
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 14

Prof. Nick Harvey University of British Columbia

1 Streaming Algorithms for Estimating `2

In this lecture we return to the topic of streaming algorithms that we saw in Lecture 9. We will change
the notation to be more consistent with the streaming literature.

The input is a sequence (a1, a2, . . . , am) of indices with each ai ∈ [n]. The frequency vector is f ∈ Zn,
where

fj = |{ i : ai = j }| = number of occurrences of j in the stream. (1)

The goal is to output some statistic of f , such as a norm ‖f‖p, while using O(log(n) + log(m)) bits or
words of space. For notational simplicity we will assume that m = poly(n) so that logm = Θ(log n).

Today we will again consider the problem of estimating the `2-norm, namely ‖f‖2 = (
∑

j f
2
j )1/2. In

Lecture 9 we discussed an algorithm for estimating `2 using the Johnson-Lindenstrauss theorem. At
that time we could not formally implement the algorithm in O(log n) space. Today we will give a similar
algorithm that provably uses O(log n) space.

The algorithm discussed in Lecture 9 is shown in Algorithm 1; in that lecture, the entries of L were
chosen to be independent Gaussians (scaled to have variance 1/t). The issue with this approach is that
storing this L takes Ω(tn) space, which is too much. Intuitively, we’d like to generate L using some sort
of “pseudorandom” source, for which we can regenerate entries on demand. Our hash functions from
Lecture 13 will allow us to do exactly that.

Algorithm 1: The generic streaming algorithm for estimating ‖f‖22.
1 Create the random matrix L of size t× n
2 Initialize y ∈ Rt to zero
3 for i = 1, . . . ,m do
4 Receive the symbol j = ai ∈ [n]

5 Add the jth column of L to y
6 � Invariant: y = Lf

7 Output ‖y‖22

1.1 The Basic Estimate: t = 1

For simplicity let us start off by considering the case t = 1, so the matrix L becomes just a row
vector. The entries of L will be generated by our hash function constructed in Lecture 13, which can
be summarized as follows.

Corollary 1 For any n ≥ 1, there is a hash function h = hs : [n] → {−1, 1}, where the seed s is a
uniformly random bit string of length O(k log n), such that

Prs [hs(u1) = v1 ∧ hs(uk) = vk ] = 2−k

1



for all distinct u1, . . . , uk ∈ [n] and v1, . . . , vk ∈ {−1, 1}.

To generate the vector L, we simply pick a random seed s then define

Lj = hs(j) ∀j ∈ [n]. (2)

Whereas previously we used random Gaussians for the entries of L, we now use random signs (which is
also helpful for saving space). Our hash function h is k-wise independent, but let us not yet specify the
value of k. Later we will see what value is needed by the analysis.

The intuition behind the analysis is the same as for the Johnson-Lindenstrauss transform, discussed in
Lecture 7. Recall that we stated the following algebraic property of variance.

Fact 2 Let G1, . . . , Gd be mutually independent random variables with finite variance. Let σ1, . . . , σd ∈
R be arbitrary. Then Var

[∑
j σjGj

]
=
∑

j σ
2
j Var [Gj ].

The assumption of mutual independence is stronger than necessary. Corollary 8 implies that the same
is true with only pairwise independence. So let us now restate the fact in a form that is useful for our
purposes.

Fact 3 Let L ∈ Rn be a random vector whose coordinates are pairwise independent and satisfy Var [Lj ] =
1 for all j. Let f ∈ Rn be arbitrary. Then Var [Lf ] =

∑
j f

2
j = ‖f‖22.

Moreover, our hash function’s output is an unbiased random sign: Pr [h(i) = 1 ] = Pr [h(i) = −1 ] = 1/2.
It follows that every entry of L has expectation zero, and variance equal to 1. So our vector L satisfies
the hypotheses of Fact 3.

Algorithm’s output is unbiased. Since we’re in the case t = 1, the algorithm outputs the value
y2. We now claim that this value is correct in expectation.

We have just argued that the entries of L have expectation zero. By linearity, E [ y ] = 0 as well. So, by
Fact 3,

‖f‖22 = Var [ y ] = E
[
y2
]
− E [ y ]2︸ ︷︷ ︸

=0

= E
[
y2
]
. (3)

1.1.1 Concentration of y2

In order to show that y2 provides a good estimate of ‖f‖22, we need to show that y2 is concentrated
around its expectation. The analogous step of our Johnson-Lindenstrauss analysis required no effort
because already we knew that y had a Gaussian distribution. Today some more effort is necessary.

Since we don’t have mutual independence we cannot use a Chernoff bound. In scenarios without much
independence, a good option for showing concentration is Chebyshev’s inequality, which appears in the
appendix as Theorem 9. This yields

Pr
[
|y2 − E

[
y2
]
| ≥ z

]
≤ Var

[
y2
]
/z2. (4)

2



The trouble is that we now have to analyze Var
[
y2
]
, which is somewhat unpleasant as it involves

fourth-powers of y:

Var
[
y2
]

= E
[
y4
]
− E

[
y2
]2 ≤ E

[
y4
]

= E

( ∑
j∈[n]

Ljfj
)4 

=
∑

j1,j2,j3,j4∈[n]

E [Lj1Lj2Lj3Lj4 ] fj1fj2fj3fj4 . (5)

(Note that the indices j1, . . . , j4 need not be distinct.) In order to apply the “expectation-of-product
equals product-of-expectations” rule to (5), we now decide to set k = 4 so that the entries of L are
4-wise independent.k = 4

Claim 4 Var
[
y2
]
≤ 3 ‖f‖42.

Plugging this and (3) into (4), we obtain

Pr
[
|y2 − ‖f‖22| ≥ z

]
≤ 3 ‖f‖42 /z

2.

If we wanted multiplicative error of 1 + ε, we would take z = ε ‖f‖22, which gives

Pr
[
|y2 − ‖f‖22| ≥ ε ‖f‖22

]
≤ 3/ε2.

Unfortunately this is only useful when ε >
√

3. To handle ε close to zero, we will need to average many
such estimates which is exactly the purpose of the case t > 1.

1.2 The Actual Estimate: t > 1

We now let L be a t × n matrix for which each row is generated as in Section 1.1. We pick mutually
independent random seeds s1, . . . , st and construct the hash functions hs1 , . . . , hst using Corollary 1.
We then define

Li,j = hsi(j)/
√
t ∀i ∈ [t], j ∈ [n]. (6)

The algorithm’s output is the vector y = Lf .

Each coordinate of y can be analyzed as in Section 1.1, after incorporating the scaling factor 1/
√
t.

Equation (3) and Claim 4 become

E
[
y2i
]

= ‖f‖22 /t
Var

[
y2i
]
≤ 3 ‖f‖42 /t

2.

Linearity of expectation and Corollary 8 imply

E
[∑t

i=1y
2
i

]
= ‖f‖22

Var
[∑t

i=1y
2
i

]
≤ 3 ‖f‖42 /t.

Plugging these into Chebyshev’s inequality and taking z = ε ‖f‖22, we get

Pr
[ ∣∣∣∑t

i=1y
2
i − ‖f‖

2
2

∣∣∣ ≥ ε ‖f‖22
]
≤

Var
[∑t

i=1y
2
i

]
z2

≤
3 ‖f‖42 /t
(ε ‖f‖22)2

=
3

tε2
.

Thus, taking t = 3/(δε2), we obtain

Pr
[ ∣∣∣∑t

i=1y
2
i − ‖f‖

2
2

∣∣∣ ≥ ε ‖f‖22
]
≤ δ.

3



1.2.1 Space Analysis.

Let us now consider how much space the algorithm needs in order to obtain an estimate that achieves
(1 + ε)-multiplicative error with failure probability δ.

The vector y. There are t coordinates, each of which uses O(log n) bits.

The hash functions hs1 , . . . , hst. To represent the hash function hsi we only need to store the random
seed si. By Corollary 1, each seed uses O(k log n) bits of space, which is O(log n) since k = 4.

Thus, the total space is O(t log n) = O(log(n)/δε2) bits.

4



A Review of Variance

Let us review variance and related notions that should be familiar from an introductory probability
course. The variance of a random variable X is

Var [X ] = E
[ (
X − E [X ]

)2 ]
= E

[
X2
]
− E [X ]2 .

(For some random variables, the variance may be undefined or infinite.)

The covariance between two random variables X and Y is

Cov [X,Y ] = E
[ (
X − E [X ]

)(
Y − E [Y ]

) ]
= E [XY ]− E [X ] E [Y ] .

This gives some measure of the correlation between X and Y .

Here are some properties of variance and covariance that follow from the definitions by simple calcula-
tions.

Claim 5 If X and Y are pairwise independent then Cov [X,Y ] = 0.

Proof: We showed in Lecture 13 that pairwise independent random variables satisfy E [XY ] −
E [X ] E [Y ]. 2

References: Mitzenmacher-Upfal Corollary 3.4.

Claim 6 Var [X + Y ] = Var [X ] + Var [Y ] + 2 · Cov [X,Y ].

References: Mitzenmacher-Upfal Theorem 3.2.

More generally, induction shows

Claim 7 Let X1, . . . , Xn be arbitrary random variables. Then

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi ] + 2
n∑

i=1

∑
j>i

Cov [Xi, Xj ] .

Corollary 8 Let X1, . . . , Xn be pairwise independent random variables. Then

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi ] .

References: Mitzenmacher-Upfal Theorem 3.5, Motwani-Raghavan Lemma 3.4, Durrett Theorem 2.2.1.

5



B Chebyshev’s Inequality

Chebyshev’s inequality you’ve also presumably seen before. It is a 1-line consequence of Markov’s
inequality.

Theorem 9 For any z > 0,

Pr
[ ∣∣X − E [X ]

∣∣ ≥ z ] ≤ Var [X ]

z2
.

Proof:

Pr
[ ∣∣X − E [X ]

∣∣ ≥ z ] = Pr
[ (
X − E [X ]

)2 ≥ z2 ] ≤ E
[ (
X − E [X ]

)2 ]
z2

=
Var [X ]

z2
,

where the inequality is by Markov’s inequality. 2

References: Durrett Theorem 1.6.4.

B.1 Chebyshev for sums of pairwise independent RVs

Chebyshev is often useful for showing concentration for sums of pairwise independent random variables.
Suppose that X1, . . . , Xn are pairwise independent and identically distributed. Then, by Corollary 8,

Var [
∑n

i=1Xi ] =
n∑

i=1

Var [Xi ] = nv,

where Var [Xi ] ≤ v for each i. So, by Chebyshev’s inequality,

Pr [ |
∑n

i=1Xi − E [
∑n

i=1Xi ]| > z ] ≤
Var [

∑n
i=1Xi ]

z2
≤ nv/z2.

References: Mitzenmacher-Upfal Section 13.2.

6


	Streaming Algorithms for Estimating 2
	The Basic Estimate: t=1
	Concentration of y2

	The Actual Estimate: t>1
	Space Analysis.


	Review of Variance
	Chebyshev's Inequality
	Chebyshev for sums of pairwise independent RVs


