theory of economic behaviour [53]

6

that is a generalization of decision theory. The use of the term “game” here is
much richer than typically studied in AI text books for parlour games such as
chess. These could be described as deterministic (there are no chance moves by
nature), perfect information (each player knows the previous moves of the other
players), zero-sum (one player can only win by making the other player lose),
two-person games. Each of these assumptions can be lifted [53].

A game is a sequence of moves taken sequentially or concurrently by a finite
set of agents. Nature is usually treated as a special agent. There are two main (es-
sentially equivalent in power [17]) representations of games, namely the extensive
form and the normalized [53] (or strategic [32; 17]) form of a game.

The extensive form of a game is specified in terms of a tree; each node be-
longs to an agent, and the arcs from a node correspond to all of the possible moves
(actions) of that agent. A branch from the root to a leaf corresponds to a possible
play of the game. Information availability is represented in terms of information
sets which are sets of nodes that an agent can’t distinguish. The aim is for each
agent to choose a move at each of the information sets.

In the strategic form of a game each player adopts a strategy, where a strategy
is “a plan ... which specifies what choices [an agent] will make in every possible
situation” [53, p. 79]. This is represented as a function from information available
to the agent’s move.

The initial framework developed here should be seen as a representation based
on the normalized form of a game, with a possible world corresponding to a com-
plete play of a game. In the ICL we add a logic program to give the consequences
of the play. This allows us to use a logical representation for the world and for
agents. Section 5.5 presents a representation that is closer to the extensive form
of a game.

Where there are agents with competing interests, the best strategy is often a
randomized strategy. In these cases the agent decides to randomly choose actions
based on some probability distribution.

Example 1.1 Consider a problem in designing soccer playing robots. In partic-
ular we want to consider the problem of a penalty kick. Penalty kicks are used
to decide a winner in some soccer games that are tied at the end of regulation
time. In a penalty kick, there are two agents: a kicker who is trying to score a
goal, and a goalie who is trying to prevent the goal. The goalie must commit to
either jumping left or right before they know whether the kicker will kick right or
left (of course, neither want to let the other know which direction they will go).
Suppose for this example, that if the goalie jumps (to its) left and the kicker kicks

7

goalie
left right

kicker left 〈0.9, 0.1〉 〈0.1, 0.9〉
right 〈0.2, 0.8〉 〈0.9, 0.1〉

Figure 1: Expected pay-off matrix for the game of Example 1.1. Payoff 〈u1, u2〉
indicates that the kicker has an expected payoff of u1 (where a goal is worth one,
and a block is worth zero for the kicker) and that the goalie has an expected payoff
of u2 (where a goal is worth zero, and a block is worth one for the goalie).

(to its) left, there is a 90% chance of a goal. Similarly if they both go (to their
own) right, there is a 90% chance of a goal. If the kicker kicks left and the goalie
jumps right there is a 10% chance of a goal. If the kicker kicks right and the
goalie jumps left, there is a 20% chance of a goal (this could happen if the goalie
is right handed). See Figure 1 for a payoff matrix for this example. The goalie
should not reason that “I am better when I jump right so I should jump right”. For
then the kicker (realizing this) will always kick right. The goalie could then think
that “as the kicker will kick right I should jump left”. In which case the kicker
should kick left. This is a never ending regress. Such problems have been well
studied in game theory [53]. It turns out that the best strategy for the goalie is to
randomize its choice. Similarly the best strategy for the kicker is to randomize its
choice. In this example it’s best for the kicker to kick right with probability 8

15
,

and best for the goalie to jump right with probability 7
15

in the sense that if either
deviate from this randomized strategy, the other can exploit the deviation to have
a higher chance of either scoring a goal or stopping a goal (see Example 2.21 for
a derivation of these numbers).

1.4 Influence Diagrams

Influence diagrams [23] (see the papers in [34]) are a graphical representation of
decision problems that extend Bayesian networks to include decision nodes and
value nodes. Influence diagrams provide a perspicuous representation for deci-
sion problems making explicit the probabilistic dependencies and the information
available when a decision is made (see e.g., [22])

The propositional version of the logic presented here can be seen as a rep-
resentation for influence diagrams (see Section 3.1), where we can use rules to
specify conditional probabilities [36], rules to specify utility and the policies of

8

agents are specified as logic programs that imply what an agent will do based on
its observations. The ICL allows specification of the influence diagram in a logic
that lets us axiomatise the dynamics of the world, derive implicit information from
explicit knowledge, and has a formal and natural semantics.

The independent choice logic (ICL) preserves the representational clarity of
influence diagrams and extends them in four ways:

• The first advance is for representation of structured probability tables. The
use of rules allows for the compact representation of probability tables (sim-
ilar to the use of decision trees for specifying probability and utility ta-
bles [52; 5]). For example, although some variable d may depend on vari-
ables a, b and c, it may only depend on b when a has one value and on
c when a has another value. This asymmetric dependency can be easily
expressed in rules, forming a much more compact representation than the
traditional tables. The rule structure can be exploited for efficiency [38; 5;
41]. The same rule-based representation can be used to express the policies.

• The use of logical variables allows for a form of first-order influence di-
agrams. These form a method for the dynamic construction of influence
diagrams [9; 36].

• The use of the rule base means we don’t have to specify in one step how
a variable depends on its parents; we can use arbitrary computation. For
example, we can axiomatise the dynamics of a domain and use the axioma-
tisation to specify how the position at one time depends on the position at a
previous time in a compact way. This features will be exploited for many of
the examples.

• The ICL can also handle multiple agents making decisions, permitting a
form of multiple-agent influence diagrams. We are thus importing the rep-
resentational advantages of influence diagrams into game-theory represen-
tations.

Note that extending the representation to logical variables and multiple agents
increases the worst case computational complexity of deriving optimal plans;3

this is because the problems that can be represented are more complex. It is not a
problem with the representation per se.

3The use of variables makes it undecidable, but even without variables, multi-agent reasoning
is exponentially harder than modelling a single no-forgetting agent [25].

9

1.5 Logic

Our aim is to define a logic where all uncertainty is resolved by decision/game
theory rather than using disjunction to encode uncertainty. We start with a logic
that has no uncertainty; it’s definitive on the value of every proposition. We then
show how uncertainty can be modelled as alternatives that are chosen by agents
or have a probability distribution over them. The logic tells us the consequences
of the choices.

We are treating logic as the modelling language of the world. Rather than
having logic at the meta-level describing an object level in another language such
as GOLOG [28] or constraint nets [56], we are using the logic to represent the
object level. There is no other representation apart from the logic. We use the
logic to axiomatise the causal structure of the world and the causal structure of
agents (all of which are defined in terms of propositions).4

Rather than using disjunction to handle uncertainty, as in the predicate cal-
culus, we want to use probability and decision theory to handle the uncertainty.
There are normative arguments as to why we should use probability and utilities
for reasoning under uncertainty [49]. The aim here is to get as much as we can
from logic, but using decision or game theory to handle all of the uncertainty.

Starting a logic without uncertainty potentially lets us sidestep many tradi-
tional problems, or at least adopt simple solutions. For example, it seems as
though the frame problem in the situation calculus [31] is solved for the case
with complete knowledge and deterministic actions [27; 50; 45]; when there is in-
complete knowledge and nondeterministic actions, there are still many problems
to be resolved (see e.g., [6]). This paper takes quite a different view to other pro-
posals, where we resolve nondeterminism and uncertainty by considering “who
gets to resolve the uncertainty”. We consider all actions as deterministic but with
hidden variables, and have probabilities over these variables or have them chosen
by different agents. This become a very powerful and arguably natural way to
model non-deterministic action (see Section 5.4 and [40]).

4All of the logical statements in this paper are at the object level (i.e., are about the domain
being axiomatised rather than being axioms about the formalism). This was done in order to reduce
confusion: we don’t need two different languages and the problems of quoting one language. All
of the meta-level statements here are given in English or normal mathematical notation.

10

2 Independent Choice Logic

In this section we formalize the independent choice logic. We first give a general
abstract definition of how an independent choice logic can be constructed from
a base logic. In order to make the paper and examples more concrete we adopt
acyclic logic programs under the stable model semantics as the base logic.

An independent choice logic (ICL) is a logic built with a specific semantic
construction. We assume that we are given a base logic that conforms to some
restrictions. The construction below specifies how to build possible worlds. Pos-
sible worlds are built by choosing propositions from sets of independent choice
alternatives. The base logic is used to determine truth in the possible worlds.

The base logic is defined on two languages, the language LF of facts, and the
language LQ of queries, and a consequence relation |∼ between elements of LF

and elements of LQ. That is, |∼ is a relation on LF × LQ. It’s usually written in
infix notation. We assume that languages LF and LQ are logical languages which
share the same atomic formulae. After the definition of the semantic construction
we discuss what properties we want of LF and LQ.

Definition 2.1 A base logic is a triple 〈LF , |∼ ,LQ〉 such that LF and LQ are
languages and |∼ is a consequence relation.

Definition 2.2 An independent choice logic theory on base 〈LF , |∼ ,LQ〉 is a
pair 〈C,F〉, where

C, called the choice space, is a set of sets of ground atomic formulae from lan-
guage LF , such that if χ1 ∈ C, χ2 ∈ C and χ1 �= χ2 then χ1 ∩ χ2 = {}. An
element of C is called an alternative. An element of an alternative is called
an atomic choice.

F , called the facts or the rule base, is a set of formulae in logic LF .

The base logic is often omitted when it can be understood from context.

The semantics of an ICL is defined in terms of possible worlds. There is a
possible world for each selection of one element from each alternative. The atoms
which follow using the consequence relation from these atoms together with F
are true in this possible world.

Definition 2.3 Given independent choice logic theory 〈C,F〉, a selector function
is a mapping τ : C → ∪C such that τ(χ) ∈ χ for all χ ∈ C. The range of selector
function τ , written R(τ) is the set {τ(χ) : χ ∈ C}. The range of a selector
function will be called a total choice.

11

The basic semantic construction we want for the ICL is that each selector func-
tion corresponds to one possible world, where every element of the range of the
selector function is true. The facts F specify what else is true in the possible
world.

First we define restrictions on the base logic to ensure that the semantic con-
struction gives a well defined semantics:

Definition 2.4 Base logic 〈LF , |∼ ,LQ〉 and ICL theory 〈C,F〉 are definitive if
for every selector function τ ,

• If ¬a is the negation of a in language LQ
5 then for each ground atom a

of LQ, either F ∪ R(τ) |∼ a or F ∪ R(τ) |∼¬a, and it isn’t the case that
F ∪R(τ) |∼ a and F ∪R(τ) |∼¬a, and

• if α is an atomic choice then F ∪R(τ) |∼α if and only if α ∈ R(τ).

Definition 2.5 Suppose we are given definitive base logic 〈LF , |∼ ,LQ〉 and ICL
theory 〈C,F〉. For each selector function τ there is a possible world wτ . If f is a
formula in language LQ, and wτ is a possible world, we write wτ |=〈C,F〉 f , read
“f is true in world wτ based on 〈C,F〉”, iff F∪R(τ) |∼ f . When understood from
context, the 〈C,F〉 is omitted as a subscript of |=.

The fact that every proposition is either true or false in a possible world follows
from the definitiveness of the base logic.

Note that, for each alternative χ ∈ C and for each world wτ , there is exactly
one element of χ that’s true in wτ . In particular, wτ |= τ(χ), and wτ �|= α for all
α ∈ χ − {τ(χ)}.

2.1 The Languages LF and LQ

Languages LF and LQ are logical languages which share the same propositions.
The reason they are different is that we want to impose restrictions on each so that
they are appropriate for their task.

For the rest of this paper we assume that LQ is the propositional logic with
atoms (propositions) corresponding to the set of ground atoms of LF . In this

5If LQ doesn’t contain a negation then the property we need is that the set of atomic formulae
that follow (using |∼) from F ∪R(τ) completely determines the other formulae that follow from
F ∪R(τ). This means, for example that if F ∪R(τ) |∼ a∨b then F ∪R(τ) |∼ a or F ∪R(τ) |∼ b.

12

paper we will ignore issues relating to variables in LQ. We will allow arbitrary
logical connectives (e.g., conjunction, disjunction, negation, etc.) in LQ.

If we want to use the independent choice framework we have to choose a logic
(language LF plus consequence relation |∼) that has the property that it gives us
a unique model for each total choice. This means two things:

• Each selection of an element from each alternative is consistent. This means
that the logic can’t allow a selection of choices from some alternatives to im-
pose any restrictions on choices from other alternatives. This, for example,
disallows the logic from being the arbitrary predicate calculus or even Horn
clauses with integrity constraints [27].

• Each total choice can’t be extended into more than one possible world. This
excludes us from having explicit disjunctions in our logic6. It also means,
for example, that we can’t have logic programs under the stable model se-
mantics which may have none or more than one stable model7. We are also
excluding three valued models of logic programs (e.g., [43]) from consid-
eration (whether extending our semantics in this way is useful or not is an
open question).

2.2 Acyclic Logic Programs

In order to use an ICL we must commit to a base logic. In this paper, we consider
the language LF to consist of logic programs with a unique stable model [18],
and the consequence relation to be truth in the stable model [18]. That is, logic
program P |∼ q if q is true in the unique stable model of P . One way to ensure
there is a unique stable model is to restrict the programs to be acyclic [2].

In this section we give the language and the semantics of acyclic logic pro-
grams. The language follows Prolog’s conventions.

Definition 2.6 A variable is an alphanumeric string (possibly including “ ”)
starting with an upper case letter;

6Disjunction can be seen as a form of uncertainty. In some sense what we are pursuing here
is that idea that all uncertainty can be relegated to the choice space, leaving the logic to give the
consequences of the choices. This should be contrasted with other approaches (e.g., [3]) that al-
low both sorts of uncertainty. We end up with a much simpler language, but handle uncertainty by
considering different agents getting to choose alternatives. Whether this is a good (both computa-
tionally and ergonomically) idea is an empirical question currently under study.

7The program a ← ¬b, b ← ¬a has two stable models, one with a true and one with b true.
The program a ← ¬a has no stable models.

13

A constant or a function symbol or a predicate symbol is an alphanumeric
string not starting with an uppercase letter;

A term is either a variable, a constant, or has the form f(t1, . . . , tm) where f is
a function symbol and t1, . . . , tm are terms.

An atom is either a predicate symbol, or has the form p(t1, . . . , tm) where p is a
predicate symbol and t1, . . . , tm are terms.

A literal is either an atom or has the form ¬α where α is an atom.

A body is either a literal or a conjunction of bodies (the conjunction of β1 and
β2 is written as β1 ∧ β2).

A clause is either an atom or has the form α ← β where α is an atom (called the
head of the clause) and β is a body. The latter form is called a rule.

A program is a set of clauses.

A ground term, atom or clause is one that doesn’t contain any variables. A
ground instance of a clause c is a clause obtained by uniformly replacing
ground terms for the variables in c.

Definition 2.7 The Herbrand base of program P is the set of ground instances of
the atoms formed from predicates, function symbols and constants in P (inventing
a new constant if P does not contain any constants).

Definition 2.8 ([2]) A logic program P is acyclic if there is an assignment of a
positive integer to each element of the Herbrand base of P such that, if P ′ is the set
of ground instances of clauses in P , then for every rule in P ′ the number assigned
to the atom in the head of the rule is greater than the number assigned to each
atom that appears in the body.

Acyclic programs are surprisingly general [2]. Note that acyclicity does not
preclude recursive definitions. It just means that all such definitions have to be
well founded.

Definition 2.9 An interpretation is an assignment of true or false to each mem-
ber of the Herbrand base. Interpretation M is a stable model [18] of logic pro-
gram P if for every ground atom h, h is true in M if and only if h is in P or there
is a rule h ← b in P ′ such that b is true in M. Conjunction a ∧ b is true in M if
both a and b are true in M. A negation ¬a is true in M if and only if a isn’t true
in M.

14

Note that the negation here is the so-called negation-as-failure [11]. We can use
negation-as-failure in our knowledge base, although the standard procedural intu-
ition doesn’t necessarily hold [37].

Theorem 2.10 ([2]) An acyclic logic program has a unique stable model.

Acyclicity is also important for the physical realization of our game theory
strategies; an agent can’t condition on a value that depends on what it’s going to
do (see Section 5.5).

In some sense the possible world wτ is the stable model of F ∪ R(τ); they
assign exactly the same truth values to propositions.

Example 2.11 Suppose we have ICL theory with C = {{a1, a2, a3}, {b1, b2}},
and with F = {c ← a1∧ b1, c ← a3∧ b2, d ← a1, d ← ¬a2∧ b1, e ← c, e ← ¬d}.
There are 6 possible worlds with the following truth assignments:

w{a1,b1} |= a1 ¬a2 ¬a3 b1 ¬b2 c d e
w{a2,b1} |= ¬a1 a2 ¬a3 b1 ¬b2 ¬c ¬d e
w{a3,b1} |= ¬a1 ¬a2 a3 b1 ¬b2 ¬c d ¬e
w{a1,b2} |= a1 ¬a2 ¬a3 ¬b1 b2 ¬c d ¬e
w{a2,b2} |= ¬a1 a2 ¬a3 ¬b1 b2 ¬c ¬d e
w{a3,b2} |= ¬a1 ¬a2 a3 ¬b1 b2 c ¬d e

Note that there are two sorts of atoms; atomic choices (a1, a2, a3, b1, b2) and de-
rived atoms (c, d, e). The atomic choices that are true in the world are given by
the selector function for the world (here we have subscripted the worlds with the
range of the selector function), and there is a world for each selector function.
The truth of the derived atoms is defined by the rules and the range of the selector
function.

2.3 The Multi-agent Independent Choice Logic

The Independent Choice Logic (ICL) specifies a way to build possible worlds. In
order to model multi-agent situations, we need to have more structure. In particu-
lar we need different agents to be able to control different choices.

Definition 2.12 A multi-agent independent choice logic theory is a tuple 〈C,F ,A, controller, P0〉
where

C, the choice space, is as in Definition 2.2.

15

F , the facts, is an acyclic logic program such that no atomic choice unifies with
the head of any rule.

A is a finite set of agents. There is a distinguished agent 0 called “nature”.

controller is a function from C → A. If controller(χ) = a then agent a is said to
control alternative χ. If a ∈ A is an agent, the set of alternatives controlled
by a is Ca = {χ ∈ C : controller(χ) = a}. Note that C =

⋃
a∈A Ca.

P0 is a function ∪C0 → [0, 1] such that ∀χ ∈ C0,
∑

α∈χ P0(α) = 1.8 That is, for
each alternative controlled by nature, P0 is a probability measure over the
atomic choices in the alternative.

Often, when the context is clear we refer to a multi-agent independent choice logic
theory simply as an independent choice logic theory.

The idea is that an agent gets to choose one element from each of the alternatives
it controls. The alternatives controlled by nature have a probability distribution
over them. The facts give the consequences of the choices by the agents.

2.3.1 Rules for utility

Game theory and decision theory are based on the notion of utility, a cardinal
value representing the worth to an agent of an outcome or possible world.9 Higher
utilities reflect preferred worlds. Agents act to increase their (expected) utility.
Finding optimal strategies becomes trickier when there are multiple agents with
competing objectives, but the idea of each agent trying to maximise its utility
remains.

Utility is a function of both an agent and a world. Different agents have differ-
ent preferences and so different utilities in the possible worlds. Note that nature
(agent 0) doesn’t have a utility.

The logic program can have rules for utility(a, u), where utility(a, u) is true
in a possible world if u is the utility for agent a �= 0 in that world.

8When χ isn’t discrete, we may need to use an integration rather than summation. To avoid
measurability and integrability issues, we assume in this paper that all sets are discrete and finite,
although the framework isn’t necessarily restricted to this case.

9The existence of a utility function, and the existence of a probability distribution is implied
from a set of intuitive axioms about rational preferences, such that agents try to maximise expected
utilities [53; 49]. Like most decision and game theory practitioners we take the notion of utility as
something that we want to represent and use to derive optimal actions for agents. There is a large
body of literature about how these utilities can be acquired (see e.g., papers in [34]).

16

Definition 2.13 ICL theory 〈C,F ,A, controller, P0〉 is

utility consistent for agent a ∈ A where a �= 0 if, for each possible world wτ ,
wτ |= utility(a, u1) ∧ utility(a, u2) implies u1 = u2. The theory is utility
consistent if it’s utility consistent for all agents (other than agent 0).

utility complete for agent a ∈ A where a �= 0 if, for each possible world wτ ,
there is a unique number u such that wτ |= utility(a, u). The theory is
utility complete if it’s utility complete for all agents (other than agent 0).

Thus an ICL theory is utility consistent and complete means that the utility rela-
tion is a function for each possible world.

We assume that all of the theories are utility consistent and complete.

Example 2.14 Continuing example, 2.11 suppose the rules for utility are:

utility(agent1, 5) ← ¬e
utility(agent1, 0) ← e ∧ c
utility(agent1, 9) ← e ∧ ¬c
utility(agent2, 7) ← d
utility(agent2, 2) ← ¬d

Note that, if these are all the rules for utility then the ICL is utility consistent and
complete for agent1 and agent2 independently of the choice space and the other
rules.

The values for the possible worlds (omitting the false atomic choices) are:

w{a1,b1} |= a1 b1 c d e utility(agent1, 0) utility(agent2, 7)
w{a2,b1} |= a2 b1 ¬c ¬d e utility(agent1, 9) utility(agent2, 2)
w{a3,b1} |= a3 b1 ¬c d ¬e utility(agent1, 5) utility(agent2, 7)
w{a1,b2} |= a1 b2 ¬c d ¬e utility(agent1, 5) utility(agent2, 7)
w{a2,b2} |= a2 b2 ¬c ¬d e utility(agent1, 9) utility(agent2, 2)
w{a3,b2} |= a3 b2 c ¬d e utility(agent1, 0) utility(agent2, 2)

2.3.2 Strategies

Given an ICL theory, agents adopt strategies. These are also often called policies
for the single agent case. These strategies specify which atomic choices an agent
chooses from the alternatives controlled by the agent. In general, a strategy can be
stochastic where the agent adopts a probability distribution over the alternatives it
controls.

17

Definition 2.15 If 〈C,F ,A, controller, P0〉 is a ICL theory and a ∈ A, a �= 0,
then a strategy for agent a is a function Pa : ∪Ca → [0, 1] such that

∀χ ∈ Ca

∑
α∈χ

Pa(α) = 1.

In other words, for each alternative controlled by agent a, Pa is a probability
measure over the atomic choices in the alternative.

Definition 2.16 A pure strategy for agent a is a strategy for agent a such that
the range of Pa is {0, 1}. In other words, Pa selects a member of each element of
Ca to have probability 1, and the other members thus have probability 0. A pure
strategy for agent a thus corresponds to a selector function on Ca.

Definition 2.17 A strategy profile is a function from agents (other than nature)
into strategies for the agents. If σ is a strategy profile and a ∈ A, a �= 0 then
σ(a) is a strategy for agent a. We write σ(a) as P σ

a to emphasize that σ induces a
probability over the alternatives controlled by agent a. (We also define P σ

0 = P0.)

Thus a strategy profile specifies what each agent will do in the sense of speci-
fying a probability distribution over their alternatives. Given the probability distri-
bution over alternatives, we can derive the expected utility, which is the weighted
sum of the utilities of the worlds (worlds weighted by their probability):

Definition 2.18 If ICL theory 〈C,F ,A, controller, P0〉 is utility consistent and
complete, and σ is a strategy profile, then the expected utility for agent a �= 0,
under strategy profile σ is

ε(a, σ) =
∑
τ

p(σ, τ) × u(τ, a)

(summing over all selector functions τ) where

u(τ, a) = u iff wτ |= utility(a, u)

(this is well defined as the theory is utility consistent and complete), and

p(σ, τ) =
∏
χ∈C

P σ
controller(χ)(τ(χ)).

p(σ, τ) is the probability of world τ under strategy profile σ, and u(τ, a) is the
utility of world wτ for agent a.

18

Note that the expected utility is undefined unless there is a probability distribu-
tion over every alternative. In particular, for the multi-agent case, there is no such
thing as the expected utility for an agent of a strategy for that agent; the utility for
that agent depends on the strategies of the other agents as well.

Each agent wants to choose a strategy that maximise its (expected) utility. For
the single agent, finite choice (i.e., a finite number of finite alternatives) case,
this definition is straightforward. Each of their (finite number of) strategies has
an expected utility, and so they can choose a strategy with a maximal expected
utility. For the multiple agent case, an agent has to consider what other agents
will choose, and their choice depends on the first agent’s choice. How to choose
strategies has been well studied in game theory [53; 32; 17]. We can mirror the
definitions of game theory; for example, we can define the Nash equilibrium and
Pareto optimal (both of which reduce to maximum expected utility in the single
agent case) as follows:

Definition 2.19 Given utility consistent and complete ICL theory 〈C,F ,A, controller, P0〉,
strategy profile σ is a Nash Equilibrium if no agent can increase its utility by
unilaterally deviating from σ. Formally, σ is a Nash equilibrium if for all agents
a ∈ A, if σa is a strategy profile such that σa(a

′) = σ(a′) for all a′ �= a then
ε(a, σa) ≤ ε(a, σ).

In other words, no strategy profile σa that’s the same as strategy profile σ for
all agents other than a is better for a than σ. That is, a cannot be better off by
unilaterally deviating from σ.

One of the fundamental results of game theory is that every finite game has at
least one Nash equilibrium [32; 17]. In general you need non-pure (randomised)
strategies for the equilibrium to exist. For a single agent in an uncertain environ-
ment, a Nash equilibrium is an optimal decision theoretic strategy.

Definition 2.20 Given utility consistent and complete ICL theory 〈C,F ,A, controller, P0〉,
strategy profile σ is Pareto optimal if no agent can do better without some other
agents doing worse. Formally, σ is Pareto optimal if for all strategies σ′, if there
exists an agent a ∈ A such that ε(a, σ′) > ε(a, σ) then there exists an agent
a′ ∈ A such that ε(a′, σ′) < ε(a′, σ).

Other definitions from game theory can also be given in the logic of this paper.
What we are adding to game theory is the use of a logic program to model the
agents and the environment, and to provide a way to express independence (in
the same way that probabilistic Horn abduction [36] can be used to represent the
independence assumptions of Bayesian networks).

19

Example 2.21 Here we show how to represent Example 1.1. In the facts we
axiomatise utility (this is a utility consistent and complete axiomatisation for both
the kicker and the goalie):

utility(kicker, 1) ← goal.

utility(kicker, 0) ← ¬goal.

utility(goalie, 1) ← goal.

utility(goalie, 0) ← ¬goal.

In the facts we axiomatise when a goal is scored:10

goal ← kicks(D) ∧ jumps(D) ∧ goal if same dir.

goal ← kicks(left) ∧ jumps(right) ∧ goal if kl jr.

goal ← kicks(right) ∧ jumps(left) ∧ goal if kr jl.

In C, we have one alternative owned by kicker, namely {kicks(right), kicks(left)},
one alternative owned by goalie, namely {jumps(right), jumps(left)}, and three
alternatives owned by nature, namely: {goal if same dir, no goal if same dir},
{goal if kl jr, no goal if kl jr}, and {goal if kr jl, no goal if kr jl} with
P0(goal if same dir) = 0.9, P0(goal if kl jr) = 0.1 and P0(goal if kr jl) =
0.2.

Suppose that the goalie is to choose a strategy with pg = Pgoalie(jump(right))
and the kicker is to choose a strategy with pk = Pkicker(kick(right)). In this
setup, there are four cases where goal is true; these cases are exclusive, and so we
can sum the probabilities. Thus,

P (goal) = pkpg0.9 + (1 − pk)(1 − pg)0.9 + (1 − pk)pg0.1 + pk(1 − pg)0.2

The problem for each agent is to choose their probability to maximise their ex-
pected utility. So the kicker has to choose pk to maximise the probability of a goal
and the goalie has to choose pg to minimize the probability of a goal.

In a Nash equilibrium, neither agent can improve its expected utility by uni-
laterally changing its strategies. Take the kicker’s point of view. If there is a
randomised strategy, then, as the randomised strategy is a linear combination of
the payoffs of the pure strategies, the pure strategies must have the same values
(otherwise the kicker can improve its utility by choosing the pure strategy with

10The atoms goal if same dir, goal if kl jr and goal if kr jl are independent causal hy-
potheses [36]. These are introduced so that we can have normal logical rules, and independent
alternatives.

20

the higher value). In a randomized equilibrium, the payoff for kicking right and
kicking left must be equal. The payoff for kicking right is the above formula with
pk = 1, the payoff for kicking left is the formula with pk = 0. These are equal
when: pg0.9 + (1 − pg)0.2 = (1 − pg)0.9 + pg0.1. Solving for pg we can derive
pg = 7/15. Thus the only time that the kicker would consider a mixed strategy
is when the goalie jumps right with probability 7

15
. Using similar reasoning, we

can show that the only randomised equilibrium for the goalie is when pk = 8/15.
It’s easy to show there are no pure strategy equilibria. There is a unique Nash
equilibrium with pg = 7

15
, pk = 8

15
. Under this equilibrium the probability of a

goal is 79
150

= 0.52666; thus the kicker has a slight advantage (which should be
expected, as the goalie is slightly worse when it jumps left).

3 Embedding other formalisms in the ICL

In this section we show how influence diagrams, Markov decision problems (MDPs)
and the strategic form of games can be represented in the ICL. We will show rather
direct embeddings of these formalisms.

Another embedding should be noted, and that is that probabilistic Horn abduc-
tion [36], a restriction of ICL (with only choices by nature, no negation as failure
and more restrictions on the rules), can directly represent Bayesian networks [36].
The embedding of influence diagrams is based on this embedding.

3.1 Representing influence diagrams

An influence diagram or decision network [23] is a graphical representation of
a decision problem. (See Section 1.4.) We show how to translate an influence
diagram into a (single-agent) ICL theory such that there is an isomorphism be-
tween the policies of the influence diagram and the strategies of the ICL, with
corresponding expected utilities equal. We only consider influence diagrams with
a single value node (any other influence diagram can be mapped onto this repre-
sentation).

Definition 3.1 An influence diagram is a tuple 〈N, A, Ω, P, U〉 such that

N is a finite set of nodes, partitioned into the set R of random nodes, the set
D of decision nodes and the singleton set {V } containing the value node.
Random nodes are drawn as ovals, decision nodes as rectangles and the
value node as a diamond.

21

A ⊂ N × N is the set of arcs such that 〈N, A〉 forms an acyclic directed graph
(DAG). If 〈ni, nj〉 ∈ A then ni is said to be a parent of nj and nj is a child
of ni. Define π(n) = {m : 〈m, n〉 ∈ A}. That is, π(n) is the set of parents
of node n. We assume that the value node doesn’t have any children.

Ω is a function from R ∪ D into sets of variable values. Ω(n), called the frame
of node n, is the set of values that the variable associated with node n can
take. We extend Ω to cover sets of nodes by Ω({n0, . . . , nm}) = Ω(n0) ×
. . . × Ω(nm).

P is a probability function over the random nodes given their parents. That is,
for each x ∈ R, P (x = v|π(x) = w) is a non-negative number such that

∀w
∑

v∈Ω(x)

P (x = v|π(x) = w) = 1

The probability is often written simply as P (x|π(x)) where the values v ∈
Ω(x) and w ∈ Ω(π(x)) are derived from context.

U : Ω(π(V)) → �. U is the utility function that gives the utility for different
values of the parents of V .

The parents of a random node represent probabilistic dependence (as is a
Bayesian network [35]). The parents of the value node represent functional de-
pendence; the utility only depends on the values of the parents of the value node.
The parents of a decision node represent information available; one value for each
parent of the decision node will be known when the decision is made.

If di ∈ D, a decision function for di is a function δi : Ω(π(di)) → Ω(di). If
the decision nodes are 〈d1, . . . , dk〉, a policy is a tuple 〈δ1, . . . , δk〉 where δi is a
decision function for di.

Policy δ induces a conditional probability Pδ on the decision variables defined
by

Pδ(di|π(di)) =

{
1 if δi(π(di)) = di

0 otherwise

Suppose R ∪ D = {x1, . . . , xn}. The joint distribution given policy δ is:

Pδ(x1, . . . , xn) =
∏

xi∈R

P (xi|π(xi)) ×
∏

xj∈D

Pδ(xj|π(xj))

22

ta

bs

a

b

utility

as

d

Figure 2: An influence diagram

(what is meant by Pδ should be clear from context).
The expected utility of policy δ is given by

ε(δ) =
∑

x1,...,xn

Pδ(x1, · · · , xn) × U(π(V))

=
∑

x1,...,xn

∏
xi∈R

P (xi|π(xi)) ×
∏

xj∈D

Pδ(xj|π(xj)) × U(π(V))

where we are summing over all of the values of variables x1, . . . , xn.

Example 3.2 Figure 2 shows an influence diagram with two decision nodes ta
and d, four random nodes a, as, b, bs, and one value node utility. The intuition
for this diagram is that there is one decision d to be made that depends on a and
b. bs is a noisy sensor for b and as is a sensor for a that can be controlled by ta.

Associated with the influence diagram (not shown in the diagram) is a frame
for each variable, and the conditional probability table for each random variable

23

given its parents. These probability tables for the random nodes are a major source
of complexity as their size is exponential in the number of parents of the node.

Suppose the frames are as follows:

Ω(ta) = {high, low}
Ω(a) = {low, medium, high}

Ω(as) = {pos, neg}
Ω(b) = {pos, neg}

Ω(bs) = {pos, neg}
Ω(d) = {d1, d2, d3}

There are ten probability distributions to be assigned; one for a, six for as (one for
each assignment of values to a and ta, such as P (as = pos|a = low∧ta = high)),
one for b and two for bs.

The mapping of an influence diagram into a (single agent) ICL theory is as
follows:11

• Random variable xi has value vi is represented as the proposition xi(vi).12

• Random variable xi with ki parents xi1 . . . xiki
is represented as a rule and

exponentially (in ki) many alternatives. There is one rule:

xi(Vi) ← xi1(Vi1) ∧ . . . ∧ xiki
(Viki

) ∧ ci(Vi, Vi1 , . . . , Viki
)

For each assignment of values to the xij , that is for each
〈
vi1 , . . . , viki

〉
∈

Ω(xi1) × · · · × Ω(xiki
) there is an alternative controlled by nature:

{ci(v1, vi1 , . . . , viki
), . . . , ci(vr, vi1 , . . . , viki

)}

where Ω(xi) = {v1, . . . , vr}.

The probability of each atomic choice is the value of the corresponding
conditional probability:

P0(ci(v1, vi1 , . . . , viki
)) = P (xi = v1|xi1 = vi1 , . . . , xiki

= viki
)

11The mapping for random nodes is the same as the representation of Bayesian networks in
probabilistic Horn abduction [36].

12We have not used the standard probabilistic notation of xi = vi because logicians usually
mean something different by equality, namely that two terms denote the same object.

24

The conditional probabilities on the right hand side are provided as part of
the influence diagram. Note that under this mapping there are the same
number of alternatives as there are rows in the probability tables for xi, and
the same number of probabilities are provided.

In many cases the probability can be represented more compactly. In par-
ticular this occurs when some parents are irrelevant in the context of values
to other variables [7].

• Value node with parents xi1 . . . xiki
is represented as a rule of the form:

utility(agent, v) ← xi1(vi1) ∧ . . . ∧ xiki
(viki

)

for each
〈
vi1 , . . . , viki

〉
∈ Ω(xi1)×· · ·×Ω(xiki

), where v = U(vi1 , . . . , viki
).

As with chance nodes, in many cases the value function can be represented
more compactly than this.

• Decision variable xi with ki parents xi1 . . . xiki
is represented as a rule and

exponentially (in ki) many alternatives. There is one rule:

xi(Vi) ← xi1(Vi1) ∧ . . . ∧ xiki
(Viki

) ∧ ci(Vi, Vi1 , . . . , Viki
).

For each
〈
vi1 , . . . , viki

〉
∈ Ω(xi1) × · · · × Ω(xiki

) there is an alternative
controlled by the agent:

{ci(v1, vi1 , . . . , viki
), . . . , ci(vr, vi1 , . . . , viki

)}

where Ω(xi) = {v1, . . . , vr}. Just as the influence diagram policy has to
choose a value for each value of the parents we have to choose a value for
each alternative. There is a one to one mapping between the alternatives
and the values of the parents of a node.

Example 3.3 Continuing Example 3.2, with the influence diagram of Figure 2,
variable ta has no parents, therefore there is one value to be chosen. This can be
represented as having {ta(hi), ta(low)} ∈ C1. There are 8 independent choices
to be made for d (one for each assignment of values to its parents). This can be
represented as the rule:

d(DV) ← ta(TV) ∧ as(AV) ∧ bs(BV) ∧ d does(DV, TV, AV, BV)

25

with

{d does(d1, TV, AV, BV), d does(d2, TV, AV, BV), d does(d3, TV, AV, BV)} ∈ C1

for each value of TV , AV , BV .

Theorem 3.4 Given an influence diagram ID and the corresponding ICL theory,
defined by the mapping above, there is a correspondence between the policies of
the influence diagram and the pure strategies of the ICL theory. The corresponding
policies and strategies have the same expected utility.

Proof: A policy of an influence diagram specifies a decision function for each
decision node. Each decision function is a function from the values of the parent
to the values of the nodes. A decision function, δi corresponds to the selection of

ci(δi(vi1 , . . . , viki
), vi1 , . . . , viki

)

from the corresponding alternative. It is easy to see that different policies corre-
spond to different selections, and that different selections correspond to different
policies.

The expected utility of the influence diagram policy δ is:

ε(δ) =
∑

x1,...,xn

∏
xi∈R

P (xi|π(xi)) ×
∏

xj∈D

Pδ(xj|π(xj)) × U(π(V))

=
∑

x1,...,xn

∏
xi∈R

P0(ci(xi, π(xi))) ×
∏

xj∈D

P1(cj(xj, π(xj))) × U(π(V))

where ci(xi, π(xi)) has the obvious meaning, and P1 is the probability induced by
the policy. This is the expected utility of the PHA theory for the same policy.
�

3.2 Markov Decision Processes

Markov decision processes [44] are models of single-agent stochastic sequential
decision problems where a notion of state conveys all of the information about the
past history.

A Markov decision process is defined in terms of a set S of states, a set A
of actions, a state transition function Pr(s1|s0, a) which specifies the probability
that s1 is the state resulting from carrying out action a in state s, and a reward

26

function R(so, a, s1) that specifies the reward obtained when action a is carried
out in s0 and the resulting state is s1.

A stationary policy is a selection of an action for each state; what the agent
does at any time depends on the state.

We can represent the choice function for an agent, assuming we want station-
ary policies, as:

∀S {do(a1, S), . . . , do(am, S)} ∈ C1

where do(A, S) is true if the agent will do action A in state S and A = {a1, . . . , am}
is the set of available actions. The agent gets to choose what it does for each state.
If we want a non-stationary policy (i.e., the policy depends on the time or stage),
we add a time parameter to do.

We also axiomatise the state transition function, which specifies how states
transform under actions:

state(S ′, s(T)) ← state(S, T) ∧ do(A, S) ∧ st trans(S, A, S ′)

where state(S, T) is true if the system is in state S at time T , and st trans(S, A, S ′)
is true if action A transforms state S into state S ′. This is a stochastic transition:

∀S ∀A {st trans(S, A, s0), . . . , st trans(S, A, sn)} ∈ C0

where {s0, . . . , sn} is the set of all states. Note that these are alternatives con-
trolled by nature. P0(st trans(S, A, S ′)) is the probability that state S ′ will be
the result of carrying out action A in state S.

A reward function can be defined in terms of rules of the form:

reward(ri, T) ← state(si, T)

for each state si and for some number ri.
We typically don’t want to write Markov decision processes by explicitly refer-

ring to the states, but instead want to divide the state into propositions (or random
variables) [12]. This can reduce the size of the probabilistic assessment neces-
sary. This can be reduced further by the use of rules; these allows us to express
structured probability distributions concisely. This concise specification can be
exploited for computational gain; Boutilier et. al. [5] exploit the rule (or tree)
structure of probability tables for computational gain for MDPs. The ICL repre-
sentation also allows for the concise axiomatisation in logic, with a well defined
semantics, of the dynamics of the system. This is similar to Kanazawa [24], but
incorporates a particular, and we claim useful, probability independence.

27

Example 3.5 Let’s axiomatise the structured MDP example of Boutilier et. al.[5]
in the independent choice logic. Essentially we can convert the trees into rules, but
we don’t need separate rules for each action (which is exactly the frame problem
[31]).

In this example, there are six state propositions: loc off(T), the location of
the robot is at the office (as opposed to being at the café) at time T ; wet(T), the
robot is wet; umbrella(T), the robot is carrying an umbrella; raining(T), it is
raining; rhc(T), the robot has coffee; and uhc(T), the user has coffee.

There are four actions: go(T), go to opposite location; buyC(T), buy coffee;
delC(T), deliver coffee; and getU(T), get coffee.

We can specify the dynamics using logic, for example, the following clauses
define wet and hcu:

wet(T + 1) ← wet(T)

wet(T + 1) ← go(T) ∧ raining(T) ∧ ¬umbrella(T)

hcu(T + 1) ← hcu(T)

hcu(T + 1) ← delC(T) ∧ ¬hcu(T) ∧ loc off(T) ∧ hcr(T) ∧ delCsucceeds(T)

where ∀T {delCsucceeds(T), delCfails(T)} ∈ C0, and ∀T P0(delCsucceeds(T)) =
0.8. We can also define the reward function using rules:

reward(1.0, T) ← hcu(T) ∧ ¬wet(T)

reward(0.9, T) ← hcu(T) ∧ wet(T)

reward(0.1, T) ← ¬hcu(T) ∧ ¬wet(T)

reward(0.0, T) ← ¬hcu(T) ∧ wet(T)

For finite horizon problems, the value can be specified in terms of rules. For
example,

valueto(R + U, T + 1) ← reward(R, T) ∧ valueto(U, T).

valueto(0, 0).

where valueto(V, T) is true if V is the sum of the rewards up to time T .
For infinite horizon problems, it is not so simple. You could imagine writing,

for the discounted reward function [44]:

value(R + U × γ, T) ← reward(R, T) ∧ value(U, T + 1)

where γ is the discount factor. However, such rules are problematic as the re-
cursion doesn’t terminate. It is probably better to define the value external to the

28

logic. Having the specification of the value function separate from the other parts
of the problem specification, as is traditionally done in MDPs, doesn’t seem to be
too problematic.

3.3 The strategic form of a game

The most direct connection of the ICL is to the strategic form of a game (see
Section 5.5 for a comparison to the extensive form of a game).

The strategic form of a game [32; 17] is a tuple 〈A, Σ, u〉 where

A is a non-empty set of players (agents),

Σ is a function from agents into non-empty sets (of pure strategies). Thus Σ(a)
is the set of all pure strategies for agent a.

u is a function

u : A →

⎛
⎜⎝ ×

a∈A
Σ(a) → �

⎞
⎟⎠

Suppose A = {a1, . . . an} and a ∈ A. u(a) is a function that given an n-tuple of
strategies, one for each agent in A, returns the utility for agent a under this strat-
egy profile. Thus u(a)(〈σa1 , . . . , σan〉) where σai

∈ Σ(ai) is the von Neumann–
Morgenstern utility for agent a when each player ai chooses strategy σai

.
The general idea is that each player chooses a strategy which specifies what

it will do under all contingencies. Following a complete play (specified by each
player’s strategy) each player receives a utility.

Note that there are two different forms which we treat as the same here. One is
where nature isn’t an agent, and all of the payoffs are expectations (averaging over
nature’s choices). The second is where nature is a player, and has a probability
distribution over its strategies; this is called the Bayesian form of a game [17],
where the players have partial information about nature’s choice. The private
information about nature’s move is called the player’s type. The Bayesian form
of a game assumes that each player chooses its strategy after it learns its type.
Such a distinction is beyond the scope of this paper, as we don’t consider how or
when strategies are computed (for example, whether they are computed online or
offline).

29

The ICL can be seen as a particular representation for the strategic or the
Bayesian form of a game. The set of agents is the same. We divide the space of
strategies for players into independent choices (i.e, we allow more structure in the
strategy space) and use a logic program to axiomatise the u function.

There is a direct mapping of the strategic or Bayesian form of a game into an
ICL theory: strategic game 〈A, Σ, u〉 is mapped into the multi-agent ICL theory
〈C,F ,A, controller, P0〉, where A is the same set, C is the set

{{do(ai, σai
) : σai

is a strategy for ai} : ai ∈ A}

where do(ai, σai
) is an atom that says that agent ai is adopting strategy σai

(all we
need is a name for each strategy), controller is the function {do(ai, σai

), . . .} �→
ai, P0 is the probability distribution over types (for the Bayesian model of a game)
and F is is set of rules of the form

utility(a, util) ← do(a1, σa1) ∧ . . . ∧ do(an, σan)

where util = u(a)(〈σa1 , . . . , σan〉).
This mapping has trivialised the fact that there is a lot hidden in the structure of

the strategies. We have assumed we can name the strategies and say what follows
from them. For simple games we may be able to, but for most realistic situations
we want to be able to specify the choices at a lower level of detail, and be able to
control the selection of components of strategies. The consequence of a number
of different agents choosing strategies should involve reasoning about the building
blocks of the strategies (what is done under what circumstances), and reasoning
about the dynamics of the domain to determine the consequences of the actions.

4 The Dynamic ICL

The ICL presented so far is only good at representing problems where the the
decision problem can be statically expressed (even if the problem to be solved
involves dynamics and change). Like the strategic form of a game, the building
blocks of the strategies have to be constructed ahead of time. For example, for
the influence diagram mapping we had to create an alternative corresponding to
each assignment of values to parents, rather than creating the appropriate rules for
defining the policy on the fly.

There are a number of problems with this:

30

• What the agent will do (or attempt to do) is buried within the representation.
The alternatives are at a lower level than the choices faced by the agent; they
specify what the agent will do under each contingency. While we can repre-
sent the dynamic structure structure of reasoning and acting, the formalism
presented so far gives us no help in doing so.

• We have to create an alternative for each independent choice that the agent
could make; that is, we have to a priori divide up information states for the
decision. The problem is that the a priori division needs to be at the finest
level of detail. For example, although some decision d may have much
information available when the decision is made (in the influence diagram d
may have many parents), the specification of what the agent should do may
not require all of the distinctions of the information state. There may be a
more concise encoding of the policy. Just as we have used rules as a concise
specification of probability distributions, we may like to express the policy
for an agent as rules.

• We may want to create alternatives on the fly; what options are available to
an agent and what information it knows may depend on the context, and it
may be more economical to create alternatives as needed, rather than having
to anticipate all of them as part of a strategy.

• We want to reason about the program the agent used to compute an action
rather than just the action itself [48].

We want to build a representation upon a more natural specification of dynamic
systems. We will extend the ICL to the dynamic ICL logic that is slightly more
complicated, but arguably more natural. We model the dynamics of the world
rather than the structure of the choices.

The dynamic ICL is more like a representation for the extensive form of a
game than a representation for the strategic form of a game; it will tell us how
to construct the appropriate game/decision tree (see Section 5.5). This will be
done without losing the advantages of the ICL, namely, the embedding of the
independence of Bayesian networks, the ability to represent structured decision
tables, and the use of logical variables.

We build the theory upon a general model of agents interacting in an environ-
ment. This is important as it places the ICL within a wider theoretical context,
and introduces the notions of traces, transductions, state and sensing.

31

4.1 Dynamical Systems

Modelling dynamical systems [29; 13] is common in many areas of science, from
mechanical engineering to economics to ecology.

We assume a time structure T , that is totally ordered and has a metric over
intervals. T can either be continuous or discrete; for this paper we will consider
discrete time. (See [39] for a development of continuous time in this framework.)
A trace is a function from T into some domain A.

A transduction is a function from (input) traces into (output) traces that is
“causal” in the sense that the output at time t can only depend in inputs at times t′

where t′ ≤ t (i.e., the output at some time is a function of the input history up to
that time). An agent will be a specification of a transduction. Transductions form
a general abstraction of dynamic agents and dynamic systems in general [57; 47;
39], although they don’t adequately handle the case of nondeterministic agents13.

The state of an agent is that information that needs to be remembered in order
for the output to be a function of the state and the current inputs. At one extreme
a state can contain the entire history of the agent. At the other extreme an agent
can have no state and just react to its current inputs.

4.2 Agent Structure

So far we have modelled agents by naming them and specifying which choices
they control. It helps to do more than this; we want to provide some structure
that makes it easy to model actual agents. Not every logic program and set of
assignments of agents to choices will make sense. Agents have input and outputs;
there are some values that they have no access to, and some internal values that
only they can access.

We will model agents as a logic program that specifies how the outputs are
entailed by certain inputs [39]. This logic program can use the internal values and
sense values but can’t use those values the agent has no access to (i.e., can’t sense
or otherwise determine).

In modelling agents we have to be careful about a number of things:

13With deterministic agents, only the input history is needed. Nondeterministic agents (agents
need to be nondeterministic if they inhabit an environment with other (competing) agents, or if they
have limited memory), need to be able to recall their inputs as well as choice commitments made.
For example, for an agent with no inputs to implement (a; b)|(c; d) where “|” is nondeterministic
choice and “;” is sequential composition, at the second time step the agent has to be able to recall
what it chose in the first time step.

32

• What are the inputs and what are the outputs? When we have noisy sensors
and actuators with slop and failure, we can’t condition on the values in the
world, but only on what our sensors tell us. We have to be able to model
what an agent can observe (and how it relates to the world), and what an
agent controls (and how it relates to what the agent actually does).

• We have to make sure that the agent can actually carry out the policy spec-
ified for the agent. An executable policy can’t depend on events the agent
can’t observe, or aren’t under the agent’s control.

• The logic programs are models of the agents. They aren’t the agents them-
selves. We want to be able to model many different sorts of agents, both nat-
ural and artificial. We want to be able to model agents that are implemented
as simple logic circuits or in some traditional programming language, for
example. We want to use the same language to model agents we design,
agents that our agent may encounter, and the environment. We also want
to be able to model how long the agent will take to execute an action (in-
cluding the time to execute the program to choose the action) [48]. This
doesn’t mean we couldn’t run this specification to make an agent (but it will
be a different agent, for example, if we forward chain on the axioms than
if we backward chain on the axioms; they will have very different timing
properties).

We distinguish the “controller” and the “plant” of an agent [13]. (See Figure
3). The controller is that part that we have to optimize; it receives digital sig-
nals (“observations”) and outputs digital “controls” or “actuator commands”. The
plant or body is the physical embodiment of the agent that includes input devices
such as cameras, microphones, radio receivers as well as wheels, limbs and trans-
mitters. The plant receives “percepts” from the environment (e.g., sound, light,
radio signals), and sends observations to the controller. The observations are usu-
ally correlated with the percepts received, but are typically not identical as sensors
are noisy. The plant also receives controls from the controller and makes actions
in the environment (e.g., actually moving, sending messages).

Multiple agents will all interact through the environment; the only way for
agents to communicate is through the environment14 and they all act in the en-

14If there is some form of direct communication channel, then this is also modelled as part of
the environment. This makes modelling more uniform and allows us to model noise and failure in
communication.

33

actions

percepts

observationsactuator
commands

controller

plant environment

agent

agent2 agent3

Figure 3: An agent acting in an environment

vironment (as in Figure 3). There may be many agents, all of which carry out
actions in the environment and receive percepts from the environment.

As far as the outside world (including other agents) is concerned, an agent
receives percepts such as messages, light, sounds, etc., and performs actions such
as moving limbs, sending messages. Thus other agents will tend to group the
controller and the plant together as “the agent” (or “the robot” for physical imple-
mentations).

As far as the controller is concerned, it can group the plant and the environ-
ment together. It receives observations, and outputs controls. The distinction be-
tween the plant and the environment is essentially arbitrary; we usually make the
distinction because we often build controllers for particular plants, but for more
general environments. While the distinction between the controller and the plant
may seem to be arbitrary to an outside observer, when building an agent we have
to commit to a particular division in order to construct a controller. (Typically we
want a hierarchy of controllers and plants [1; 10; 55], but this is beyond the scope
of this paper.)

34

For the rest of this paper we take the controller’s point of view; we assume a
controller receives definitive observations and can issue controls to the plant. The
plant will be modelled as part of the environment. In particular, uncertainty in
observations (observations may not always reflect what’s true in the environment)
will be modelled in terms of rules that depend on the percepts as well as nature’s
choices.

4.3 Agent Specification Module

The agent specification module takes the controller’s point of view; the inputs
will be observations and the outputs will be controls. The agent will be able to
condition on the observations and will need to choose values for the controls.

Agent specification modules will allow us to modularise our knowledge, and
use common computer science techniques like information hiding, abstract data
types and modular program design. We will generalise the ICL to the “dynamic
ICL” through the use of agent specification modules; this will allow a more con-
cise representation of decision problems.

Definition 4.1 An agent specification module for agent a �= 0, written ASMa,
is a tuple 〈Ca,Oa, π〉 where

Ca is a set of alternatives controlled by a. This will be the set of possible actuator
commands for the agent; the agent can attempt to “do” one of the actuator
commands in each element of Ca.

Oa, the observables, is a set of sets of ground atomic formulae. Elements of Oa

are called observation alternatives; elements of observation alternatives
are called atomic observations.

π, the observable function, is a function π : Ca → 2Oa . The idea is that when
the agent decides which element of alternative χ ∈ Ca to choose, it will have
observed one atomic observation from each observation alternative in π(χ).
Elements of π(χ) are the information available to the agent when it has to
choose an element of χ. π(χ) corresponds to the parents of a decision node
χ in an influence diagram.

The following definition mirrors the analogous definition from game theory:

35

Definition 4.2 Agent a has perfect recall (or is no-forgetting) if it remembers
all of its previous observations and previous actions. Formally this means that
the element of Ca are totally ordered and if χ1 ∈ Ca, χ2 ∈ Ca, χ1 < χ2 then
χ1 ∈ π(χ2) and π(χ1) ⊂ π(χ2).

A dynamic ICL theory consists of an agent specification module for each
agent, and a logic program, plus stochastic choices to axiomatise what follows
from the agent’s choices:

Definition 4.3 A dynamic independent choice logic theory is a tuple 〈A, C0,F0, P0, ASM〉
where

A is a finite set of agents containing a distinguished agent 0 called “nature”

C0, nature’s choice space, is a choice space with alternatives controlled by na-
ture

F0, nature’s facts, is a logic program such that no atomic choice unifies with the
head of any rule

P0 is a function ∪C0 → [0, 1] such that ∀χ ∈ C0
∑

α∈χ P0(α) = 1

ASM is a function on A−{0} such that ASMa is an agent specification module
for agent a

such that F0 is acyclic with an acyclic ordering where ∀a ∈ A, ∀χ ∈ Ca, ∀α ∈ χ,
∀O ∈ π(χ), ∀α′ ∈ O, α′ < α in the acyclic ordering. That is, there is an acyclic
ordering where the actions are after their corresponding observables.

Note that 〈F0, C0, P0〉 will correspond to a particular (stochastic) strategy for
nature (see Definition 4.10). It’s a specification of what choices nature will make.
This specifies the stochastic dynamics of the system.

We have to make sure that the observables for each agent really cover the
possibilities and really are alternatives.

Definition 4.4 Given dynamic ICL theory 〈A, C0,F0, P0, ASM〉, set Γ of ground
formulae is non-exclusive if there exists a choice function τ on

⋃
a∈A Ca and there

exists α1 ∈ Γ, α2 ∈ Γ, α1 �= α2 such that R(τ) ∪ F0 |∼α1 ∧ α2. Otherwise Γ is
exclusive. Γ is covering if for every choice function τ on

⋃
a∈A Ca, there is α ∈ Γ

such that R(τ) ∪ F0 |∼α.

36

For example, every choice alternative is exclusive and covering. Every set of the
form {a,¬a} is exclusive and covering. A less trivial example is: given C =
{{a, b}, {c, d}, {e, f}}, and F = {g ← a, h ← b ∧ c, i ← b ∧ d}, {g, h, i} is an
exclusive and covering set. If g ← e were added to F then {g, h, i} would no
longer be exclusive.

Definition 4.5 A dynamic ICL theory is observation consistent if for every a ∈
A, every element of Oa is exclusive with respect to the dynamic ICL theory. A
dynamic ICL theory is observation complete if for every a ∈ A, every element
of Oa is covering.

The above definitions are to make sure that we can treat the elements of O
as random variables. Unlike elements of C, they aren’t exclusive and covering
by definition. We will always require a theory to be observation consistent, but,
when we have negation as failure in the logic [37], we will not require the theory
to be observation complete (there may be an extra, unnamed element of each
element of O). Note that observation consistency isn’t a severe restriction; we can
always make O a set of singleton sets, but then we can’t exploit the structure of
observations.

Example 4.6 For example, suppose we have {high, medium, low} as an obser-
vation alternative. We want the theory to never allow choices of the agents to
entail both high and medium. This means that a strategy can be specified as a
function from this set into actuator settings. If these values were not exclusive, we
could make sets {high,¬high}, {medium,¬medium}, and {low,¬low} into
observation alternatives (which are each exclusive and covering), but this would
mean a strategy would be a function from the cross product of these into actuator
settings. If {high, medium, low} isn’t covering, we also have to cover the case
¬high ∧ ¬medium ∧ ¬low in defining a strategy.

The general idea is that the agent will always observe one element of each
member of π(χ) before choosing one element of χ. The acyclicity restrictions
and the observation completeness and consistency requirements above ensure this
temporal ordering is possible.

In this paper we assume all our theories are observation consistent and com-
plete.

37

4.4 Pure Strategies

A pure strategy is a specification of what an agent will do based on what it ob-
serves. This strategy is represented as a logic program. There are restrictions on
the logic program to ensure an agent can’t condition on values to which it doesn’t
have access.

Definition 4.7 If 〈Ca,Oa, πa〉 is an agent specification module for agent a ∈ A,
then a pure strategy for agent a is a logic program Fa such that

• Fa is acyclic with an acyclic ordering such that, for every χ ∈ Ca, every
element of each element of πa(χ) is before every element of χ. That is, the
agent can observe before making the decision.

• For every χ ∈ Ca, and for every selection function τπ(χ) on π(χ), there is a
unique α ∈ χ that is true in the unique stable model of Fa ∪R(τπ(χ)). That
is, whatever is observed, the logic program specifies what the agent will do.

• The heads of rules in Fa only unify with either local atoms (that don’t unify
with atoms in the agent specification module of any other agent or in F0) or
members of choice alternatives in χa. Thus Fa can only be used to imply
alternatives owned by agent a, perhaps with some local atoms as intermedi-
aries.

• For each χ ∈ Ca, the only formulae that can appear in the bodies of rules
in Fa to prove an element of χ are: elements of members of π(χ), local
atoms and atoms whose definition doesn’t depend on the choices of other
agents (and formulae built from these). While we don’t want to restrict
the complexity of programs to compute the choice from an element of χ,
the choice can’t depend on values that the agent can’t observe or otherwise
compute.

Thus a strategy for an agent is just a program to specify what the agent will do
based on what information it receives.

Definition 4.8 Given a dynamic ICL theory, a (pure) strategy profile is a se-
lection of one (pure) strategy for each agent (other than nature). Thus a strategy
profile is a logic program F =

⋃
a∈A Fa that specifies what each agent will attempt

to do.

38

There are two (equivalent) ways to define the semantics. One it to have a pos-
sible world for each selection of an element from each alternative controlled by
nature, and to have F specify what’s true in each world. In this case, the probabil-
ity of a world is independent of the strategy, but a strategy profile specifies what’s
true in each world. The second is to have a possible world for each selection of
one element from each alternative. In this case, what’s true in a world doesn’t
depend on the strategy profile chosen, but the probability of a world does. The
second has many possible worlds with zero probability that were not created in
the first scenario. We will define the first method formally here.

Definition 4.9 If dynamic ICL theory 〈A, C0,F0, P0, ASM〉 is utility complete,
and F is a pure strategy profile, then the expected utility of strategy profile F for
agent a is

ε(a,F) =
∑
τ

p(τ) × u(τ, a,F)

(summing over all selector functions τ on C0) where

u(τ, a,F) = u if R(τ) ∪ F |∼utility(a, u)

(this is well defined as the theory is utility complete), and

p(τ) =
∏

χ∈C0

P0(τ(χ))

u(τ, a,F) is the utility of world wτ for agent a under strategy profile F . p(τ) is
the probability of world τ .

4.5 Stochastic Strategies

As in the goal kick example above, it’s often desirable for agents to adopt random
strategies. In this section we define random (stochastic) strategies. The general
idea is that a random strategy is a probability distribution over pure strategies.

Definition 4.10 If 〈Ca,Oa, πa〉 is an agent specification module for agent a ∈
A, then a (stochastic) strategy for agent a is a tuple 〈Fa, C ′

a, Pa〉 where C ′
a is a

choice space whose atomic choices do not appear outside of this strategy, Pa is
a probability distribution over each element of C ′

a (i.e., ∀χ ∈ C′
a, ∀α ∈ χ, 0 ≤

Pa(α) ≤ 1 and
∑

α∈χ P (α) = 1), and F is a logic program such that for all
selector functions τa on C ′

a, F ∪ R(τa) is a pure strategy (the element of R(τa)
will be local atoms in the strategy).

39

Example 4.11 Suppose 〈{{up, down, left}}, {{high, medium, low}}, π〉, where
π({up, down, left}) = {{high, medium, low}} is an agent specification module
for agent a. That is, a can do one of {up, down, left}, and when it has to act, it
will know which of {high, medium, low} is true. One stochastic strategy could
have facts:

up ← high ∧ uh,

down ← high ∧ dh,

left ← high ∧ lh,

up ← medium ∧ um,

down ← medium ∧ dm,

left ← low,

choice space C ′
a = {{uh, dh, lh}, {um, dm}}, and Pa given by Pa(uh) = 0.7,

Pa(dh) = 0.2, Pa(lh) = 0.1, Pa(um) = 0.6, and Pa(mh) = 0.4.

Definition 4.12 A strategy profile σ is an assignment of a stochastic strategy for
each agent (i.e., for each a ∈ A, σ(a) is a stochastic strategy). If σ is a strategy
profile, define Fσ

a to be the first component of σ(a), Cσ
a to be the second compo-

nent of σ(a), and P σ
a to be the third component of σ(a).

It remains to define the expected value of a strategy profile.

Definition 4.13 If dynamic ICL theory 〈A, C0,F0, P0, ASM〉 is utility consistent
and complete, and σ is a stochastic strategy profile, then the expected utility σ
for agent a is

ε(a, σ) =
∑
τ

p(τ, σ) × u(τ, a, σ)

(summing over all selector functions τ on C0 ∪
⋃

a∈A Cσ
a) where

u(τ, a, σ) = u if R(τ) ∪ Fσ |∼utility(a, u)

where Fσ =
⋃

a∈A Fσ
a (u is well defined as the theory is utility consistent and

complete), and

p(τ, σ) =
∏
a∈A

∏
χ∈Cσ

a

P σ
a (τ(χ))

u(τ, a,F) is the utility of world wτ for agent a under strategy profile F . p(τ, σ)
is the probability of world τ under strategy profile σ.

40

5 Discussion

In this section we discuss some modelling issues for the dynamic ICL. We first
discuss how to model information-producing actions, how to model noisy sen-
sors and actuators, what it means to execute a stochastic strategy, and finally the
relationship to the extensive form of a game. Section 6 presents some detailed
examples.

5.1 Passive Sensors and Information Seeking Actions

The observations represent passive sensors that (at each time) receive values from
the environment (one value from each observation alternative). We also don’t
distinguish between information-producing actions and actions that “change the
world”; there is only one type of action. The nature module will specify the
consequences of doing an action.

We can model “information-producing actions” by having actions whose ef-
fect to make a sensor have a value that correlates with some value in the world.
For example, the information producing action “look” may affect what’s sensed
by the eyes; if the agent doesn’t “look” they will sense the value “nothing”, if they
do look (in a certain direction) they may sense what’s in that direction. Of course
the “look” action may be unreliable (the lights may be out), and it may take an
arbitrary amount of time to achieve its effect (as in a medical test).

What’s also important is that the agent can only condition on its sense values
or on values derived from these. The agent can’t condition on what it has no
access to (e.g., the true state of the world). Similarly, the agent can only control
what message is sent to its actuators; what it actually does may be quite different.

Section 6.1 gives a detailed example and discussion of modelling passive sen-
sors and information seeking actions.

5.2 Noisy Sensors and Actuators

There is a straightforward way to model noisy sensors and actuators. This follows
the distinction between the plant and the environment depicted in Figure 3. The
general idea is to axiomatise how the observations are a function of the percepts
plus noise. Similarly we can axiomatise how the actions of the agent are a function
of the controls plus noise (for slop, errors, slippage, etc).

We can divide up the noise into systematic errors (e.g., that the sensor is ac-
tually broken, and always makes the same error) and intermittent noise (the in-

41

dependent error for each reading), and a continuum in between. For example,
consider a sensor for checking road speeds on a highway [16]:

Example 5.1 In this example we show how to axiomatise a noisy sensor that can
break down. The sensor is either working or not. If it’s working there is some
“normal” error from the true reading. If the sensor is not working it produces
some reading at random (independent of the actual velocity).

sense velocity(V + DV, T) ←
velocity sensor OK(T) ∧
velocity(V, T) ∧
normal error(DV, T).

sense velocity(EV, T) ←
¬velocity sensor OK(T) ∧
error reading(DV, T).

We need to have a probability distribution over the normal errors. For example if
the errors are discrete in 10km/h steps, we can specify something like:

∀T{normal error(DV, T) : DV ∈ {−30,−20,−10, 0, 10, 20, 30}} ∈ C0

P0(normal error(−30, T)) = 0.01

P0(normal error(−20, T)) = 0.03

P0(normal error(−10, T)) = 0.06

P0(normal error(0, T)) = 0.8

P0(normal error(10, T)) = 0.06

P0(normal error(30, T)) = 0.03

P0(normal error(30, T)) = 0.01

Similarly we can define error reading which provides a probability distribution
over error readings. There is nothing in principle that prevents us from having a
non-discrete distribution, such as a normal (Gaussian) distribution over errors. We
have not presented that here as the mathematics is more complicated; we would
need to consider measurable sets of speeds rather than the speed themselves.

Whether the sensor is working at some time isn’t independent of whether it’s
working at some other time. We need to axiomatise the dynamics of sensor failure
(i.e., we need to specify the probability distribution over time). The sensor can
break at any time; suppose it has a 2% chance of breaking at any time when it had

42

been working and a 5% chance of being fixed up when it was broken (we could
also axiomatise a more complicated dynamics of how the sensor can get fixed, but
this will show the main point). velocity sensor OK can be axiomatised as:

velocity sensor OK(T + 1) ←
velocity sensor OK(T) ∧
¬velocity sensor breaks(T).

velocity sensor OK(T + 1) ←
¬velocity sensor OK(T) ∧
velocity sensor fixed(T).

∀T{velocity sensor breaks(T), velocity sensor remains OK(T)} ∈ C0

∀T{velocity sensor fixed(T), velocity sensor remains broken(T)} ∈ C0

with P0(velocity sensor breaks(T)) = 0.02 and P0(velocity sensor fixed) =
0.05. In addition, we need to define the initial value of velocity sensor OK, for
example as a member of an alternative controlled by nature.

5.3 Executing a strategy

What does it mean for an agent to execute a strategy? If the strategy for the agent
is pure, then it will tell the agent what to do based on its sensor values. The agent
will “do” the unambiguous actions that are entailed. If the strategy for the agent
isn’t pure, then there may be a number of things that the agent could attempt to
do based on its inputs. To follow a strategy it should pick the actions randomly
according to the distribution specified in the strategy.

Picking strategies at random doesn’t mean that there must be a random number
generator in the robot (or access to some really random quantum phenomenon),
although it could. For example, for the soccer playing robots we could compile in
the randomness, by choosing offline whether it should go right or left according to
the random strategy. If we did this then we would have to hide our design from our
opponent designer and replace our robot after a single penalty kick. An alternative
would be to have two non-random robots, where we choose one at random for
each penalty kick. These two robots, together with the choosing mechanism, can
be seen as one randomizing agent. The most important property is that the other
agent isn’t able to predict what our agent will do.

43

It’s silly to think of an agent cheating, by not choosing from the random distri-
bution. This is particularly the case when we consider that the agent gets to choose
whichever strategy it wants. Cheating with one strategy is the same as choosing
a different strategy. We will then consider it to be that strategy that the agent is
carrying out. This doesn’t mean that an agent can’t lie about what strategy it’s
carrying out. What an agent says about what it will do will be another action of
the agent, and it can do whatever it wants.

5.4 Non-deterministic Actions and the Frame Problem

There has been much work on logical specifications of actions and change. The
specification of actions that solves the frame problem is well understood for the
deterministic case with complete knowledge [27; 50; 45]. These axiomatisations
assume the closure of the axiomatisation for change. See [2] for a detailed de-
scription of axiomatising change with acyclic programs.

What’s added in this work is a way to handle non-deterministic actions and
partial knowledge. The central idea is that determinism and complete knowledge
(as assumed in negation as failure) occurs for each world. We can have a distribu-
tion over worlds. When we have uncertainty, it’s useful to consider the question
of “who chooses the value”. Often it’s random, but often it’s another agent. What
we require is that the axiomatiser resolves this ambiguity.

Example 5.2 We can axiomatise a coin toss, where, when a coin is tossed, it lands
heads 50% of the time and tails 50% of the time; when it isn’t tossed, it remains
in the state (heads or tails) it was before:

heads(C, T + 1) ←
tossed(C, T) ∧
heads turns up(C, T).

heads(C, T + 1) ←
¬tossed(C, T) ∧
heads(C, T).

tails(C, T) ← ¬heads(C, T)

where heads(C, T) is true if coin C has heads up at time T . heads turns up(C, T)
is true at time T if heads would turn up on coin C is it were tossed at time T . It’s
defined as:

∀C ∀T {heads turns up(C, T), tails turns up(C, T)} ∈ C0

44

with ∀C ∀T P0(heads turns up(C, T)) = 0.5.

Many of the papers that present a solution to the frame problem [27; 50; 45; 2]
use the situation calculus for representing change, rather than the discrete time
model used here. See [40] for a description of how the situation calculus can be
combined with the independent choice logic.

5.5 The Extensive Form of a Game

The extensive form of a game [53; 32; 17] is a representation of a game in terms of
a game tree, a generalisation of a decision tree to include different agents making
decisions at each node, and having information sets of nodes that agents can’t
distinguish.

“The extensive form of a game contains the following information:

1. the set of players

2. the order of the moves, i.e., who moves when

3. the players’ payoffs as a function of the moves that were made

4. what the players’ choices are when they move

5. what each player knows when he makes his choices

6. the probability distribution over any exogenous events.”[17, p. 77]

There is a direct mapping between the dynamic ICL and the extensive form of
a game. A is the set of players. The logic program specifies the payoffs as a func-
tion of the moves (actions) of the players. The set Ca specifies the players’ choices
when they move. The π function specifies what each player knows when it makes
its move. P0 provides a probability function over exogenous events represented
as the independent random variables in C0.

The order of the moves is defined by the acyclicity of the knowledge base. The
moves must be ordered so that the information is available before the decision is
made. If there is some acyclicity ordering such that χ1 is before χ2 then χ1 can be
made before χ2; if there is another acyclicity ordering where χ2 is before χ1, then
it doesn’t matter in which order the choices are made (as all of the information
available for each choice can’t depend on the other choice).

While the acyclicity of the rule base was chosen in order to allow for a simple
semantic framework [36], it can be justified by appealing to the structure of games.

45

look? doIt?

sense

isTrue

utility

Figure 4: Influence diagram for our idealised example

6 Examples in Detail

In this section we present three different examples of using the ICL. The first
demonstrates so-called “information seeking actions” and noisy sensors and ac-
tuators. The second presents a decision-theoretic planning example. The third
defines a two-player, imperfect information game of blind tic-tac-toe. There are
intended to show the details of the representation, and were not chosen because
they are elegant examples for the formalism.

6.1 Information Seeking Actions and Noisy Sensors

In this section we give an idealised single agent in an environment example, show-
ing how to model the following:

• Information producing actions, such as tests in diagnosis and positioning a
camera in robotics, or asking a question in a user modelling situation

• Conditional plans (conditioning on sense values)

• How a passive sensor can be used to model an active sensor that “looks”

• How noisy sensors and actuators can be modelled (Section 6.1.4).

46

6.1.1 Information producing actions

The look? decision of Figure 4 can be seen as an information producing action.
It lets information about isTrue be available to the next action. It also has a cost
associated with it.

The agents action can either be look or dont look. The action can be modelled
by having

{look, dont look} ∈ C

with our agent controlling this alternative.
In the rule base we model how actions by the agent and truths in the world

affect sense values for the agent. Here is an idealised example for the case where
there is no noise. (Section 6.1.4 considers noise.) Suppose that following the
looking, the agent can sense either pos, neg or nothing. For the case with no
noise, the environment model has the following axioms in F :

sense(pos) ← look ∧ is true.

sense(neg) ← look ∧ ¬is true.

sense(nothing) ← dont look.

Thus “look” provides information about “is true” to “do it”.

6.1.2 Conditioning on sense values

The agent can sense the world, and then decide what to do based on the sense
values.

Continuing our example, suppose that the agent has possible actions do it, dont do it,
and has the sense values above. There are three independent choices the agent can
make, namely whether or not to do it for each of the three contingencies.

Within the ICL this can be modelled by having the axioms:

do it ← sense(pos) ∧ do if pos.

dont do it ← sense(pos) ∧ dont if pos.

do it ← sense(neg) ∧ do if neg.

dont do it ← sense(neg) ∧ dont if neg.

do it ← sense(nothing) ∧ do if nothing.

dont do it ← sense(nothing) ∧ dont if nothing.

47

and by having the following alternatives in C, controlled by our agent:

{do if pos, dont if pos}
{do if neg, dont if neg}
{do if nothing, dont if nothing}

Within the dynamic ICL we specify:

{do it, dont do it} ∈ Cagent

Oagent = {{sense(pos), sense(neg), sense(nothing)}}
π({do it, dont do it}) = {{sense(pos), sense(neg), sense(nothing)}}

The rules that need to be provided as part defining the ICL are created as part of
the agent’s strategy in the dynamic ICL.

6.1.3 Utility model

Finally, a utility model (part of the environment model) specifies how the utility
varies depending on what’s true and what the agent does. Here is an example of
such an an axiomatisation (given that our agent is agent1):

utility(agent1, P rize − TC) ←
test cost(TC) ∧
prize(Prize).

test cost(5) ← look.

test cost(0) ← dont look.

prize(10) ← do it ∧ is true.

prize(0) ← dont do it ∧ is true.

prize(8) ← dont do it ∧ ¬is true.

prize(1) ← do it ∧ ¬is true.

6.1.4 Noisy Actuators and Sensors

In Section 6.1.1 we assume that there were no noise in either actuator settings or in
sense values. We can model actuator noise, for example in the “looking” actuator,
by something like:

see ← look ∧ looking works

see ← dont look ∧ not looking doesnt work

48

with following in C, controlled by nature:

{looking works, looking doesnt work}
{not looking works, not looking doesnt work}

P0(looking works) is the probability that the agent succeeds in seeing when it
looks. P0(not looking doesnt work) is the probability that that agent sees when
it doesn’t look.

Noisy sensors can be modelled similarly. Assume that the value sensed only
depends on whether the agent sees, but that there is no noise with respect to not
seeing. There are two alternatives controlled by nature:

{false positive, true negative}
{false negative, true positive}

and the following facts:

sense(pos) ← see ∧ is true ∧ true positive.

sense(neg) ← see ∧ is true ∧ false negative.

sense(neg) ← see ∧ ¬is true ∧ true negative.

sense(pos) ← see ∧ ¬is true ∧ false positive.

sense(nothing) ← ¬see.

P0(false positive) is the probability of a false-positive; when the sensor reports
positive when the value in the world is not true. P0(false negative) is the prob-
ability of a false-negative; when the sensor reports negative when the value in the
world is true.

6.2 Shipping Widget s

In this section we present an example of Draper et. al. [14]. The example is that
of a robot that must process a widget. Its goal is to have the widget painted and
processed and then to notify its supervisor that it’s done. Processing consists of
rejecting flawed widgets and shipping unflawed widgets. The robot can inspect
the widget to see if it’s blemished, which initially correlates with the widget be-
ing flawed. Painting the widget usually results in the widget being painted but
removes blemishes.

49

AGENT MODULE We first represent the robot. The robot has one sensor for
detecting blemishes. sense(blemished, T) is true if the robot senses that the wid-
get is blemished at time T .

The robot has 6 actions (exactly one of which is possible at any time), namely
to reject, ship, notify, paint or inspect the widget or do nothing. do(A, T) is true
if the robot does action A at time T .

The robot specification module for robot is the tuple 〈Crobot,Orobot, π〉 where

Crobot = {{do(reject, T), do(ship, T), do(notify, T), do(paint, T),

do(inspect, T), do(nothing, T)} : T is a time}.
Orobot = {{¬sense(blemished, T), sense(blemished, T)} : T is a time}.
π({do(reject, T), do(ship, T), do(notify, T), do(paint, T),

do(inspect, T), do(nothing, T)})
= {{¬sense(blemished, T ′), sense(blemished, T ′)} : T ′ ≤ T}.

In other words, at each time, the robot gets to choose which of the six actions it
carries out. When it’s making this decision, it knows whether or not it has sensed
blemishes in the past.

NATURE MODULE: The remaining thing to define is the rules and alterna-
tives controlled by nature. This specifies the dynamics of the world. We axioma-
tise how the robot’s actions affect the world, how the world affects the senses of
the robot.

The widget being painted persists in the world. Painting the widget can re-
sult in the widget being painted (with probability 0.95). We assume that whether
painting works doesn’t depend on the time (a second painting will not make the
widget more likely to be painted). Painting only works if it hasn’t already been
shipped or rejected. Once painted, a widget remains painted.

painted(T + 1) ←
do(paint, T) ∧
paint works ∧
¬shipped(T) ∧
¬rejected(T).

painted(T + 1) ←
painted(T).

50

Painting succeeds 95% of the time:

{paint works, paint fails} ∈ C0

P0(paint works) = 0.95, P0(paint fails) = 0.05

Note that we have not parametrized paint works by the time. This is lets us
model the fact that repainting will not help when painting failed the first time.
In any possible world where paint fails is true, painting always results in the
widget being painted, and if it is false, painting always results in the widget being
painted.

The widget is blemished if and only if it’s flawed and not painted:

blemished(T) ←
flawed(T) ∧
¬painted(T).

Note that the use of logic programs, assuming the stable model semantics entails
that the rules mean “if and only if” (in the same way Clark’s completion [11]
does).

Whether the widget is flawed or not persists:

flawed(T + 1) ←flawed(T).

The widget is processed if it’s rejected and flawed or shipped and not flawed:

processed(T) ←
rejected(T) ∧
flawed(T).

processed(T) ←
shipped(T) ∧
¬flawed(T).

The widget is shipped if the robot ships it, and being shipped persists:

shipped(T) ← do(ship, T).

shipped(T + 1) ← shipped(T).

The widget is rejected if the robot rejects it, and being rejected persists:

rejected(T) ← do(reject, T).

rejected(T + 1) ← rejected(T).

51

We axiomatise how what the robot senses is affected by the robot’s actions and
the world:

sense(blemished, T + 1) ←
do(inspect, T) ∧
blemished(T) ∧
¬false pos(T).

The sensor gives a false positive with probability 0.1. Unlike whether painting
succeeds, suppose the probability of the sensor giving a false positive at each time
is independent of what happens at other times:

{false pos(T), not false pos(T)} ∈ C0

P0(false pos(T)) = 0.1

P0(not false pos(T)) = 0.9

30% of widgets are initially flawed:

{flawed(0), unflawed(0)} ∈ C0

P0(flawed(0)) = 0.3

P0(unflawed(0)) = 0.7

Finally we specify how the utility is dependent on the world and actions of the
robot. The utility is one if the widget is painted and processed the first time the
robot notifies, and is zero otherwise.

utility(robot, 1) ←
do(notify, T) ∧
¬notified before(T) ∧
painted(T) ∧
processed(T).

utility(robot, 0) ← ¬utility(robot, 1).

notified before(T) ← T1 < T ∧ do(notify, T1).

One (pure) policy for our robot is the logic program:

do(inspect, 0).

do(paint, 1).

do(reject, 2) ← sense(blemished, 1).

do(ship, 2) ← ¬sense(blemished, 1).

do(notify, 3).

52

This has expected utility 0.925. Note that in the problem formulation, we need to
paint blemished widgets.

This policy isn’t optimal. Policy:

do(inspect, 0).

do(inspect, 1).

do(paint, 2).

do(reject, 3) ← sense(blemished, 1).

do(reject, 3) ← sense(blemished, 2).

do(ship, 3) ← ¬sense(blemished, 1) ∧ ¬sense(blemished, 2).

do(notify, 4).

has expected utility 0.94715. There is no optimal policy for this example (it isn’t
a finite game so Nash’s theorem doesn’t apply here), we can add more “inspect”s
to keep raising the expected utility.

The best policy without inspecting, namely {do(paint, 0), do(ship, 1), do(notify, 2)}
has expected utility 0.665.

Of course, we can always define the utility so that the robot is penalized for
taking too much time, e.g., by defining utility by:

utility(robot, 1 − T/10) ← rewarded(T).

utility(robot, 0) ← ¬rewarded at some time.

rewarded at some time ← rewarded(T).

rewarded(T) ←
do(notify, T) ∧
¬notified before(T) ∧
painted(T) ∧
processed(T).

Under the revised utility, the first policy above (with a single inspect) is optimal,
with expected utility 0.625.

6.3 Blind tic-tac-toe

Koller and Pfeffer [26] present a game description language Gala. In that language
they represent the game “blind tic-tac-toe”. We represent the same game in the

53

ICL in order to present a parlour-game example and to enable us to compare the
representation with Gala.

Blind tic-tac-toe is an imperfect information version of standard tic-tac-toe:

“As in regular tic-tac-toe, the players take turns placing marks in
squares. However, on his turn, each player can choose to mark ei-
ther an X or an O; he reveals to his opponent the square in which he
makes the mark, but not what type of make he makes. As usual, the
goal is to complete a line of three squares with the same mark.”[26]

The basic idea in defining such a game is to axiomatise the dynamics of the
game in the logic. The rules should imply the consequences of the choices made
by agents.

First we need a representation for the state of the game. In this game, the order
of the moves is important as well as who put what where (as the last player who
places a marker to make three in a row wins). We can represent the state of the
game as a list of the form put(X, Y, Who, What) which means that the player
“Who” (either a or b) put “What” (an o or an x) at position (X, Y). The first
element of the list was the last element placed there.

The first rule defines the first move. The second rule for the state progression
defines subsequent moves:

state([put(X, Y, Agent, What)], s(0)) ←
starts(Agent) ∧
chooses(Agent, place(X, Y, What), 0).

state([put(X, Y, Agent, What), put(Xp, Y p, Ap, Wp)|Rest], s(T)) ←
state([put(Xp, Y p, Ap, Wp)|Rest], T) ∧
¬finished([put(Xp, Y p, Ap, Wp)|Rest]) ∧
opponent(Ap, Agent) ∧
chooses(Agent, place(X, Y, What), T).

We can define auxiliary relations such as who starts, and how the moves alternate,
and when the game is finished.

starts(a).

opponent(a, b).

opponent(b, a).

54

finished(S) ←
draw(S).

f inished(S) ←
wins(A, S).

draw(S) ←
length(S, 9).

We can axiomatise the utility functions. Note that we are relying on the fact that
for any particular set of choices by agents, there is only one win state or one draw
state.

utility(a, 1) ←
wins(a, S).

utility(a, 0) ←
wins(b, S).

utility(a, 0.5) ←
draw(S).

utility(b, 1) ←
wins(b, S).

utility(b, 0) ←
wins(a, S).

utility(a, 0.5) ←
draw(S).

We can axiomatise the choices by the agents:15

chooses(Agent, place(X, Y, What), T) ←
chooseX(Agent, X, T) ∧
chooseY (Agent, X, T) ∧
chooseWhat(Agent, What, T).

15This is one simple way to axiomatise the choices. It means that agents can choose to place a
mark in an occupied space (presumably they will be penalized by losing if they choose an occupied
spot). Another method is that the agent can derive a list of free spaces from the sensed information,
and then can only choose an element from this list.

55

The agents get to choose the X position, the Y position, and what mark they make.
Thus,

∀T {chooseX(Agent, 1, T), chooseX(Agent, 2, T), chooseX(Agent, 3, T)} ∈ CAgent

∀T {chooseY (Agent, 1, T), chooseY (Agent, 2, T), chooseY (Agent, 3, T)} ∈ CAgent

∀T {chooseWhat(Agent, o, T), chooseWhat(Agent, x, T)} ∈ CAgent

Now we have to decide what an agent gets to observe when making their
decision. We assume that for each of these choices the agent gets to observe a
filtered version of the state, which consists of a list of pos who(X, Y, Who) for
each square and a list of pos what(X, Y, What) for the squares they occupy:

sense(Agent, Pos Who List, Pos What List, T) ←
state(S, T) ∧
extract pos who list(S, Pos Who List) ∧
extract pos what list(Agent, S, Pos What List).

extract pos who list([], [])

extract pos who list([put(X, Y, Agent, What)|S1], [pos who(X, Y, Who)|P1]) ←
extract pos who list(S1, P1).

Similarly for extract pos what list.
The observable function can be given by:16

π({chooseX(Agent, 1, T), chooseX(Agent, 2, T), chooseX(Agent, 3, T)})
= {{sense(Agent, Pos Who List, Pos What List, T)}

: Pos Who List, Pos What List are appropriate lists}.

The other two choices have similar information sets, but include the previous de-
cisions (i.e., the agent knows which X it chose when choosing a Y).

For those who don’t like to read declarative logical formulae, the best way to
understand these rules is to think about building a game tree by forward chaining
on the rules. a starts and so must make a choice of the X position, the Y position,
and what mark they are making. This forms an 18-way split in the game tree
(there are 18 different choices available to a). Then the state evolves by b making
a move. There are 9 different information states for b, and they have to choose one

16We have neither presented a syntax for π, nor a syntax for the choices. This is because we
only wanted to present object level rules, in order to not have to present two different logical
formalisms. It’s hoped that this set notation gets the general idea across.

56

of 18 choices (or 16 if the alternative axiomatisation is made). And so on building
the game tree.

It’s envisioned that such a representation could be used to build the same game
tree as for Gala [26], and can use the same efficient algorithms. The representa-
tion proposed in this paper is more declarative (in that we can give a declarative
possible worlds semantics for the whole framework, and all of the logical rules
can be interpreted as statements about the domain), and more general in that it’s
not tuned specifically to 2-person alternating games. In fact the ICL isn’t tuned for
any particular application; there are no built in predicates, and no syntax beyond
that of the logic. This may mean that Gala is more natural for those games it’s
designed for, but we believe that the more general language will be more useful
for general specification of decision problems under uncertainty.

7 Conclusion

This paper has presented a logic that allows for what’s arguably a natural speci-
fication of multi-agent decision problems. There is a simple semantic framework
in terms of possible worlds semantics. It lets us use logic to specify the dynamics
of the world, while retaining the elegance and generality of game theory.

What we are adding to game theory is an object-level representation of the
domain. We can axiomatise how actions (moves) affect the world, how the utility
is derived from simpler components, and how sensors work. All of these axioms
can be interpreted within the simple logic. It allows us to represent the proba-
bilistic dependencies in a domain, in much the same way that influence diagrams
provide a more intuitive representation for many problems than decision trees [23;
22]. We also allow for a form of parametrized rules by the use of logical variables
that allow us to construct large game trees from smaller components.

We are adding to influence diagrams, the ability to represent multiple agents,
the ability to represent17 structured probability and decision tables, and a way to
have a dynamic construction of influence diagrams (with a similar motivation to
Breese [9], but having logic programs as object-level statements about the world
rather than at the meta-level as does Breese). We also allow for the designer to
axiomatise the dynamics of the system, instead of having to summarize it in a
single step as a probability distribution.

We are adding to logic a new way to handle and think about non-determinism

17In other papers we show how the structure can be exploited for computational gain [38; 41].

57

and uncertainty. Rather than just using disjunction which doesn’t seem to be sub-
tle enough for the range of forms of uncertainty that we need to handle, we provide
a mechanism in terms of independent choices to handle uncertainty. We argue that
considering different agents making choices is the right way to think about uncer-
tainty in a logical formalism. The ICL is weaker than other mixes of logic and
decision theory for modelling agents [3; 24; 20; 19] which have added probability
and decisions to a rich logic. They don’t have general independence assumptions
(although they can state independence assumptions), and have to cope with many
different forms of uncertainty (e.g., disjunction as well as choices by agents). The
goals of this paper are different: we are investigating a different way of viewing
uncertainty for modelling agents. We are looking for ways to make representations
of the world simpler. Whether we have succeeded in this is an open question.

Conspicuous by its absence in this paper is a discussion on computation. In
this context, computation can mean three things: (1) building a situated agent that
embodies a strategy; (2) simulating a policy and environment; or (3) finding an
optimal strategy. A Prolog implementation of the second that finds expected utili-
ties of strategies is available from the author’s web page.18 It should be noted that
the computational complexity of finding Nash equilibria, even the propositional,
single-agent without perfect recall case is exponentially harder to solve than an
influence diagram [25]. Intuitively this is because dynamic programming doesn’t
work when we have a forgetful agent; we can’t solve the last decision indepen-
dently of the earlier decisions [54]. This isn’t a problem with the representation;
it’s the problems that are difficult. It isn’t clear whether the representation in this
formalism makes the problems more difficult to solve. There is some, however,
evidence that the representation presented here makes solving a decision problem
easier than in an influence diagram, as we can exploit the rules structure. [5; 38;
41] There is much more work to be done on exact and approximate algorithms for
the problems represented in the ICL.

References

[1] J. S. Albus. Brains, Behavior and Robotics. BYTE Publications, Peterbor-
ough, N.H., 1981.

[2] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9(3-4):335–363, 1991.

18http://www.cs.ubc.ca/spider/poole

58

[3] F. Bacchus. Representing and Reasoning with Uncertain Knowledge. MIT
Press, Cambridge, Massachusetts, 1990.

[4] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowl-
edge bases to degrees of belief. Artificial Intelligence, 87(1-2):75–143, 1996.
ftp://logos.uwaterloo.ca/pub/bacchus.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy
construction. In Proc. 14th International Joint Conf. on Artificial Intelli-
gence (IJCAI-95), pages 1104–1111, Montreal, Quebec, 1995.

[6] C. Boutilier and N. Friedman. Nondeterministic actions and the frame prob-
lem. In Working Notes AAAI Spring Symposium 1995 — Extending Theories
of Actions: Formal Theory and Practical Applications, March 1995.

[7] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in Bayesian networks. In E. Horvitz and F. Jensen, editor,
Proc. Twelfth Conf. on Uncertainty in Artificial Intelligence (UAI-96), pages
115–123, Portland, Oregon, 1996.

[8] C. Boutilier and D. Poole. Computing optimal policies for partially ob-
servable decision processes using compact representations. In Proc. 13th
National Conference on Artificial Intelligence, pages 1168–1174, Portland,
OR, 1996.

[9] J. S. Breese. Construction of belief and decision networks. Computational
Intelligence, 8(4):624–647, 1992.

[10] R.A. Brooks. A robust layered control system for a mobile robot. I.E.E.E.
Journal of Robotics and Automation, 2(1):14–23, 1986.

[11] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 293–322. Plenum Press, New York, 1978.

[12] T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150, 1989.

[13] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann,
San Mateo, California, 1991.

59

[14] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information
gathering and contingent execution. In Proceedings of the Second Interna-
tional Conference on AI Planning Systems, pages 31–36, Menlo Park, CA,
1994.

[15] R. Y. Fagin, J. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. MIT Press, Cambridge, Mass., 1994.

[16] J. Forbes, T. Huang, K. Kanazawa, and S. Russell. The BATmobile: To-
wards a Bayesian automated taxi. In Proc. 14th International Joint Conf.
on Artificial Intelligence (IJCAI-95), pages 1878–1885, Montreal, August
1995.

[17] D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge Mas-
sachusetts, 1992.

[18] M. Gelfond and V Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic
Programming Symposium, pages 1070–1080, Cambridge, Mass., 1988.

[19] P. Haddawy. Representing Plans Under Uncertainty: A Logic of Time,
Chance, and Action, volume 770 of Lecture notes in Artificial Intelligence.
Springer-Verlag, Berlin, 1994.

[20] J. Y. Halpern. An analysis of first-order logics of probability. Artificial
Intelligence, 46(3):311–350, 1990.

[21] J.Y. Halpern and M.R. Tuttle. Knowledge, probability, and adversaries. Jour-
nal of the ACM, 40(4):917–962, 1993.

[22] R. Howard. From influence to relevance to knowledge. In R. M. Oliver and
J. Q. Smith, editor, Influence Diagrams, Belief Nets and Decision Analysis,
chapter 1, pages 3–23. Wiley, 1990.

[23] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and
J. Matheson, editors, The Principles and Applications of Decision Analysis,
pages 720–762. Strategic Decisions Group, CA, 1981.

[24] K. Kanazawa. A logic and time nets for probabilistic inference. In Proc. 9th
National Conference on Artificial Intelligence, pages 360–365, Anaheim,
California, 1991.

60

[25] D. Koller and N. Megiddo. The complexity of two-person zero-sum games
in extensive form. Games and Economic Behavior, 4:528–552, 1992.

[26] D. Koller and A. J. Pfeffer. Generating and solving imperfect information
games. In Proc. 14th International Joint Conf. on Artificial Intelligence
(IJCAI-95), pages 1185–1192, Montreal, 1995.

[27] R. Kowalski. Logic for Problem Solving. Artificial Intelligence Series. North
Holland, New York, 1979.

[28] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:
A logic programming language for dynamic domains. Journal of Logic Pro-
gramming, Special issue on Reasoning about Action and Change, to appear,
1996.

[29] D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models and
Applications. Wiley, New York, 1979.

[30] J. McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28(1):89–116, February 1986.

[31] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In M. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

[32] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University
Press, Cambridge, MA, 1991.

[33] N. J. Nilsson. Logic and artificial intelligence. Artificial Intelligence, 47:31–
56, 1991.

[34] R. M. Oliver and J. Q. Smith, editors. Influence Diagrams, Belief Nets and
Decision Analysis. Series in probability and methematical statistics. Wiley,
Chichester, 1990.

[35] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[36] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1):81–129, 1993.

61

[37] D. Poole. Abducing through negation as failure: Stable models within the in-
dependent choice logic. Technical Report, Department of Computer Science,
UBC, ftp://ftp.cs.ubc.ca/ftp/local/poole/papers/abnaf.ps.gz, January 1995.

[38] D. Poole. Exploiting the rule structure for decision making within the inde-
pendent choice logic. In P. Besnard and S. Hanks, editor, Proc. Eleventh
Conf. on Uncertainty in Artificial Intelligence (UAI-95), pages 454–463,
Montreal, 1995.

[39] D. Poole. Logic programming for robot control. In Proc. 14th International
Joint Conf. on Artificial Intelligence (IJCAI-95), pages 150–157. 1995.

[40] D. Poole. A framework for decision-theoretic planning I: Combining the sit-
uation calculus, conditional plans, probability and utility. In E. Horvitz and
F. Jensen, editor, Proc. Twelfth Conf. on Uncertainty in Artificial Intelligence
(UAI-96), pages 436–445, Portland Oregon, 1996.

[41] D. Poole. Probabilistic partial evaluation: Exploiting rule structure in prob-
abilistic inference. In Proc. 15th International Joint Conf. on Artificial
Intelligence (IJCAI-97), page to appear, Nagoya, Japan, 1997. ftp://
ftp.cs.ubc.ca/ftp/local/poole/papers/pro-pa.ps.gz,

[42] D. Poole, A.K. Mackworth, and R.G. Goebel. Computational Intelligence:
A Logical Approach. Oxford University Press, New York, 1997.

[43] T.C. Przymusinski. Three-valued nonmonotonic formalisms and semantics
of logic programs. Artificial Intelligence, 49:309–343, 1991.

[44] M. L. Puterman. Markov decision processes. In D. P. Heyman and M. J.
Sobel, editor, Handbooks in OR and MS, Vol. 2, chapter 8, pages 331–434.
Elsevier Science Publishers B. V., 1990.

[45] R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and the Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 359–380. Academic Press, San
Diego, California, 1991.

[46] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246,
1987.

62

[47] S. J. Rosenschein and L. P. Kaelbling. A situated view of representation and
control. Artificial Intelligence, 73:149–173, 1995.

[48] S. J. Russell and D. Subramanian. Provably bounded-optimal agents. Jour-
nal of Artificial Intelligence Research, 2:575–609, 1995.

[49] L. J. Savage. The Foundation of Statistics. Dover, New York, 2nd edition,
1972.

[50] L. K. Schubert. Monotonic solutions to the frame problem in the situation
calculus: An efficient method for worlds with fully specified actions. In H.
E. Kyburg, R. P. Loui and G. N. Carlson, editor, Knowledge Representation
and Defeasible Reasoning, pages 23–67. Kluwer Academic Press, Boston,
Mass., 1990.

[51] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–
92, 1993.

[52] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring conditional rela-
tionships in influence diagrams. Operations Research, 41(2):280–297, 1993.

[53] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, third edition, 1953.

[54] L. Zhang, R. Qi, and D. Poole. A computational theory of decision networks.
International Journal of Approximate Reasoning, 11(2):83–158, 1994.

[55] Y. Zhang. A Foundation for the Design and Analysis of Robotic Systems and
Behaviours. PhD thesis, Department of Computer Science, University of
British Columbia, September 1994.

[56] Y. Zhang and A. K. Mackworth. Will the robot do the right thing? In
Proc. 10th Canadian Artificial Intelligence Conf., pages 255–262, Banff,
May 1994.

[57] Y. Zhang and A. K. Mackworth. Constraint nets: a semantic model for hy-
brid dynamic systems. Theoretical Computer Science, 138:211–239, 1995.

63

