CPSC 536N Randomized Algorithms (Winter 2014-15, Term 2)
 Assignment 1

Due: Monday January 26th, in class.

Question 1: Let X be a random variable taking values on the positive integers with $\operatorname{Pr}[X=x]=2^{-x}$. Define the random variable Y by $Y=2^{X}$. Use the Markov inequality to give an upper-bound $\operatorname{Pr}[Y>a]$. Your bound should be a function of a and should be less than 1 (for sufficiently large a).

Question 2: Consider a sequence of n unbiased coin flips. Let X be the length of the longest contiguous sequence of heads.
(a): Define $\ell=\left\lceil\log _{2}(1 / \delta)+\log _{2} n\right\rceil$. Show that $\operatorname{Pr}[X \geq \ell] \leq \delta$.
(b): Let $c \geq 1$ be arbitrary. Let $k=\log _{2} n-O\left(\log _{2} \log _{2} n\right)$, where the constant inside the Big-O depends somehow on c. Show that, $\operatorname{Pr}[X<k] \leq n^{-c}$

Question 3: Let X_{1}, \ldots, X_{n} be independent, geometric random variables with parameter $p=1 / 2$. (The number of fair coin flips needed to see the first head. So $\operatorname{Pr}\left[X_{1}=1\right]=1 / 2, \operatorname{Pr}\left[X_{1}=2\right]=1 / 4$, etc.)
(a): Prove that $\mathrm{E}\left[e^{t X_{i}}\right]=\frac{e^{t} / 2}{1-e^{t} / 2}$ for all sufficiently small $t \geq 0$.
(b): Let $X=\sum_{i} X_{i}$. We will use the Chernoff-style method to prove a tail bound on X. Fix some $\delta=(0,1)$. Prove that

$$
\operatorname{Pr}[X \geq(1+\delta) 2 n] \leq\left(\frac{1+2 \delta}{1+\delta}\right)^{-2(1+\delta) n} \cdot(1+2 \delta)^{n}
$$

(c): OPTIONAL: For some constants $c_{1}, c_{2}>1$, prove that the upper bound from part (b) is at most

$$
\begin{cases}\exp \left(-\delta^{2} n / c_{1}\right) & \delta \in[0,1] \\ \exp \left(-\delta n / c_{2}\right) & \delta>1\end{cases}
$$

Question 4: Let M be a matrix with m rows, n columns, every entry $M_{i, j} \in[0,1]$ and such that every row sums to r. (That is, $\sum_{j=1}^{n} M_{i, j}=r$ for all i.) Pick a vector $Y \in\{0,1\}^{n}$ uniformly at random. Let Z be the vector $M \cdot Y$. Let $\alpha=(r / 2)+3 \sqrt{r \ln m}$. Prove that $\operatorname{Pr}\left[\max _{i} Z_{i}>\alpha\right] \leq 1 / m$.

Question 5: Let Z_{1}, \ldots, Z_{n} be independent, identically distributed random variables. The Z_{i} 's all have the same expectation $\mathrm{E}\left[Z_{i}\right]$. It is often the case that we would like to estimate $\mathrm{E}\left[Z_{i}\right]$ from the sample Z_{1}, \ldots, Z_{n}.
If we assume that the Z_{i} 's lie in a bounded interval then we can use the average $\sum_{i} Z_{i} / n$ to estimate E [Z_{i}] and use the Chernoff bound to show that this is a good estimate. But for this question we will not assume that the Z_{i} 's lie in a bounded interval.

Instead, suppose we know that $\operatorname{Pr}\left[Z_{i} \geq t\right] \leq p$ for some t and some p. Let M be the median ${ }^{1}$ of the Z_{i} 's.
(a): Assuming $p \in[0,1 / 4]$, prove that $\operatorname{Pr}[M \geq t] \leq \exp (-n / 100)$.
(b): OPTIONAL: Assuming $p \in[0,1 / 4]$, prove that $\operatorname{Pr}[M \geq t] \leq p^{n / c}$ for some constant $c>1$.

[^0]
[^0]: ${ }^{1}$ A median is a value M such that $\left|\left\{i: Z_{i} \geq M\right\}\right| \geq n / 2$ and $\left|\left\{i: Z_{i} \leq M\right\}\right| \geq n / 2$. If n is odd then M is unique so we can say "the median", but if n is even then it need not be unique and we should say "a median".

