
CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 24

Prof. Nick Harvey University of British Columbia

1 Probabilistic Approximation of Metrics

For many optimization problems, the input data involves some notion of distance, which we formalize as
a metric. But unfortunately many optimization problems can be quite difficult to solve in an arbitrary
metric. In this lecture we present a very approach to dealing with such problems, which is a method to
approximate any metric by much simpler metrics. The simpler metrics we will use are trees, i.e., the
shortest path metric on a graph that is a tree. Many optimization problems are easy to solve on trees,
so in one fell swoop we get algorithms to approximate a huge number of optimization problems.

Roughly speaking, our main result is: any metric on n points can be represented by a distribution on
trees, while preserving distances up to a O(log n) factor. Consequently: for many optimization problems
involving distances in a metric, if you are content with an O(log n)-approximate solution, you can
assume that your metric is a tree.

In order to state our results more formally, we will need to deal with a important issue. To illustrate
the issue, and how to deal with it, we first present an example.

1.1 Example: Approximating a cycle

Let G = (V,E) be a cycle on n nodes. The (spanning) subtrees of G are simply the paths obtained
by deleting a single edge. So let uv be an edge and let T = G \ uv be the corresponding tree. Is the
shortest path metric of T a good approximation of the shortest path of G? The answer is no: the
distance between u and v in G is only 1, whereas the distance between u and v in T is n − 1. So,
no matter which subtree T of G we pick, there will be some pair of nodes whose distance is poorly
approximated.

Is there some way around this problem? Perhaps we don’t need T to be a subtree of G. We could
consider a tree T = (U,F) (possibly with lengths on the edges) where U ⊇ V and F is completely
unrelated to E. Can such a tree do a better job of approximating distances in G? It turns out that the
answer is still no: there will always be a pair of nodes whose distance is only preserved up to a factor
Θ(n).

But here is a small observation: any subtree of T approximately preserves the average distances. One
can easily check that the total distance between all pairs of nodes is Θ(n3), for both G and for any
subtree of G. Thus, subtrees approximate the distances in G “on average”.

So for the n-cycle, a subtree cannot approximate all distances, but it can approximate the average
distance. This motivates us to apply a trick that is both simple and counterintuitive. It turns out that
we can approximate all distances if we allow ourself to pick the subtree randomly. (The trick is Von
Neumann’s minimax theorem, and it implies that approximating the average distance is equivalent to
finding a distribution on trees for which every distance is approximated in expectation.)

To illustrate this, choose any pair of vertices u, v ∈ V . Let d = dG(u, v) be the distance between u and
v in G. Pick a subtree T by deleting an edge e at random and let dT (u, v) be the u-v distance in T .

1

http://en.wikipedia.org/wiki/Minimax
http://en.wikipedia.org/wiki/Minimax

Obviously dT (u, v) ≥ dG(u, v) since we constructed T by removing e from G. We now give an upper
bound on E[dT (u, v)]. If e is on the shortest u-v path then dT (u, v) = n − d; the probability of that
happening is d/n. Otherwise, dT (u, v) = d. Thus,

E[dT (u, v)] = (d/n) · (n− d) + (1− d/n) · d ≤ 2d.

So, every edge of G is approximated to within a factor of 2, in expectation.

1.2 Main Theorem

We now show that, for every metric (X, d) with |X| = n, there is an algorithm that generates a random
tree for which all distances are approximated to within a factor of O(log n), in expectation.

Theorem 1 Let (X, d) be a finite metric with |X| = n. There is a randomized algorithm that generates
a set of vertices Y , a map f : X → Y , a tree T = (Y, F), and weights w : F → R>0 such that

dX(x, y) ≤ dT
(
f(x), f(y)

)
(1)

and
E[dT

(
f(x), f(y)

)
] ≤ O(log n) · dX(x, y) ∀x, y ∈ X. (2)

The main tool in the proof is the random partitioning algorithm that we developed in the last two
lectures. For notational simplicity, let us scale our distances and pick a value m such that such that
1 < d(x, y) ≤ 2m for all distinct x, y ∈ X. Note that m does not appear in the statement of the theorem,
so we do not care how big it is.

The main idea is to generate a 2i-bounded random partition Pi of X for every i = 0, . . . ,m then assemble
those partitions into the desired tree. Assembling them is not too difficult, but there is one annoyance:
the parts of Pi have absolutely no relation to the parts of Pi′ for any i 6= i′. If the parts of Pi were nicely
nested inside the parts of Pi+1 then this would induce a natural hierarchy on the parts, and therefore
give us a nice tree structure.

The solution to this annoyance is to forcibly construct a nice partition Qi, for i = 0, . . . ,m, that is
nested inside all of Pi,Pi+1, . . . ,Pm. In lattice theory terminology, we define the partition

Qi = Pm ∧ · · · ∧ Pi+1 ∧ Pi,

where ∧ is the meet operation in the partition lattice. If you’re not familiar with this notation, don’t
worry; it is easy to explain. Simply define Qm = Pm, then let

Qi = {A ∩B : A ∈ Qi+1, B ∈ Pi }.

Note that Qi is also a partition of X. Furthermore, the parts of Qi are nicely nested inside the parts of
Qi+1, so we have obtained the desired hierarchical structure.

1.3 Example

Consider the following example which shows some possible partitions P0, . . . ,P4 for the points X =
{a, b, c, d, e, f}, and the corresponding partitions Q0, . . . ,Q4.

2

http://en.wikipedia.org/wiki/Lattice_(order)

The tree corresponding to these partitions is as follows.

1.4 Algorithm

More formally, here is our algorithm for generating the random tree.

• For i = 0, . . . ,m, let Pi be a 2i-bounded random partition generated by our algorithm from the
last lecture.

• �: The vertices in Y will be pairs of the form (i, S) where i ∈ {0, . . . ,m} and S ⊆ X. The vertices
and edges of the tree T are generated by the following steps.

• Define Qm = Pm. Add the vertex (m,X) as the root of the tree.

• For i = m− 1 downto 0

3

– Define Qi = {A ∩B : A ∈ Qi+1, B ∈ Pi }.
– For every such set A∩B ∈ Qi, add the vertex (i, A∩B) to T as a child of (i+1, A), connected

by an edge of length 2i+1.

• Since 1 < d(x, y) for all distinct x, y and since P0 is 1-bounded, the partition P0 must partition
X into singletons. Therefore we may define the map f : X → Y by f(x) = (0, {x}).

1.5 Analysis

Claim 2 Fix any distinct points x, y ∈ X. Let ` ∈ {0, . . . ,m−1} be the largest index with P`(x) 6= P`(y).
Then dT

(
f(x), f(y)

)
= 2`+3 − 4.

Proof: The level ` is the highest level of the Pi partitions in which x and y are separated. A simple
inductive argument shows that ` is also the highest level of the Qi partitions in which x and y are
separated. So the least common ancestor in T of f(x) and f(y) is at level ` + 1. Let us call the least
common ancestor v. Then

dT
(
f(x), v

)
= dT

(
f(y), v

)
=
∑̀
i=0

2i+1 = 2`+2 − 2.

Since dT
(
f(x), f(y)

)
= dT

(
f(x), v

)
+ dT

(
v, f(y)

)
, the proof is complete. 2

Claim 3 (1) holds.

Proof: Let i be such that 2i < dX(x, y) ≤ 2i+1. Since Pi is 2i-bounded, x and y must lie in different
parts of Pi, i.e., P(x) 6= P(y). By Claim 2,

dT
(
f(x), f(y)

)
≥ 2i+3 − 4 > 2i+1 ≥ dX(x, y),

as required. 2

Claim 4 (2) holds.

Proof: Fix any x, y ∈ X and let r = dX(x, y). We have

E[dT
(
f(x), f(y)

)
] =

m∑
i=0

Pr[i is the largest index with Pi(x) 6= Pi(y)] · (2i+3 − 4)

<

m∑
i=0

Pr[Pi(x) 6= Pi(y)] · 2i+3

≤
m∑
i=0

Pr[B(x, r) 6⊆ Pi(x)] · 2i+3

≤ O(log n) · r,

where the last inequality, proven in the following claim, applies Theorem 2 of Lecture 22 and peforms
a short calculation. 2

4

Claim 5 For any x ∈ X and r > 1,

m∑
i=0

Pr[B(x, r) 6⊆ Pi(x)] · 2i+3 ≤ O(log n) · r.

Proof: Let k be the integer with 2k < r ≤ 2k+1. Then

m∑
i=0

Pr[B(x, r) 6⊆ Pi(x)] · 2i+3

≤
k+3∑
i=0

2i+3 +

m∑
i=k+4

8r

2i
·H
(
|B(x, 2i−2 − r)|, |B(x, 2i−1 + r)|

)
· 2i+3

≤ 128r + 64r ·
m∑

i=k+4

H
(
|B(x, 2i−3)|, |B(x, 2i)|

)
,

since r ≤ 2i−3 when i ≥ k + 4. The final sum is upper bounded as follows.

m∑
i=k+4

H
(
|B(x, 2i−3)|, |B(x, 2i)|

)
=

m∑
i=k+4

(
H
(
|B(x, 2i−3)|, |B(x, 2i−2)|

)
+ H

(
|B(x, 2i−2)|, |B(x, 2i−1)|

)
+ H

(
|B(x, 2i−1)|, |B(x, 2i)|

))
< 3

m∑
i=k+2

H
(
|B(x, 2i−1)|, |B(x, 2i)|

)
= 3 ·H

(
|B(x, 2k+1)|, |B(x, 2m)|

)
= O(log n).

This proves the claimed inequality. 2

5

	Probabilistic Approximation of Metrics
	Example: Approximating a cycle
	Main Theorem
	Example
	Algorithm
	Analysis

