
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 11

Prof. Nick Harvey University of British Columbia

1 Graph Sparsifiers

Let G = (V,E) be an undirected graph. How well can G be approximated by a sparse graph? Such
questions have been studied for various notions of approximation. Today we will look at approximating
the cuts of the graph. As before, the cut defined by U ⊆ V is

δ(U) = { uv ∈ E : u ∈ U and v 6∈ U } .

Let w : E → R be a weight function on the edges. The weight of a set F ⊆ E is defined to be

w(F) :=
∑
e∈F

we.

So the weight of the cut defined by U ⊆ V is w(δ(U)).

A graph sparsifier is a non-negative weight function w : E → R such that

• w has only a small number of non-zero weights,

• for every U ⊆ V ,
(1− ε)|δ(U)| ≤ w(δ(U)) ≤ (1 + ε)|δ(U)|. (1)

We can think of any edge with weight zero as being deleted. So the goal is to find a sparse, but weighted,
subgraph of G such that the weight of every cut is preserved up to a multiplicative factor of 1 + ε.

How could one find a sparsifier? A natural idea is to sample the edges independently with some
probability p. That works well if G is the complete graph because it essentially amounts to constructing
an Erdos-Renyi random graph, which is well-studied.

Unfortunately this approach falls apart when G is quite different from the complete graph. One such
graph is the “dumbbell graph”, which consists of two disjoint cliques, each on n/2 vertices, and a single
edge in the middle connecting the cliques. We would like to get rid of most edges in the cliques, but we
would need to keep the edge in the middle. This example tells us that we should not sample all edges
with the same probability p.

1

http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

So now the question is: for each edge, how “important” is it? Should we sample it with low probability
or high probability? The notion of edge connectivity, which we defined in the previous lecture, seems
quite useful. Recall that for an edge e we let ke be the minimum size of a cut containing e, i.e.,

ke := min { |δ(U)| : U ⊂ V and e ∈ δ(U) } .

By the Max-Flow Min-Cut theorem, ke equals the maximum amount of flow that can be sent between
the endpoints of the edge. So ke can be efficiently computed. Edges with high connectivity only appear
in cuts with many other edges, so intuitively they are not terribly important. In the dumbbell example,
the clique edges have connectivity n/2− 1, whereas the single edge in the middle has connectivity 1. So
the connectivity values seem to do a good job at identifying important edges.

1.1 The sampling process

Consider the following algorithm which independently samples each edge with probability inversely
proportional to its connectivity.

Algorithm 1: Algorithm for graph sparsification using edge connectivities. The parameter ρ
determines the number of “rounds” of sampling.

1 Initially we = 0 for every e ∈ E.
2 Compute the edge connectivity ke for every e ∈ E.
3 for i = 1, . . . , ρ do
4 foreach e ∈ E do
5 With probability 1/ke, increase we by ke/ρ.

One great feature of this sampling process is that all edge weights are preserved in expectation.

Claim 1 For every edge e we have E [we] = 1.

Proof: The expected increase in we in the ith iteration is (1/ke) · (ke/ρ) = 1/ρ. By linearity of
expectation, the expected increase over all ρ iterations is 1. 2

Moreover, the weight of any set of edges is also preserved in expectation.

Corollary 2 For any F ⊆ E, we have E [w(F)] = |F |.

Proof: By linearity of expectation. 2

In particular, E [w(δ(U))] = |δ(U)| for every U . Unfortunately preserving cuts in expectation is not
good enough. We would like to say that, with high probability, every cut’s weight is is close to its
expectation. This is a statement about concentration, so the Chernoff bound seems like a natural tool
to try.

2

1.2 An analysis that doesn’t work

Consider some cut δ(U). The weight of that cut after sampling is the random variable

X :=

ρ∑
i=1

∑
e∈δ(U)

ke
ρ
Xi,e,

where Xi,e is a Bernoulli random variable indicating whether edge e was sampled during the ith round
of sampling. The Chernoff bound is designed for analyzing sums of independent Bernoullis, so it seems
that we are in great shape.

But there is a problem: the coefficients ke/ρ. The Chernoff bound works for any sum of independent
random variables taking values in [0, 1]. Unfortunately we have these coefficients that can be quite large
(e.g., ke ≈ n), so a straightforward application of Chernoff will not work.

Actually it is not really a problem that the coefficients are big, but it is a problem that they could be
wildly different. Consider the example:

X =

n∑
i=1

n ·Xi

where the Xi’s are independent Bernoulli random variable. Even though there are these large coeffi-
cients, we can still analyze X with the Chernoff bound because it is simply n times the random variable∑

iXi, which has no coefficients. On the other hand, consider the example:

Y = n · Y0 +

n∑
i=1

Yi

where Y0, . . . , Yn are Bernoulli random variables that are 1 with probability 1/n. Then E [Y] = 2,
but Pr [Y ≥ n] ≥ 1/n. The Chernoff bound cannot directly give useful tail bounds on Y because it
is designed to show that the probability of being α times larger than the expectation is exponentially
decreasing in α, and that is simply not true for Y .

1.3 Analysis idea: connectivity classes and projections

Often when analyzing quantities with very different magnitudes, it is useful to divide them into groups
whose values are roughly the same. We will use this idea to group the edges of the graph, where the
quantity of interest is the edge-connectivity. Formally, we set E = E1 ∪ · · · ∪ Elogn where

Ei =
{
e ∈ E : 2i−1 ≤ ke < 2i

}
. (2)

Each set Ei is called a connectivity class.

Instead of trying to show that the weight w(δ(U)) of each cut is concentrated, we will restrict our
attention to edges in the same connectivity class. We will show that w(δ(U) ∩ Ei) is concentrated, for
each U ⊆ V and each i. Applying a Chernoff bound to w(δ(U) ∩ Ei) will work very nicely because all
edges in Ei have nearly the same coefficients ke/ρ.

So let P be some set of the form δ(U) ∩ Ei. We will call such a set a projection of a cut. Note that
there could be some other cut U ′ such that P = δ(U) ∩ Ei = δ(U ′) ∩ Ei. We’re going to focus on the
smallest such cut, because we want the sampling error of w(P) to be small relative to |δ(U)|, and that
is hardest when |δ(U)| is small. So define

sm(P) = min { |δ(U)| : U ⊆ V ∧ δ(U) ∩ Ei = P } .

3

This definition is a bit hard to understand, so we illustrate it with the following example. The set {ab}
is a projection in E2 because δ({b})∩E2 = {ab}. But we also have δ({b, e, g})∩E2 = {ab}. The smallest
cut that projects onto {ab} is δ({b}), so we have sm({ab}) = |δ({b})| = 6.

We can use Chernoff bounds to prove the following concentration bound for w(P).

Claim 3 Let P ⊆ Ei be a projection of a cut. Then

Pr

[
|w(P)− E [w(P)]| > ε · sm(P)

log n

]
≤ 2 exp

(
− ε2ρ · sm(P)

3 · 2i log2 n

)

The proof is just a calculation, so we skip it for now.

1.4 The Main Theorem

Our main theorem is:

Theorem 4 Let G = (V,E) be a graph with n = |V |. Then with probability at least 1/2, our sampling
process will produce weights w : E → R satisfying (1) and with only O(n log3(n)/ε2) non-zero entries.

By a slightly more careful analysis one can improve the log3 n to log2 n. Instead of edge connectivities, if
we use a slightly different quantity to determine the importance of an edge, the log3 n can be improved
to log n. And by non-random techniques, the log3 n can be removed entirely!

4

To prove our theorem we need the following result which we stated last time, and which follows from a
variant of the contraction algorithm.

Theorem 5 Let G = (V,E) be a graph. Let Ei be a connectivity class. For every real α ≥ 1,

|
{
δ(U) ∩ Ei : U ⊆ V ∧ |δ(U)| ≤ α2i−1

}
| < n2α.

We also need the following fact:

Fact 6 For any graph G = (V,E) with n = |V | we have
∑

e∈E 1/ke ≤ n− 1.

Proof (of Theorem 4). We will set ρ = 24 log3(n)/ε2.

Sparsity analysis. The number of non-zeros is easy to analyze. Let Xi,e be the indicator random
variable that is 1 if edge e is sampled in round i, so E [Xi,e] = 1/ke. The number of non-zero weights
in w is at most

∑ρ
i=1

∑
e∈E Xi,e. So the expected number of non-zero weights is at most ρ

∑
e 1/ke =

O(n log3(n)/ε2), by Fact 6. By Markov’s inequality, there is probability at most 1/4 that the number
of non-zero weights exceeds its expectation by a factor of four.

Error of Projections. For any projection P , define the event

EP =

{
|w(P)− E [w(P)]| > ε · sm(P)

log n

}
.

Suppose that none of the events EP holds. Then for every cut C = δ(U) we have

|w(C)− |C|| ≤
logn∑
i=1

|w(C ∩ Ei)− |C ∩ Ei|| ≤
logn∑
i=1

ε sm(C ∩ Ei)
log n

≤
logn∑
i=1

ε|C|
log n

= ε|C|.

The first inequality follows from the triangle inequality. The second inequality follows because we have
assumed that EC∩Ei doesn’t hold. The third inequalty holds since sm(C ∩Ei) is the size of the smallest
cut whose projection onto Ei is C ∩ Ei, so sm(C ∩ Ei) ≤ |C|. This proves our desired inequality (1).

Concentration of Projections. It remains to analyze the probability of avoiding the events EP . Fix
any i ∈ {1, . . . , log n}. Let Pi be the collection of all projections in Ei. Note that every P ∈ Pi contains
only edges of connectivity at least 2i−1, so it can only be the projection of a cut of size at least 2i−1. In
other words,

sm(P) ≥ 2i−1 ∀P ∈ Pi. (3)

5

We use a tricky union bound to analyze the probability of avoiding the events EP .

Pr

 ⋃
P∈Pi

EP

 ≤ ∑
P∈Pi

Pr [EP] (union bound)

=
∑
j≥i

∑
P∈Pi

2j−1≤sm(P)<2j

Pr [EP] (by (3))

≤
∑
j≥i

∑
P∈Pi

2j−1≤sm(P)

2 exp

(
− ε2ρ · sm(P)

3 · 2i log2 n

)
(Claim 3)

= 2 ·
∑
j≥i

∑
P∈Pi

2j−1≤sm(P)

exp

(
− 8 log(n)2j−1

2i

)
(definition of ρ)

= 2 ·
∑
j≥i

n−4·2
j−i · |

{
P ∈ Pi : 2j−1 ≤ sm(P)

}
|

≤ 2 ·
∑
j≥i

n−4·2
j−i · n2·2j−i

(Theorem 5 with α = 2j−i)

= 2 ·
∑
j≥i

n−2·2
j−i

< 2 ·
∑
t≥2

n−t < 3/n2.

That analysis is for a particular i. Applying a union bound over all i ∈ {1, . . . , log n}, the total failure
probability is at most log(n)(3/n2) < 1/n if n is sufficiently large. �

6

	Graph Sparsifiers
	The sampling process
	An analysis that doesn't work
	Analysis idea: connectivity classes and projections
	The Main Theorem

