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1 The Chernoff Bound

1.1 Formal Statement

Let X1, . . . , Xn be independent random variables such that Xi always lies in the interval [0, 1]. Define
X =

∑n
i=1Xi and pi = E [Xi ]. Let µmin ≤

∑
i E [Xi ] ≤ µmax.

Theorem 1 For all δ > 0,

Pr [X ≥ (1 + δ)µmax ]
(a)

≤
(

eδ

(1+δ)1+δ

)µmax (b)

≤


e−δ

2µmax/3 (if δ ≤ 1)

e−(1+δ) ln(1+δ)µmax/4 (if δ ≥ 1)

e−δµmax/3 (if δ ≥ 1)

Pr [X ≤ (1− δ)µmin ]
(c)

≤
(

e−δ

(1−δ)1−δ

)µmin (d)

≤ e−δ
2µmin/2.

Inequalities (c) and (d) are only valid for δ < 1, but Pr [X ≤ (1− δ)µmin ] = 0 if δ > 1.

References: McDiarmid Theorem 2.3, Mitzenmacher-Upfal Theorems 4.4 and 4.5, Motwani-Raghavan Theorem 4.1 and 4.2, Klenke

Exercise 5.2.1, Wikipedia.

We will only prove inequality (a) of the Chernoff bound. The other inequalities are discussed in the
appendix.

1.2 Proof of inequality (a)

The Chernoff bounds would not be true without the assumption that the Xis are independent. What
special properties do independent random variables have? One basic property is that

E [A ·B ] = E [A ] · E [B ] (1)

for any independent random variables A and B.

But the Chernoff bound has nothing to do with products of random variables, it is about sums of random
variables. So one trick we could try is to convert sums into products using the exponential function.
Fix some parameter θ > 0 whose value we will choose later. Define

Yi = exp(θXi)

Y = exp(θX) = exp(θ
∑
i

Xi) =
∏
i

exp(θXi) =
∏
i

Yi.

It is easy to check that, since the Xis are independent, the Yis are also independent. Therefore, by (1),

E [Y ] =
∏
i

E [Yi ] . (2)
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So far this all seems quite good. We want to prove that X is small, which is equivalent to proving Y is
small. Using (2), we can do this by showing that the E [Yi ] terms are small. Perhaps we can somehow
show E [Yi ] is small by comparing it to E [Xi ] = pi?

If we were forgetting the rules of probability, we might be tempted to say that E
[
eθXi

]
equals eθE[Xi ],

but that is false. We might remember one useful probability trick called Jensen’s inequality that says
f(E [A ]) ≤ E [ f(A) ] for any random variable A and any convex function f . Applying this with
f(x) = etx, we see that

eθpi = eθE[Xi ] ≤ E
[
eθXi

]
= E [Yi ] . (3)

So we get a lower bound on E [Yi ] in terms of pi, but we actually wanted an upper bound.

Claim 3 gives the desired upper bound; it shows that the inequality in (3) can almost be reversed. The
proof is easy once we have the following convexity fact.

Claim 2
exp(tx) ≤ 1 + (eθ − 1)x ≤ exp((eθ − 1)x) ∀x ∈ [0, 1],

You might be convinced by the following “proof by picture”. An actual proof in the appendix.

Claim 3 Let θ ∈ R be arbitrary. Then E [Yi ] ≤ exp((eθ − 1)pi).

Proof: Recall that E [Yi ] = E [ exp(θXi) ]. The main idea is as follows. Although we cannot “pull
the expectation inside the exponential”, we can use Claim 2 to approximate the exponential by a linear
function, then “pull the expectation inside” via linearity of expectation, then finally switch back to an
exponential function.

The formal argument is

E
[
eθXi

]
≤ E

[
1 + (eθ − 1)Xi

]
= 1 + (eθ − 1) E [Xi ] ≤ exp((eθ − 1) E [Xi ]),

where both inequalities follow from Claim 2. The claim follows since pi = E [Xi ]. 2
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Now we are ready to prove the inequality (a) of the Chernoff bound.

Pr [X ≥ (1 + δ)µmax ] = Pr
[

exp(θX) ≥ exp
(
θ(1 + δ)µmax

) ]
(by monotonicity)

≤ E [ exp(θX) ]

exp(θ(1 + δ)µmax)
(by Markov’s inequality)

=

∏
i E [Yi ]

exp(θ(1− δ)µmin)
(by (2))

≤
∏
i exp((eθ − 1)pi)

exp(θ(1 + δ)µmax)
(by Claim 3).

Gathering everything inside one exponential we get

Pr [X ≥ (1 + δ)µmax ] ≤ exp
(

(eθ − 1)
∑
i

pi − θ(1 + δ)µmax

)
.

Finally, substituting θ = ln(1 + δ) and using
∑

i pi ≤ µmax proves inequality (a).

2 Example: Balls and Bins

Let’s illustrate the power of the Chernoff bound by using it to analyze a fundamental balls-and-bins
problem. But first of all we introduce the other (almost trivial) tool which is often used in conjunction
with the Chernoff bound. The reason why this lemma is so useful is that it does not require that the
events are independent.

Lemma 4 (The Union Bound) Let E1, . . . , Ek be any collection of events. Then

Pr [ E1 ∪ · · · ∪ Ek ] ≤
k∑
i=1

Pr [ Ek ] .

References: Mitzenmacher-Upfal Lemma 1.2, Durrett Theorem 1.1.1, Wikipedia.

Many interesting problems can be modeled using simple problems involving balls and bins. Today we
are interested in the bin that has the most balls. Suppose there are n bins. We repeat the follow-
ing experiment n times: throw a ball into a uniformly chosen bin. (The experiments are mutually
independent.) Let Bi be the number of balls in bin i. What is maxiBi?

Theorem 5 Assume n ≥ 3 and let α = 10 lnn/ ln lnn. Then maxiBi ≤ α with probability at least
1− 1/n.

This theorem is optimal up to constant factors. It is known that maxiBi ≥ lnn/ ln lnn with probability
at least 1− 1/n. (See, e.g., Lemma 5.12 in Mitzenmacher-Upfal.)

Proof: Let us focus on the first bin. Let X1, . . . , Xn be indicator random variables where Xj is 1 if
the jth ball lands in the first bin. Obviously E [B1 ] =

∑
j E [Xj ] = 1. What is the probability that

this bin has more than α balls?

We will analyze this using the Chernoff bound. This is possible since B1 is a sum of independent
random variables, each of which take values in [0, 1]. Applying inequality (b) of the Chernoff bound
(with α = 1 + δ), we obtain

Pr [X ≥ αE [X ] ] ≤ exp
(
− E [X ] · α ln(α)/4

)
∀α ≥ 2.
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Applying this to B1 and using E [B1 ] = 1, we obtain

Pr [B1 ≥ α ] ≤ exp(−α ln(α)/4).

A rough calculation gives

α · lnα = 10
lnn

ln lnn
· ln
( 10 lnn

( ln lnn︸ ︷︷ ︸
negligible

)

)
≈ 10

lnn

ln lnn
· ln lnn = 10 lnn.

More precisely, one can show that α lnα ≥ 8 lnn for all n ≥ 1. Plugging that in,

Pr [B1 ≥ α ] ≤ exp
(
− α ln(α)/4

)
≤ exp

(
− 2 lnn

)
≤ n−2. (4)

So bin 1 is unlikely to have more than α balls. By symmetry, the same is true for each bin individually.

Now we will show the same is true for every bin simultaneously. The key tool is the union bound. Let
Ei be the event {Bi ≥ α}. Then

Pr [ any bin i has Bi ≥ α ] = Pr [∪i Ei ] ≤
n∑
i=1

Pr [ Ei ] (by the union bound)

=
n∑
i=1

Pr [Bi ≥ α ] ≤
n∑
i=1

n−2 (by (4))

= n · n−2 = n−1.

Thus, with probability at least 1− 1/n, all bins have less than α balls. 2

3 Congestion Minimization

One of the classically important areas in algorithm design and combinatorial optimization is network
flows. A central problem in that area is the maximum flow problem. We now look at a generalization
of this problem.

An instance of the problem consists of a directed graph G = (V,A) and a sequence (s1, t1), . . . , (sk, tk)
of pairs of vertices. Let n = |V |. (It is not crucial that the graph be directed; the problem is equally
interesting in undirected graphs. However in network flow problems it is often more convenient to look
at directed graphs. Feel free to think about whatever variant you find easier.)

A natural question to ask is: do there exist paths Pi from si to ti for every i such that these paths share
no arcs? This is called the edge-disjoint paths problem. Quite remarkably, it is NP-hard even in the
case k = 2, assuming the graph is directed. For undirected graphs, it is polynomial time solvable if k is
a fixed constant, but NP-hard if k is a sufficiently large function of n.

We will look at a variant of this problem called the congestion minimization problem. The idea is
to allow each arc to be used in multiple paths, but not too many. The number of paths using a given
arc is the “congestion” of that arc. We say that a solution has congestion C if it is a collection of paths
Pi from si to ti, where each arc is contained in at most C of the paths. The problem is to find the
minimum value of C such that there is a solution of congestion C. This problem is still NP-hard, since
determining if C = 1 is the edge-disjoint paths problem.

We will look at the congestion minimization problem from the point of view of approximation algorithms.
Let OPT be the minimum congestion of any solution. We would like to give an algorithm which can
produce a solution with congestion at most α · OPT for some α ≥ 1. This factor α is the called the
approximation factor of the algorithm.
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Theorem 6 There is an algorithm for the congestion minimization problem with approximation factor
O(log n/ log log n).

To design such an algorithm we will use linear programming. We write down an integer program (IP)
which captures the problem exactly, relax that to a linear program (LP), then design a method for
“rounding” solutions of the LP into solutions for the IP.

The Integer Program. Writing an IP formulation of an optimization problem is usually quite
simple. That is indeed true for the congestion minimization problem. However, we will use an IP
which you might find rather odd: our IP will have exponentially many variables. This will simplify our
explanation of the rounding.

Let Pi be the set of all paths in G from si to ti. (Note that |Pi| may be exponential in n.) For every
path P ∈ Pi, we create a variable xiP . This variable will take values only in {0, 1}, and setting it to 1
corresponds to including the path P in our solution.

The integer program is as follows

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

xiP ∈ {0, 1} ∀i = 1, . . . , k and P ∈ Pi

The last constraint says that we must decide for every path whether or not to include it in the solution.
The first constraint says that the solution must choose exactly one path between each pair si and ti.
The second constraint ensures that the number of paths using each arc is at most C. The optimization
objective is to find the minimum value of C such that a solution exists.

Every solution to the IP corresponds to a solution for the congestion minimization problem with con-
gestion C, and vice-versa. Thus the optimum value of the IP is OPT , which we previously defined to
be the minimum congestion of any solution to the original problem.
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A Appendix

A.1 Proof of Claim 2

Consider the first inequality eθx ≤ 1 + (eθ − 1)x for all x ∈ [0, 1]. This follows from Inequality 3 in the
Notes on Convexity Inequalities. by setting c = eθ.

The second inequality 1+(eθ−1)x ≤ exp((eθ−1)x) follows from our favorite inequality 1+x ≤ exp(x),
which is Inequality 1 in the Notes on Convexity Inequalities.

A.2 Proof of inequality (b), δ ∈ [0, 1]

Claim 7 Suppose δ ∈ [0, 1]. Then (1 + x) ln(1 + x)− x ≥ x2/3.

Proof: Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1]. By simple calculus,

d

dx

[
(1 + x) ln(1 + x)− x

]
= ln(1 + x) and

d

dx
x2/3 = 2x/3.

At x = 0, ln(1 + x) equals 2x/3. At x = 1, we have ln(1 + x) = ln(2) > 0.69 and 2x/3 < 0.67. Since
ln(1 + x) is concave, we have ln(1 + x) ≥ 2x/3 for all x ∈ [0, 1]. 2

Corollary 8 For all δ ∈ [0, 1],

Pr
[∑k

i=1Xi ≥ (1 + δ)µmax

]
≤ exp

(
− (δ2/3)µmax

)
.

Proof: Claim 7 implies that
(

eδ

(1+δ)1+δ

)
≤ e−δ2/3. 2

A.3 Proof of inequality (b), δ ≥ 1

Claim 9 Define

f(x) = (1 + x) ln(1 + x)− x
g(x) = (1 + x) ln(1 + x)/4

h(x) = x/3

Then f(x) > g(x) > h(x) for x ≥ 1.

Proof: First let us consider the point x = 1. We have

f(1) = 2 ln(2)− 1 > 0.38

g(1) = ln(2)/4 ≈ 0.346

h(1) = 1/3.

The claim follows if we can show that

d

dx
f(x) ≥ d

dx
g(x) ≥ d

dx
h(x) ∀x ≥ 1.
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Simple calculus gives

d

dx
f(x) = ln(1 + x)

d

dx
g(x) = (1 + ln(1 + x))/4 and

d

dx
h(x) = 1/3.

Clearly y ≥ (1 + y)/4 for y ≥ 1/3, so ln(1 + x) ≥ (1 + ln(1 + x))/4 for x ≥ e1/3− 1 ≈ 0.395. This shows
d
dxf(x) ≥ d

dxg(x) for x ≥ 1. On the other hand, x ≥ 1 yields (1 + ln(1 + x))/4 ≥ (1 + ln(2))/4 ≈ 0.423.

This shows d
dxg(x) ≥ d

dxh(x) for x ≥ 1. 2

Corollary 10 For all δ ≥ 1,

Pr
[∑k

i=1Xi ≥ (1 + δ)µmax

]
≤

{
exp

(
− (1 + δ) ln(1 + δ)µmax/4

)
exp

(
− δµmax/3

)
.

Proof: Claim 9 implies that( eδ

(1 + δ)1+δ

)
≤ exp

(
− (1 + δ) ln(1 + δ)/4

)
≤ exp

(
− δ/3

)
.

2

A.4 Proof of inequality (d)

Claim 11 Suppose x ∈ [0, 1]. Then (1− x) ln(1− x) + x ≥ x2/2.

Proof: Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1). By simple calculus,

d

dx

[
(1− x) ln(1− x) + x

]
= − ln(1− x) and

d

dx
x2/2 = x.

The linear approximation of − ln(1− x) at x = 0 is

x · ddx
(
− ln(1− x)

)∣∣∣
x=0

= x ·
(

1
1−x
)∣∣∣
x=0

= x.

Furthermore, − ln(1 − x) is convex on [0, 1) because its second derivative is 1/(1 − x)2 ≥ 0. Thus
− ln(1− x) ≥ x on [0, 1). 2

Corollary 12 For all δ ∈ [0, 1],

Pr
[∑k

i=1Xi ≤ (1− δ)µmin

]
≤ exp

(
− (δ2/2)µmin

)
Proof: Claim 11 implies that

(
e−δ

(1−δ)1−δ

)
≤ e−δ2/2. 2
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A.5 Proof of inequality (c)

The argument is very similar to the proof of (a). Assume θ < 0. Then

Pr [X ≤ (1− δ)µmin ] = Pr
[

exp(θX) ≥ exp
(
θ(1− δ)µmin

) ]
(by monotonicity and θ < 0)

≤ E [ exp(θX) ]

exp(θ(1− δ)µmin)
(by Markov’s inequality)

≤
∏
i exp((eθ − 1)pi)

exp(θ(1− δ)µmin)
(by Claim 3)

= exp
(

(eθ − 1)
∑
i

pi − θ(1− δ)µmin

)
≤ exp

(
(eθ − 1)µmin − θ(1− δ)µmin

)
(since eθ − 1 < 0 and µmin ≤

∑
ipi)

=
( e−δ

(1− δ)1−δ
)µmin

,

by choosing θ = ln(1− δ) < 0.
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