
Computational Intelligence Chapter 7, Lecture 3, Page 1

Integrity Constraints

➤ In the electrical domain, what if we predict that a light

should be on, but observe that it isn’t?

What can we conclude?

➤ We will expand the definite clause language to include

integrity constraintswhich are rules that implyfalse,

wherefalse is an atom that is false in all interpretations.

➤ This will allow us to make conclusions from a

contradiction.

➤ A definite clause knowledge base is always consistent.

This won’t be true with the rules that implyfalse.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 2

Horn clauses

➤ An integrity constraintis a clause of the form

false← a1 ∧ . . . ∧ ak

where theai are atoms andfalse is a special atom that is

false in all interpretations.

➤ A Horn clauseis either a definite clause or an integrity

constraint.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 3

Negative Conclusions

➤ Negations can follow from a Horn clause KB.

➤ The negation ofα, written¬α is a formula that

➣ is true in interpretationI if α is false inI, and

➣ is false in interpretationI if α is true inI.

➤ Example:

KB =




false← a ∧ b.

a← c.

b← c.




KB |= ¬c.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 4

Disjunctive Conclusions

➤ Disjunctions can follow from a Horn clause KB.

➤ The disjunction ofα andβ, writtenα ∨ β, is

➣ true in interpretationI if α is true inI or β is true inI

(or both are true inI).

➣ false in interpretationI if α andβ are both false inI.

➤ Example:

KB =




false← a ∧ b.

a← c.

b← d.




KB |= ¬c ∨ ¬d.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 5

Questions and Answers in Horn KBs

➤ An assumableis an atom whose negation you are

prepared to accept as part of a (disjunctive) answer.

➤ A conflict of KB is a set of assumables that, givenKB

imply false.

➤ A minimal conflict is a conflict such that no strict subset

is also a conflict.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 6

Conflict Example

Example: If {c, d, e, f , g, h} are the assumables

KB =




false← a ∧ b.

a← c.

b← d.

b← e.




➤ {c, d} is a conflict

➤ {c, e} is a conflict

➤ {c, d, e, h} is a conflict

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 7

Using Conflicts for Diagnosis

➤ Assume that the user is able to observe whether a light is

lit or dark and whether a power outlet is dead or live.

➤ A light can’t be both lit and dark. An outlet can’t be both

live and dead:

false⇐ dark(L) & lit(L).

false⇐ dead(L) & live(L).

➤ Makeok assumable:assumable(ok(X)).

➤ Suppose switchess1, s2, ands3 are all up:

up(s1). up(s2). up(s3).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 8

Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 9

lit(L)⇐ light(L) & ok(L) & live(L).

live(W)⇐ connected_to(W , W1) & live(W1).

live(outside)⇐ true.

light(l1)⇐ true.

light(l2)⇐ true.

connected_to(l1, w0)⇐ true.

connected_to(w0, w1)⇐ up(s2) & ok(s2).

connected_to(w1, w3)⇐ up(s1) & ok(s1).

connected_to(w3, w5)⇐ ok(cb1).

connected_to(w5, outside)⇐ true.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 10

➤ If the user has observedl1 andl2 are both dark:

dark(l1). dark(l2).

➤ There are two minimal conflicts:

{ok(cb1), ok(s1), ok(s2), ok(l1)} and

{ok(cb1), ok(s3), ok(l2)}.
➤ You can derive:

¬ok(cb1) ∨ ¬ok(s1) ∨ ¬ok(s2) ∨ ¬ok(l1)

¬ok(cb1) ∨ ¬ok(s3) ∨ ¬ok(l2).

➤ Eithercb1 is broken or there is one of six double faults.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 11

Diagnoses

➤ A consistency-based diagnosisis a set of assumables

that has at least one element in each conflict.

➤ A minimal diagnosisis a diagnosis such that no subset

is also a diagnosis.

➤ Intuitively, one of the minimal diagnoses must hold. A

diagnosis holds if all of its elements are false.

➤ Example: For the proceeding example there are seven

minimal diagnoses:{ok(cb1)}, {ok(s1), ok(s3)},
{ok(s1), ok(l2)}, {ok(s2), ok(s3)},…

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 12

Meta-interpreter to find conflicts

dprove(G, D0, D1) is true if list D0 is an ending of listD1%%%%%%%%%%%%

such that assuming the elements ofD1 lets you deriveG.%%%%%%%%%

dprove(true, D, D).

dprove((A & B), D1, D3)←
dprove(A, D1, D2) ∧ dprove(B, D2, D3).

dprove(G, D, [G|D])← assumable(G).

dprove(H, D1, D2)←
(H ⇐ B) ∧ dprove(B, D1, D2).

conflict(C)← dprove(false, [], C).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 13

Tricky Example

false⇐ a.

a⇐ b & c.

b⇐ d.

b⇐ e.

c⇐ f .

c⇐ g.

e⇐ h & w.

e⇐ g.

w⇐ d.

assumabled, f , g, h.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 14

Bottom-up Conflict Finding

➤ Conclusionsare pairs〈a, A〉, wherea is an atom andA
is a set of assumables that implya.

➤ Initially, conclusion setC = {〈a, {a}〉 : a is assumable}.
➤ If there is a ruleh← b1 ∧ . . . ∧ bm such that

for eachbi there is someAi such that〈bi, Ai〉 ∈ C, then
〈h, A1 ∪ . . . ∪ Am〉 can be added toC.

➤ If 〈a, A1〉 and〈a, A2〉 are inC, whereA1 ⊂ A2, then
〈a, A2〉 can be removed fromC.

➤ If 〈false, A1〉 and〈a, A2〉 are inC, whereA1 ⊆ A2, then
〈a, A2〉 can be removed fromC.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 15

Bottom-up Conflict Finding Code

C := {〈a, {a}〉 : a is assumable};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in T such that

〈bi, Ai〉 ∈ C for all i and

there is no
〈
h, A′

〉 ∈ C or
〈
false, A′

〉 ∈ C

such thatA′ ⊆ A whereA = A1 ∪ . . . ∪ Am;

C := C ∪ {〈h, A〉}
Remove any elements ofC that can now be pruned;

until no more selections are possible

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 7, Lecture 3, Page 16

Integrity Constraints in Databases

➤ Database designers can use integrity constraints to

specify constraints that should never be violated.

➤ Example:A student can’t have two different grades for

the same course.

false←
grade(St, Course, Gr1) ∧
grade(St, Course, Gr2) ∧
Gr1 �= Gr2.

➤ When false is derived,HOW can be used to debug the KB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

