
Computational Intelligence Chapter 2, Lecture 3, Page 1

Variables

➤ Variables are universally quantified in the scope of a

clause.

➤ A variable assignment is a function from variables into

the domain.

➤ Given an interpretation and a variable assignment,

each term denotes an individual and

each clause is either true or false.

➤ A clause containing variables is true in an interpretation

if it is true for all variable assignments.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 2

Queries and Answers

A query is a way to ask if a body is a logical consequence of

the knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

➤ an instance of the query that is a logical consequence of

the knowledge base KB, or

➤ no if no instance is a logical consequence of KB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 3

Example Queries

KB =




in(alan, r123).

part_of (r123, cs_building).

in(X, Y)← part_of (Z, Y) ∧ in(X, Z).

Query Answer

?part_of (r123, B). part_of (r123, cs_building)

?part_of (r023, cs_building). no

?in(alan, r023). no

?in(alan, B). in(alan, r123)

in(alan, cs_building)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 4

Logical Consequence

Atom g is a logical consequence of KB if and only if:

➤ g is a fact in KB, or

➤ there is a rule

g← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 5

Debugging false conclusions

To debug answer g that is false in the intended interpretation:

➤ If g is a fact in KB, this fact is wrong.

➤ Otherwise, suppose g was proved using the rule:

g← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.

➣ If each bi is true in the intended interpretation, this

clause is false in the intended interpretation.

➣ If some bi is false in the intended interpretation,

debug bi.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 6

Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 7

Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(l1). light(l2).

% down(S) is true if switch S is down

down(s1). up(s2). up(s3).

% ok(D) is true if D is not broken

ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). �⇒ yes

?light(l6). �⇒ no

?up(X). �⇒ up(s2), up(s3)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 8

connected_to(X, Y) is true if component X is connected to Y

connected_to(w0, w1)← up(s2).

connected_to(w0, w2)← down(s2).

connected_to(w1, w3)← up(s1).

connected_to(w2, w3)← down(s1).

connected_to(w4, w3)← up(s3).

connected_to(p1, w3).

?connected_to(w0, W). �⇒ W = w1

?connected_to(w1, W). �⇒ no

?connected_to(Y , w3). �⇒ Y = w2, Y = w4, Y = p1

?connected_to(X, W). �⇒ X = w0, W = w1, …

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 9

% lit(L) is true if the light L is lit

lit(L)← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming into C

live(Y)←
connected_to(Y , Z) ∧
live(Z).

live(outside).

This is a recursive definition of live.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 10

Recursion and Mathematical Induction

above(X, Y)← on(X, Y).

above(X, Y)← on(X, Z) ∧ above(Z, Y).

This can be seen as:

➤ Recursive definition of above: prove above in terms of a

base case (on) or a simpler instance of itself; or

➤ Way to prove above by mathematical induction: the base

case is when there are no blocks between X and Y , and if

you can prove above when there are n blocks between

them, you can prove it when there are n+ 1 blocks.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 11

Limitations
Suppose you had a database using the relation:

enrolled(S, C)

which is true when student S is enrolled in course C.

You can’t define the relation:

empty_course(C)

which is true when course C has no students enrolled in it.

This is because empty_course(C) doesn’t logically follow

from a set of enrolled relations. There are always models

where someone is enrolled in a course!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

