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Complete Knowledge Assumption (CKA)
Sometimes you want to assume that a database of facts is

complete. Any fact not listed is false.

Example: Assume that a database of enrolled relations is

complete. Then you can define empty_course.

Example: Assume a database of video segments is complete.

The definite clause RRS is monotonic: adding clauses

doesn’t invalidate a previous conclusion.

With the complete knowledge assumption, the system is

nonmonotonic: a conclusion can be invalidated by adding

more clauses.
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CKA: propositional case
Suppose the rules for atom a are

a← b1.

· · ·
a← bn.

or equivalently: a← b1 ∨ . . . ∨ bn

Under the CKA, if a is true, one of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn
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CKA: Ground Database
Example: Consider the relation defined by:

student(mary).

student(john).

student(ying).

The CKA specifies these three are the only students:

student(X)↔ X = mary ∨ X = john ∨ X = ying.

To conclude ¬student(alan), you have to be able to prove

alan �= mary ∧ alan �= john ∧ alan �= ying

This needs the unique names assumption.
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Clark Normal Form

The Clark normal form of the clause:

p(t1, . . . , tk)← B

is the clause

p(V1, . . . , Vk)←
∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧ Vk = tk ∧ B,

where V1, . . . , Vk are k different variables that did not appear

in the original clause.

W1, . . . , Wm are the original variables in the clause.
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Clark normal form: example

➤ The Clark normal form of:

room(C, room208)←
cs_course(C) ∧ enrollment(C, E) ∧ E < 120.

is

room(X, Y)← ∃C∃E X = C ∧ Y = room208 ∧
cs_course(C) ∧ enrollment(C, E) ∧ E < 120.
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Clark’s Completion of a Predicate
Put all of the clauses for p into Clark normal form, with the

same set of introduced variables:

p(V1, . . . , Vk)← B1

...

p(V1, . . . , Vk)← Bn

This is the same as: p(V1, . . . , Vk)← B1 ∨ . . . ∨ Bn.

Clark’s completion of p is the equivalence

p(V1, . . . , Vk)↔ B1 ∨ . . . ∨ Bn,

That is, p(V1, . . . , Vk) is true if and only if one Bi is true.
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Clark’s Completion Example

Given the mem function:

mem(X, [X|T ]).
mem(X, [H|T ])← mem(X, T).

the completion is

mem(X, Y) ⇐⇒ (∃T Y = [X|T ]) ∨
(∃H∃T Y = [H|T ] ∧ mem(X, T))
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Clark’s Completion of a KB

➤ Clark’s completion of a knowledge base consists of the

completion of every predicate symbol, along with the

axioms for equality and inequality.

➤ If you have a predicate p defined by no clauses in the

knowledge base, the completion is p↔ false. That is,

¬p.

➤ You can interpret negations in the bodies of clauses. ∼p

means that p is false under the Complete Knowledge

Assumption. This is called negation as failure.
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Using negation as failure

Previously we couldn’t define empty_course(C) from a

database of enrolled(S, C).

This can be defined using negation as failure:

empty_course(C)←
course(C) ∧
∼has_Enrollment(C).

has_Enrollment(C)←
enrolled(S, C).
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Bottom-up NAF proof procedure

C := {};
repeat

either select “h← b1 ∧ . . . ∧ bm”∈ KB such that

bi ∈ C for all i, and h �∈ C;
C := C ∪ {h}

or select h such that

for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB

either for some bi,∼bi ∈ C

or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible
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Negation as failure example

p← q ∧ ∼r.

p← s.

q←∼s.

r ←∼t.

t.

s← w.
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Top-Down NAF Procedure
If the proof for a fails, you can conclude ∼a.

Failure can be defined recursively.

Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.

A body fails if one of the conjuncts in the body fails.

Note that you require finite failure. Example: p← p.
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Free Variables in Negation as Failure

Example:

p(X)←∼q(X) ∧ r(X).

q(a).

q(b).

r(d).

There is only one answer to the query ?p(X), namely X = d.

For calls to negation as failure with free variables, you need

to delay negation as failure goals that contain free variables

until the variables become bound.
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Floundering Goals
If the variables never become bound, a negated goal

flounders.

In this case you can’t conclude anything about the goal.

Example: Consider the clauses:

p(X)←∼q(X)

q(X)←∼r(X)

r(a)

and the query

?p(X).
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