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Dimensionality reduction is the process of mapping a high dimensional dataset to a lower dimensional
space, while preserving much of the important structure. In statistics and machine learning, this
often refers to the process of finding a few directions in which a high dimensional random vector has
maximimum variance. Principal component analysis is a standard technique for that purpose.

In this lecture, we consider a different sort of dimensionality reduction where the goal is to preserve
pairwise distances between the data points. We present a technique, known as the random projec-
tion method, for solving this problem. The analysis of this technique is known as the Johnson-
Lindenstrauss lemma.

In the past few lectures, our main tool has been the Chernoff bound. In this lecture we will not directly
use the Chernoff bound, but the main proof uses very similar ideas.

1 Dimensionality Reduction

Suppose we have m points x1, . . . , xm ∈ Rn. We would like to find m points y1, . . . , ym ∈ Rd, where
d� n, such that

‖yj‖ ≈ ‖xj‖ ∀j
‖yj − yj′‖ ≈ ‖xj − xj′‖ ∀j, j′.

Here the notation ‖x‖ refers to the usual Euclidean norm of the vector x. We will show that this can
be accomplished while taking d to be surprisingly small.

The main result is:

Theorem 1 Let x1, . . . , xm ∈ Rn be arbitrary. Pick any ε = (0, 1). Then for some d = O(log(m)/ε2)
there exist points y1, . . . , ym ∈ Rd such that

(1− ε)‖xj‖ ≤ ‖yj‖ ≤ (1 + ε)‖xj‖ ∀j
(1− ε)‖xj − xj′‖ ≤ ‖yj − yj′‖ ≤ (1 + ε)‖xj − xj′‖ ∀j, j′. (1)

Moreover, in polynomial time we can compute a linear transformation L : Rn → Rd such that, defining
yj := L(xj), the inequalities in (1) are satisfied with probability at least 1− 2/m.

Whereas principal component analysis is only useful when the original data points {x1, . . . , xm} are
inherently low dimensional, this theorem requires absolutely no assumption on the original data. Also,
note that the final data points {y1, . . . , ym} have no dependence on n: the original data could live in an
arbitrarily high dimension!

Let me now spoil the surprise: the linear transformation L in Theorem 1 is simply multiplication by a
matrix whose entries are independent Gaussian random variables.

Formally, for i = 1, . . . , d, let ri ∈ Rn be a vector whose entries are independently drawn from N(0, 1),
the normal distribution with mean 0 and variance 1. Define a linear map f : Rn → Rd as follows: the
ith coordinate of f(v) is simply rTi v. We now prove a lemma about f , which easily leads to our desired
linear transformation L.
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Lemma 2 (Johnson-Lindenstrauss) Fix any vector v ∈ Rn with ‖v‖ = 1. For some d = O(log(m)/ε2)
we have

Pr[ 1− ε ≤ ‖f(v)‖√
d
≤ 1 + ε ] ≥ 1− 2/m3.

Given this lemma, our main theorem follows easily.

Proof:[of Theorem 1] Define the linear map L(v) := f(v)/
√
d. Since f and L are both linear, the

lemma implies that for any v ∈ Rn, we have

Pr[ (1− ε)‖v‖ ≤ ‖L(v)‖ ≤ (1 + ε)‖v‖ ] ≥ 1− 2/m3.

Apply this result to all vectors v = xj and all vectors v = xj − xj′ (with j 6= j′). Since there are m2

such vectors, a union bound shows that the probability of failing to satisfy (1) is at most 2/m. 2

1.1 Discussion

First of all, you have probably noticed that we’ve now jumped from the world of discrete probability to
continuous probability. This is to make our lives easier. The same theorem would be true if we picked
the coordinates of ri to be uniform in {+1,−1} rather than Gaussian. But the analysis of the {+1,−1}
case is trickier, and most proofs analyze that case by showing that its failure probability is not much
worse than in the Gaussian case. So the Gaussian case is really the central problem.

Second of all, you might be wondering where the random projection method name comes from.
Earlier versions of the Johnson-Lindenstrauss lemma used a slightly different function L. Specifically,
they chose L(v) = Rv where RTR is a projection onto a uniformly random subspace of dimension
d. (Recall that an orthogonal projection matrix is any symmetric, positive semidefinite matrix whose
eigenvalues are either 0 or 1.) One advantage of that setup is its symmetry: one can argue that the
failure probability in Lemma 2 would be the same if one instead chose a fixed subspace of dimension d
and a random unit vector v. The latter problem can be analyzed by choosing the subspace to be the
most convenient one of all: the span of the first d vectors in the standard basis.

So how is our mapping L different? It is almost a projection, but not quite. When we choose R to be
a matrix of independent Gaussians, it turns out that the range of RTR is indeed a uniformly random
subspace, but its eigenvalues are not necessarily in {0, 1}. If we had insisted that the random vectors ri
that we choose were orthonormal, then we would have obtained a projection matrix. We could explicitly
orthonormalize them by the Gram-Schmidt method, but fortunately that turns out to be unnecessary:
the Johnson-Lindenstrauss lemma remains true, even if we ignore orthonormality of the ri’s.

Our definition of L turns out to be a bit more convenient in some algorithmic applications, because we
avoid the awkward Gram-Schmidt step.

1.2 The proof

We need just one fact from probability theory: the sum of Gaussians is again Gaussian.

Fact 3 Let X and Y be independent random variables where X has distribution N(0, σ2X) and Y has
distribution N(0, σ2Y ). Then X + Y has distribution N(0, σ2X + σ2Y ).

Recall that if X has distribution N(0, 1) then σ ·X has distribution N(0, σ2). So by induction we get:
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Fact 4 Let Y1, . . . , Ym be independent random variables where Yi has distribution N(0, 1). Then, for
any scalars σ1, . . . , σm, the sum

∑
i σiYi has distribution N(0,

∑
i σ

2
i ).

The proof of Lemma 2 uses separate but similar arguments to analyze the upper and lower tails, as
was the case with Chernoff bounds. We will prove only the upper tail. For convenience we square both
sides, so our goal is to prove that

Pr[ ‖f(v)‖2 > (1 + ε)2d ] ≤ 1/m3. (2)

Define Xi = rTi v, which is the ith coordinate of f(v). By Fact 4, Xi has distribution N(0,
∑

i v
2
i ) =

N(0, 1).

We get the following expansion:

‖f(v)‖2 =
d∑
i=1

(rTi v)2 =
d∑
i=1

X2
i .

Our goal is to prove an upper tail bound on ‖f(v)‖2. Fortunately, this random variable has a well-
known distribution. We have just written ‖f(v)‖2 as the the sum-of-squares of d standard normal
random variables, which is called the chi-squared distribution with parameter d. It is easy to see that

E[‖f(v)‖2] =
d∑
i=1

E[X2
i ] = d,

since E[X2
i ] is the variance of Xi, which we have shown is 1.

So our desired inequality (2) is asking for a bound on the probability that a chi-squared random
variable slightly exceeds its expectation. Since the chi-squared distribution is sum of independent
random variables, we know by the the central limit theorem that it converges to a normal distribution
as d→∞. We just need to quantify the rate of convergence, and this is where the Chernoff-style ideas
arise.

Claim 5 Let Y =
∑d

i=1X
2
i have the chi-squared distribution with parameter d. Set α = d(1 + ε)2.

Then Pr[Y > α] ≤ exp(−(3/4)dε2).

Applying Claim 5 to Y = ‖f(v)‖2 with d = 4 ln(m)/ε2 completes the proof of (2).

Proof: Pick any parameter t ∈ [0, 1/2). Just like with Chernoff bounds, we write

Pr[Y > α] = Pr[etY > etα] ≤ e−tαE[etY ]. (3)

As with Chernoff bounds, the bulk of the effort is in analyzing E[etY ], but we can use independence to
write

E[etY ] = E

[
exp

(
t

d∑
i=1

X2
i

)]
=

d∏
i=1

E
[

exp(tX2
i )
]
. (4)

Expanding the expectation we get

E
[

exp(tX2
i )
]

=
1√
2π

∫ ∞
−∞

exp(ty2) exp(−y2/2) dy =
1√
2π

∫ ∞
−∞

exp
(
− y2(12 − t)

)
dy.
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If that 1
2 − t factor were simply a 1/2 then we could evaluate that integral using the fact that e−z

2
/
√

2π
is the PDF of a standard normal random variable, so it integrates to 1. We can accomplish that with
a change of variables. Using z = y

√
1− 2t, we get

E
[

exp(tX2
i )
]

=
1√
2π

∫ ∞
−∞

exp
(
−
(
y
√

1− 2t
)2
/2
)
dy

=
1√

2π
√

1− 2t

∫ ∞
−∞

exp(−z2/2) dz

=
1√

1− 2t
.

Combining this with (3) and (4) we get

Pr[Y > α] ≤ e−tα(1− 2t)−d/2.

The last step is to plug in an appropriate choice of t. We set t = (1− d/α)/2, giving

Pr[Y > α] ≤ e−tα(1− 2t)−d/2 = e(d−α)/2(d/α)−d/2.

Plugging in α = d(1 + ε)2, this becomes

exp
(d

2

(
1− (1 + ε)2

)
− d

2
ln
( 1

(1 + ε)2

))
= exp

(
− d
(
ε+ ε2/2− ln(1 + ε)

))
.

Using our usual techniques from Notes on Convexity Inequalities, one can show that ln(1+x) ≤ x−x2/4
for x ∈ [0, 1]. So this shows that

Pr[Y > α] ≤ exp
(
− d
(
ε+ ε2/2− (ε− ε2/4)

))
≤ exp

(
− (3/4)dε2

)
.
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2 Remarks

It turns out that the Johnson-Lindenstrauss lemma is almost optimal. Alon proved the following lower
bound.

Theorem 6 (Alon) Let y1, . . . , yn+1 ∈ Rd be vectors such that 1 ≤ ‖yi − yj‖ ≤ 1 + ε for all i 6= j.

Then d = Ω( log(n)
ε2 log(1/ε)

).

To understand this theorem, let x1, . . . , xn+1 ∈ Rn be the vertices of a simplex, i.e., ‖xi − xj‖ = 1 for
all i 6= j. Then, if we map the xi’s to points in Rd while preserving distances up to a factor 1 + ε, then
the dimension d must be at least Ω( log(n)

ε2 log(1/ε)
), which is nearly what the Johnson-Lindenstrauss lemma

would give. The only discrepancy is the small factor of log(1/ε).

The Johnson-Lindenstrauss lemma very strongly depends on properties of the Euclidean norm. For
other norms, this remarkable dimensionality reduction is not necessarily possible. For example, for the
L1 norm ‖x‖1 :=

∑
i |xi|, it is known that any map into Rd that preserves pairwise distances between

n points up to a factor c must have d = Ω(n1/c
2
). (See Brinkman-Charikar 2003 and Lee-Naor 2004.)
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