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Prof. Nick Harvey University of British Columbia

Dimensionality reduction is the process of mapping a high dimensional dataset to a lower dimen-
sional space, while preserving much of the important structure. In statistics and machine learning, this
often refers to the process of finding a few directions in which a high dimensional random vector has
maximum variance. Principal component analysis is a standard technique for that purpose.

In this lecture, we consider a different sort of dimensionality reduction where the goal is to preserve
pairwise distances between the data points. We present a technique, known as the random projection
method or Johnson-Lindenstrauss method, for solving this problem.

In the past few lectures, our main tool has been the Chernoff bound. In this lecture we will not directly
use the Chernoff bound, but the main proof uses very similar ideas.

1 Dimensionality Reduction

Suppose we have n points x1, . . . , xn ∈ Rd. We would like to find n points y1, . . . , yn ∈ Rt, where t� d,
such that the lengths and pairwise distances of the y vectors are approximately the same as for the x
vectors. We will show that this can be accomplished while taking t to be surprisingly small. We will

measure lengths using the Euclidean norm. Our notation for the length of v is ‖v‖ =
√∑

i v
2
i .

Theorem 1 (Johnson-Lindenstrauss 1984) Let x1, . . . , xn ∈ Rd be arbitrary. Pick any ε = (0, 1).
Then for some t = O(log(n)/ε2) there exist points y1, . . . , yn ∈ Rt such that

(1− ε)‖xj‖ ≤ ‖yj‖ ≤ (1 + ε)‖xj‖ ∀j
(1− ε)‖xj − xj′‖ ≤ ‖yj − yj′‖ ≤ (1 + ε)‖xj − xj′‖ ∀j, j′. (1)

References: Dubhashi-Panconesi Section 2.5.

Remarks. The theorem is actually much stronger than we stated above. It shows that there is a
random linear map such that for any x1, . . . , xn the condition (1) holds with probability at least 1/2n.
This linear map is oblivious: it does not depend on x1, . . . , xn at all! In fact, the linear map is just a
matrix whose entries are independent Gaussians.

Whereas principal component analysis is only useful when the original data points {x1, . . . , xn} are
inherently low dimensional, this theorem requires absolutely no assumption on the original data. Also,
note that the final data points {y1, . . . , yn} have no dependence on d. The original data could live in an
arbitrarily high dimension. (Although one can always assume d ≤ n since x1, . . . , xn lie in their linear
span, which is a Euclidean space of dimension at most n.)

To prove the theorem, let us define the random linear map that is used to construct the points yj .
Define the function f : Rd → Rt by

f(v) = Rv,

where R is a t× d matrix whose entries are independently drawn from N(0, 1), the normal distribution
with mean 0 and variance 1. The point yj in Theorem 1 is obtained linearly from xj by setting
yj ← f(xj)/

√
t = Rxj/

√
t.
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Lemma 2 (Distributional JL) Let δ ∈ (0, 1] be arbitrary. There exists a t = O(log(1/δ)/ε2) and a
random linear map f : Rd → Rt such that, for any vector v ∈ Rd with ‖v‖ = 1,

Pr

[
1− ε ≤ ‖f(v)‖√

t
≤ 1 + ε

]
≥ 1− 2δ.

Given this lemma, our main theorem follows easily.

Proof:[of Theorem 1] Set δ = 1/n3. Consider the set of vectors

W = { xi : i = 1, . . . , n } ∪ { xi − xj : i 6= j } .

There are at most n2 vectors in W .

For any w ∈W , we may apply the DJL lemma to v = w/ ‖w‖. Consider the event

Ew =

{
‖f(v)‖√

t
6∈ [1− ε, 1 + ε]

}
Since f is linear, we have ‖f(w)‖ = ‖ ‖w‖ · f(v) ‖ = ‖w‖ · ‖f(v)‖, so

Ew =

{
‖f(w)‖√

t
6∈ [1− ε, 1 + ε] · ‖w‖

}
.

The DJL lemma shows that Pr [ Ew ] ≤ 2δ. By a union bound,

Pr [ condition (1) fails to hold ] = Pr

[ ⋃
w∈W

Ew

]
≤

∑
w∈W

Pr [ Ew ] ≤ |W | · (2δ) ≤ 2/n.
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1.1 Discussion

First of all, you have probably noticed that we’ve now jumped from the world of discrete probability to
continuous probability. This is to make our lives easier. The same theorem would be true if we picked
the coordinates of ri to be uniform in {+1,−1} rather than Gaussian. But the analysis of the {+1,−1}
case is trickier, and most proofs analyze that case by showing that its failure probability is not much
worse than in the Gaussian case. So the Gaussian case is really the central problem.

Second of all, you might be wondering where the random projection method name comes from.
Earlier versions of the Johnson-Lindenstrauss theorem used a slightly different linear map. Specifically,
they chose a map L(v) = Rv where RTR is a projection onto a uniformly random subspace of dimension
t. (Recall that an orthogonal projection matrix is any symmetric, positive semidefinite matrix whose
eigenvalues are either 0 or 1.) One advantage of that setup is its symmetry: one can argue that the
failure probability in Lemma 2 would be the same if one instead chose a fixed subspace of dimension t
and a random unit vector v. The latter problem can be analyzed by choosing the subspace to be the
most convenient one of all: the span of the first t vectors in the standard basis.

So how is our map f/
√
t different? It is almost a projection, but not quite. If we chose R to be a matrix

of independent Gaussians, it turns out that the range of RTR is indeed a uniformly random subspace,
but its eigenvalues are not necessarily in {0, 1}. If we had insisted that the random vectors ri that
we choose were orthonormal, then we would have obtained a projection matrix. We could explicitly
orthonormalize them by the Gram-Schmidt method, but fortunately that turns out to be unnecessary:
the Johnson-Lindenstrauss theorem is true, even if we ignore orthonormality of the ri’s.

Our linear map f/
√
t turns out to be a bit more convenient in some algorithmic applications, because

we avoid the awkward Gram-Schmidt step.
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1.2 The Main Idea

Consider the following problem: you have a vector v ∈ Rd and you want to compute ‖v‖ by applying a
linear function to v. Since ‖·‖ is certainly not a linear function, this seems impossible! Amazingly, ran-
domness allows us to solve this problem. The main idea comes from the interesting algebraic properties
of variance.

Fact 3 Let G1, . . . , Gd be independent random variables with finite variance. Let σ1, . . . , σd ∈ R be
arbitrary. Then Var [

∑
i σiGi ] =

∑
i σ

2
i Var [Gi ].

References: Mitzenmacher-Upfal Corollary 3.4 and Exercise 3.4, Grimmett-Stirzaker Theorem 3.3.11

To see how this fact connects to our problem, let G1, . . . , Gd satisfy E [Gi ] = 0 and Var [Gi ] = 1.
Consider the random linear function g defined by g(v) =

∑
i viGi. By Fact 3, we have

Var [ g(v) ] = Var

[∑
i

viGi

]
=
∑
i

v2i = ‖v‖2 .

So g(v)2 gives a good estimate for ‖v‖2 because E [ g(v) ] = 0, so E
[
g(v)2

]
= Var [ g(v) ] = ‖v‖2.

We will use that idea in the special case where the Gi random variables are Gaussian. That turns out
to be convenient because the sum of Gaussians is again Gaussian.

Fact 4 Let G1, . . . , Gd be independent random variables where Gi has distribution N(0, 1). Then, for
any scalars σ1, . . . , σd, the sum

∑
i σiGi has distribution N(0,

∑d
i=1 σ

2
i ).

References: Grimmett-Stirzaker Example 4.8.3, Durrett Theorem 2.1.13 and Exercise 3.3.4.

It is convenient to use Gaussian random variables in our context because then we know the distribution
of g(v) exactly: it is N(0,

∑
i v

2
i ) = N(0, ‖v‖2).

As explained above, the quantity g(v)2 gives us a good estimate of ‖v‖2. Intuitively we should get an
even better estimate of ‖v‖2 by computing t such estimates then averaging them. That is exactly what
f(v) does: each coordinate of f(v) is of the form g(v), and the average of their squares is is exactly
‖f(v)‖2 /t.

1.3 Proof of Lemma 2

We can use separate but similar arguments to analyze the upper and lower tails, as was the case with
Chernoff bounds. We will prove only the upper tail. For convenience we square both sides, so our goal
is to prove that

Pr
[
‖f(v)‖2 > (1 + ε)2t

]
≤ δ. (2)

Recall that f(v) = Rv where the entries of R are independent Gaussians. It will be convenient for us
to consider the rows of the matrix R, so let ri ∈ Rd be the ith row, for i = 1, . . . , t. Define Xi = rTi v,
which is the ith coordinate of f(v). As discussed above, Xi is an estimate of the form g(v) and it has
the distribution N(0, ‖v‖2) = N(0, 1).

The goal in (2) is to prove an upper tail bound on ‖f(v)‖2. Expanding this, we have

‖f(v)‖2 =
t∑
i=1

(rTi v)2 =

t∑
i=1

X2
i .
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Fortunately, this random variable has a well-known distribution. We have just written ‖f(v)‖2 as the
the sum-of-squares of t standard normal random variables, which is called the chi-squared distribution
with parameter t. It is easy to see that

E
[
‖f(v)‖2

]
=

t∑
i=1

E
[
X2
i

]
= t,

since E
[
X2
i

]
is the variance of Xi, which we have shown is 1.

So our desired inequality (2) is asking for a bound on the probability that a chi-squared random variable
slightly exceeds its expectation. Claim 5 proves such a bound using a Chernoff-style approach. Applying
Claim 5 to Y = ‖f(v)‖2 with t = (4/3) ln(1/δ)/ε2 completes the proof of (2).

Claim 5 Let X =
∑t

i=1X
2
i have the chi-squared distribution with parameter t. Set α = t(1+ε)2. Then

Pr [X > α ] ≤ exp(−(3/4)tε2).

Proof: Our proof will follow the Chernoff bound strategy. For any θ ∈ [0, 1/2), we have

Pr [X > α ] = Pr
[
eθX > eθα

]
≤ e−θα E

[
eθX

]
. (3)

The quantity E
[
eθX

]
is called the moment generating function, and for many standard distributions

it has a known closed form. We now cheat by referring to Wikipedia, where we find that the moment
generating function for the chi squared distribution is E

[
eθX

]
= (1− 2θ)−t/2, so

Pr [X > α ] ≤ e−θα(1− 2θ)−t/2.

The next step is to plug in an appropriate choice of θ. We set θ = (1− t/α)/2, giving

Pr [X > α ] = e(t−α)/2(t/α)−t/2.

Plugging in α = t(1 + ε)2, this becomes

exp
( t

2

(
1− (1 + ε)2

)
− t

2
ln
( 1

(1 + ε)2

))
= exp

(
− t
(
ε+ ε2/2− ln(1 + ε)

))
.

Using our usual techniques from Notes on Convexity Inequalities, one can show that ln(1+x) ≤ x−x2/4
for x ∈ [0, 1]. So this shows that

Pr [X > α ] ≤ exp
(
− t
(
ε+ ε2/2− (ε− ε2/4)

))
≤ exp

(
− (3/4)tε2

)
.
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2 Remarks

Recently there has been much progress on understanding the optimality of these results. The DJL
lemma is actually optimal, up to constant factors.

Theorem 6 (Jayram-Woodruff 2013, Kane-Meka-Nelson 2011) Any f satisfying the DJL lemma
must satisfy t = Ω(log(1/δ)/ε2).
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But, this does not necessarily imply that Theorem 1 is optimal; perhaps the theorem can be proven
without using the DJL lemma. Alon proved the following lower bound.

Theorem 7 (Alon) Let x1, . . . , xn+1 ∈ Rn be the vertices of a simplex, i.e., ‖xi − xj‖ = 1 for all

i 6= j. If y1, . . . , yn+1 ∈ Rt satisfy (1), then t = Ω( log(n)
ε2 log(1/ε)

).

This shows that Theorem 1 is almost optimal, up to the factor log(1/ε) in the denominator. Actually,
for this particular set of points (the vertices of a simplex), Theorem 1 is not optimal and Alon’s bound
is the right one. However, there is a different point set showing that Theorem 1 is in fact optimal.

Theorem 8 (Larsen-Nelson FOCS 2017) There exist points x1, . . . , xn ∈ Rd such that the following
is true. Consider any map L : Rd → Rt, let yj = L(xj), and suppose that (1) is satisfied. Then
t = Ω(log(n)/ε2).

Other norms and metrics. The Johnson-Lindenstrauss lemma very strongly depends on properties
of the Euclidean norm. For other norms, this remarkable dimensionality reduction is not necessarily
possible. For example, for the `1 norm ‖x‖1 :=

∑
i |xi|, it is known that any map into Rd that preserves

pairwise `1-distances between n points up to a factor c ≥ 1 must have d = Ω(n1/c
2
). If c = 1 + ε, then

there are upper bounds of d = O(n log n/ε2) and d = O(n/ε2).

References: Talagrand Proc. AMS 1990, Brinkman-Charikar FOCS 2003, Lee-Naor 2004, Newman-Rabinovich SODA 12.

For more on this subject, see the survey of Indyk and Matousek or the tutorial of Indyk.
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http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.2484
http://people.csail.mit.edu/indyk/tuts.pdf
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