Due: Tuesday, April 3rd, in class.
Grading: You are required to do both questions 1 and 2 . You are only required to do two of questions 3 , 4 and 5.

Question 1: Let $G=(L, R, E)$ be a bipartite graph. We say that G is a $\left(n, m, d, d^{\prime}\right)$-expander if

- $|L|=n$ and $|R|=m$,
- every vertex in L has degree at most d,
- every vertex in R has degree at most d^{\prime},
- $|\Gamma(S)| \geq|S|$ for every $S \subseteq L$ with $|S| \leq \frac{n}{2}$.

In this problem, we will prove that $\left(n, 3 n / 4, d, d^{\prime}\right)$-expanders exist for some constants d and d^{\prime}.
(a): Let $m=5 n / 8$ and $d=20$. Generate a random graph G by having each vertex in U choose d neighbors in V at random. (We allow multiple edges.) Prove that, with constant probability, for sufficiently large n, this graph is a (n, m, d, ∞)-expander. (In other words, we don't care about the degree of the vertices in V.)
(b): Given such a G, construct a $(n, 3 n / 4,20,160)$ expander.
(c): Prove that, for any n, there are superconcentrators with n inputs, n outputs, $O(n)$ edges, and for which every vertex has degree $O(1)$.

Question 2: Suppose we have an algorithm $\operatorname{Test}(x, r)$ for deciding whether x belongs to a language L. Here r is an additional bitstring of length $f(x)$ which contains "advice". (This notion of advice should be familiar to you from the study of NP-completeness: if L is an NP-complete language then there always exists an efficient algorithm $\operatorname{Test}(x, r)$ which can decide if $x \in L$, if it is given the right advice.)
Let us suppose that our algorithm Test satisfies the following property.

- If $x \in L$ then $\operatorname{Test}(x, r)=1$ for at least half of the possible bitstrings r of length $f(x)$. A string r such that $\operatorname{Test}(x, r)=1$ is called a witness for x.
- If $x \notin L$ then $\operatorname{Test}(x, r)=0$ always.

For this problem we are interested in testing whether $x \in L$ without using too much randomness. Suppose we choose two random bitstrings r_{1} and r_{2} of length $f(x)$ independently and uniformly. Consider running the algorithm Test twice: first we call $\operatorname{Test}\left(x, r_{1}\right)$, then $\operatorname{Test}\left(x, r_{2}\right)$. Then, assuming $x \in L$, the probability that either r_{1} or r_{2} is a witness is at least $3 / 4$.
Argue that, given just these two random bitstrings r_{1} and r_{2}, we can actually find a witness with probability at least $1-1 / t$ by evaluating $\operatorname{Test}\left(x, r_{1}+z \cdot r_{2}\right)$ for all values $z \in \mathbb{F}_{2^{f(x)}}$. (Here the arithmetic $r_{1}+z \cdot r_{2}$ is in the field $\mathbb{F}_{2^{f(x)}}$.)

Question 3: In Assignment 1, we considered the following problem.
Let P be a non-negative matrix of size $n \times m$ such that $\sum_{j} P_{i, j}=1$ for all $i=1, \ldots, n$. Obtain the matrix Q from P by scaling each column to have sum equal to 1 . In other words, $Q_{i, j}=P_{i, j} / \sum_{k} P_{k, j}$. Give a randomized algorithm that, with probability at least a constant, constructs a non-negative, integer vector $y \in \mathbb{Z}_{+}^{m}$ with $\sum_{j} y_{j}=n$ such that every coordinate of $Q y$ is at most $O(\log n / \log \log n)$.

Give a deterministic, polynomial time algorithm for the same problem.

Question 4: Let $D=(N, A)$ be a digraph with $n=|N|$ and $m=|A|$. Let Δ be the maximum degree of any node, excluding s and t. Formally, for $v \in N$, let $d^{+}(v)$ be the number of arcs whose head is v and let $d^{-}(v)$ be the number of arcs whose tail is v. Then $\Delta=\max \left\{d^{+}(v)+d^{-}(v): v \in N \backslash\{s, t\}\right\}$.

Suppose we have an algorithm that, given nodes $s, t \in N$, computes the maximum number of arc-disjoint s - t dipaths, with running time $O(m \cdot f(\Delta))$ where f is some function (e.g., $f(x)=x^{2}$). Such an algorithm seems not very useful, since we could have $\Delta=\Theta(n)$ and $O\left(m n^{2}\right)$ is not a particularly great running time.

But actually, such an algorithm would be very useful. Use it to give a randomized algorithm that computes the maximum number of arc-disjoint s - t dipaths in time $O(m)$. The success probability of the algorithm should be at least $1 / 2$.

Question 5:

(a): Let X be a finite set of elements. Let A_{1}, \ldots, A_{ℓ} be random subsets of X where each A_{i} is chosen by including each element of X independently with probability $p<1 / \ell$. Let $Y=$ $\sum_{j=1}^{\ell}\left|A_{j}\right|-\left|\cup_{j=1}^{\ell} A_{j}\right|$. Prove that:

$$
\mathrm{E}[Y] \leq n(p \ell)^{2} / 2
$$

(b): Prove that:

$$
\operatorname{Pr}[Y \geq t] \leq\left(1+(p \ell)^{2}\right)^{n} \cdot 2^{-t} \quad(\text { for all } t \geq 0)
$$

(c): Let U and V be disjoint sets of vertices with $|V|=n$ and $|U|=n^{2}$. Let $G=(U \cup V, E)$ be a random bipartite graph generated by including every possible edge with probability $p=n^{-2 / 3}$. For every $u \in U$, let d_{u} be the degree of vertex u. For every $S \subseteq U$, let

$$
\Gamma(S)=\{v \in V: \exists u \in S \text { such that }\{u, v\} \in E\}
$$

So $\Gamma(S)$ is the set of neighbours of S. Obviously $|\Gamma(S)| \leq \sum_{u \in S} d_{u}$.
Let $\alpha=4 \log (n)$. Prove that, with high probability, every $S \subseteq U$ with $|S| \leq n^{1 / 3}$ satisfies

$$
|\Gamma(S)| \geq \sum_{u \in S}\left(d_{u}-\alpha\right)
$$

