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Prof. Nick Harvey University of British Columbia

Today’s lecture introduces a completely new topic: the Lovász Local Lemma (LLL). This is an important
method for analyzing events that are not independent, but have some restricted sort of dependencies.
It is not as widely applicable as many of the other the techniques we have seen so far, but from time to
time one encounters scenarios in which the LLL is the only technique that works.

1 The Lovász Local Lemma

Very often when designing randomized algorithms, we create a discrete probability space in which there
are “bad events” E1, . . . , En that we do not want to occur. For example, in the congestion minimization
problem, Ei could be the event that edge i has too much congestion. Often our analysis aims to show
that we can avoid these bad events with high probability, i.e., Pr

[⋂
i Ei
]
� 0.

Today let’s consider the weaker goal of showing that Pr
[⋂

i Ei
]
> 0. There are two cases in which this

goal is particularly simple.

• Mutually independent events. Suppose that the events are mutually independent. Then

Pr
[⋂

i Ei
]

=
∏
i

Pr
[
Ei
]
> 0,

assuming only that Pr [ Ei ] < 1 for every i.

• Union bound works. Suppose that
∑

i Pr [ Ei ] < 1. Then, by a union bound,

Pr
[⋂

i Ei
]

= 1− Pr [
⋃

i Ei ] ≥ 1−
∑
i

Pr [ Ei ] > 0.

If neither of these scenarios applies, then there are few general-purpose techniques that we can try.
The Lovász Local Lemma (LLL) is one of the few, and it has had spectacular applications for many
problems.

Roughly speaking, the LLL is applicable in scenarios where the Ei’s are not mutually independent, but
they can have some sort of limited dependencies. Formally, a dependency graph for events E1, . . . , En
is defined as follows. The vertex set is {1, . . . , n}. The neighbors of vertex i (excluding i itself) are
denoted Γ(i), and we also define Γ+(i) = Γ(i) ∪ {i}. The event Ei must be independent from the joint
distribution on { Ej : j 6∈ Γ+(i) }, the events that are not neighbors of i.

This last condition means that

Pr [ Ei ] = Pr
[
Ei |

⋂
j∈J Ej

]
for all J ⊆ [n] \ Γ+(i).

So, regardless of whether some of the events outside Γ+(i) occur, the probability of Ei occurring is
unaffected.

Theorem 1 (The Symmetric LLL) Suppose that there is a dependency graph of maximum degree
d. If Pr [ Ei ] ≤ p for every i and

pe(d+ 1) ≤ 1 (SLL)

then Pr
[⋂n

i=1 Ei
]
≥
(

d
d+1

)n
> 0.

1



2 Application: k-SAT

Instead, we will illustrate the LLL by considering a concrete application of it in showing satisfiability
of k-CNF Boolean formulas. Recall that a k-CNF formula is a Boolean formula, involving any finite
number of variables, where the formula is a conjunction (“and”) of any number of clauses, each of which
is a disjunction (“or”) of exactly k literals (a variable or its negation). Let us assume that, for each
clause, the variables appearing in it are all distinct.

For example, here is a 3-CNF formula with three variables and eight clauses.

φ(a, b, c) = (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩
(a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c)

This formula is obviously unsatisfiable. One can easily generalize this construction to get an unsatisfiable
k-CNF formula with k variables and 2k clauses. Our next theorem says: the reason this formula is
unsatisfiable is that we allowed each variable to appear in too many clauses.

Theorem 2 Let φ be a k-CNF formula where each variable appears in at most 2k/ek clauses. Then φ
is satisfiable.

Proof: Consider the probability space in which each variable is independently set to true or false with
equal probability. A clause is not satisfied if every literal appearing in that clause is false. (For example,
a∪ b∪ c is unsatisfied if a is true, b is false, and c is true.) This happens with probability 2−k, since the
clause involves k distinct variables.

Let Ei be the event that the ith clause is unsatisfied. We have just argued that

Pr [ Ei ] ≤ 2−k =: p.

Consider the graph defined on [n] in which there is an edge {i, j} if some variable appears in both
clause i and clause j. It is easy to see that this is a dependency graph: whether clause i is satisfied is
independent from the clauses sharing no variables with clause i.

Each variable in clause i appears in at most 2k/ek− 1 other clauses. The number of neighbors of clause
i is at most k times larger, since it contains k variables. That is,

|Γ(i)| ≤ 2k/e− 1 =: d.

Since pe(d+ 1) ≤ 1, condition (SLL) is satisfied and Pr
[⋂n

i=1 Ei
]
> 0. This shows that φ is satisfiable.
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3 Symmetric LLL: a proof sketch

In this section we give a sketchy proof of the symmetric LLL that tries to explain the sequence of
ideas that leads to the proof. If this sketch is not to your taste, a correct and concise proof is given in
Section 4.1. Instead of assuming (SLL), it will be convenient to assume the strengthened hypothesis

4pd ≤ 1. (1)

To make the notation more meaningful, let Bi denote the “bad” event Ei and let Gi be the “good” event
Bi. Note that independence from Bi is equivalent to independence from Gi. For any set S ⊆ [n], let
GS = ∩i∈SGi.
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The objective of the proof is to show that Pr
[
G[n]

]
> 0, i.e., with positive probability, all good events

occur simultaneously. Note that the union bound gives the easy lower bound

Pr [GS ] = 1− Pr [∪i∈SBi ] ≥ 1−
∑
i∈S

Pr [Bi ] ≥ 1− |S|p, (2)

but in our scenario, this is too weak — we could have |S|p � 1. Instead, a natural idea is to use the
“chain rule” to break apart this large conjunction:

Pr
[
G[n]

]
=

n∏
k=1

Pr
[
Gk | G[k−1]

]
. (3)

We just need to show that each factor in this product is strictly positive.

Idea 1: Rather than showing that each factor is positive, it turns out to be convenient to negate the
event and prove an upper bound. Specifically, we want to show that

Pr [Bk | GS ] ≤ αp ∀S ⊆ [n] (Hope)

for some α to be chosen later. In order for this conditional probability to be well defined, we need
that Pr [GS ] > 0. Let’s ignore that for now as our whole purpose is to prove the stronger fact that
Pr
[
G[n]

]
> 0. Trivially,

Pr [Bk | GS ] = Pr
[
Bk | GS∩Γ(k) ∩GS\Γ(k)

]
.

Idea 2: We would like to somehow use the fact that Bk is independent of GS\Γ(k) (due to the dependency
graph). But it is difficult to use that fact due to the additional conditioning on GS∩Γ(k). So as a first
step we use the definition of conditional probability to write

Pr [Bk | GS ] =
Pr
[
Bk ∩GS∩Γ(k) | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] .

Idea 3: The next idea is to drop the “∩GS∩Γ(k)” event yielding the following upper bound. We would
hope that still this gives a good bound since Γ(k) is small and GS∩Γ(k) is a very likely event.

Pr [Bk | GS ] ≤
Pr
[
Bk | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] =
Pr [Bk ]

Pr
[
GS∩Γ(k) | GS\Γ(k)

] ≤ p

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
The equality here uses our second idea, that Bk is independent of the events outside of Γ(k).

Now, to prove (Hope), it suffices to prove that Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1/α. The good news is that

the conjunction GS∩Γ(k) involves few events, so we are in good shape to use the union bound as in (2):

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1−

∑
i∈S∩Γ(k)

Pr
[
Bi | GS\Γ(k)

]
. (4)

If S ∩ Γ(k) = ∅ then this quantity is 1 as the sum is empty. Otherwise, |S \ Γ(k)| < |S|, so we can use
induction on |S|. We have

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1−

∑
i∈Γ(k)

Pr
[
Bi | GS\Γ(k)

]
(by (4))

≥ 1− dαp (inductively using (Hope))

≥ 1− α/4 (by the strengthened hypothesis (1))

= 1/α

if we now choose α = 2. This shows that (Hope) is satisfied.

3



4 General LLL

The Symmetric Local Lemma is useful, but often somewhat restrictive. It works best when all events are
equally probable, and when all neighborhood sizes are the same. We might want to consider scenarios
in which some events are quite likely and some are quite rare. The likely events would need to depend
on few other events, and the rare events could perhaps depend on many other events. There is a general
form of the local lemma that can handle such scenarios.

Theorem 3 (General LLL) Suppose that there is a dependency graph and an x ∈ (0, 1)n satisfying

Pr [ Ei ] ≤ xi ·
∏

j∈Γ(i)

(1− xj) ∀i. (GLL)

Then Pr
[⋂n

i=1 Ei
]
≥
∏n

i=1(1− xi) > 0.

This form of the local lemma is confusing at first because it’s not obvious what these xi values should
be. In order to satisfy (GLL), on the right-hand side we want xi to be big and each xj to be small. Due
to that tension, care is needed in finding the right xi.

4.1 A Concise Proof of Theorem 3

We simultaneously prove by induction on |S| that, for all S ⊆ [n],

Pr [GS ] > 0 (5a)

Pr [Bk | GS ] ≤ xk. (5b)

In the case S = ∅, (5a) is trivial and (5b) follows directly from (GLL).

By relabeling, we may assume that S = {1, . . . , s}, so

Pr [GS ] =
s∏

j=1

Pr
[
Gj | G{1,...,j−1}

]
=

s∏
j=1

(
1− Pr

[
Bj | G{1,...,j−1}

] )
≥

s∏
j=1

(1− xj),

where we inductively use (5a) to ensure that the conditional probabilities are well-defined, and we
inductively use (5b) to provide the inequality. This proves (5a).

Next consider (5b). If S ∩ Γ(k) = ∅ then Pr [Bk | GS ] = Pr [Bk ], so (5b) follows directly from (GLL).
Otherwise, relabeling so that S ∩ Γ(k) = {1, . . . , t}, we have

Pr [Bk | GS ] = Pr
[
Bk | GS∩Γ(k) ∩GS\Γ(k)

]
=

Pr
[
Bk ∩GS∩Γ(k) | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≤

Pr
[
Bk | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] =
Pr [Bk ]∏t

j=1 Pr
[
Gj | G(S\Γ(k))∪{1,...,j−1}

]
≤

xk ·
∏

i∈Γ(k)(1− xi)∏t
j=1

(
1− Pr

[
Bj | G(S\Γ(k))∪{1,...,j−1}

] ) ≤ xk ·
∏

i∈Γ(k)(1− xi)∏t
j=1

(
1− xj

) .

The second inequality uses (GLL) and the third uses induction. The last expression is clearly at most
xk, proving (5b).
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4.2 General implies Symmetric

Finally, let us conclude by noting that Theorem 3 implies Theorem 1. To see this, consider an instance
satisfying (SLL). Set xi = 1/(d+ 1). The RHS of (GLL) is

xi ·
∏

j∈Γ(i)

(1− xi) ≥
1

d+ 1
·
(
1− 1

d+ 1

)d
≥ 1

e(d+ 1)
(by calculus)

≥ p (by (SLL)).

This shows that (GLL) is satisfied, so Theorem 3 implies

Pr

[
n⋂

i=1

Ei

]
≥

n∏
i=1

(1− xi) =
n∏

i=1

( d

d+ 1

)n
,

which is the conclusion of Theorem 1.
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