Lecture 23

University of British Columbia

We continue our theorem from last time on random partitions of metric spaces

1 Review of Previous Lecture

Define the partial Harmonic sum $H(a,b) = \sum_{i=a+1}^{b} 1/i$. Let $B(x,r) = \{ y \in X : d(x,y) \le r \}$ be the ball of radius r around x.

Theorem 1 Let (X, d) be a metric with |X| = n. For every $\Delta > 0$, there is Δ -bounded random partition \mathcal{P} of X with

$$\Pr[B(x,r) \not\subseteq \mathcal{P}(x)] \leq \frac{8r}{\Delta} \cdot H(|B(x,\Delta/4-r)|, |B(x,\Delta/2+r)|) \quad \forall x \in X, \, \forall r > 0.$$
(1)

The algorithm to construct \mathcal{P} is as follows.

- Pick $\alpha \in (1/4, 1/2]$ uniformly at random.
- Pick a bijection (i.e., ordering) $\pi : \{1, \ldots, n\} \to X$ uniformly at random.
- For i = 1, ..., n

- Set
$$P_i = B(\pi(i), \alpha \Delta) \setminus \bigcup_{j=1}^{i-1} P_j$$
.

• Output the random partition $\mathcal{P} = \{P_1, \ldots, P_n\}.$

We have already proven that this outputs a Δ -bounded partition. So it remains to prove (1).

2 The Proof

Fix any point $x \in X$ and radius r > 0. For brevity let B = B(x, r). Let us order all points of X as $\{y_1, \ldots, y_n\}$ where $d(x, y_1) \leq \cdots \leq d(x, y_n)$. The proof involves two important definitions.

- Sees: A point y sees B if $d(x, y) \le \alpha \Delta + r$.
- Cuts: A point y cuts B if $\alpha \Delta r \leq d(x, y) \leq \alpha \Delta + r$.

Obviously "cuts" implies "sees". To help visualize these definitions, the following claim interprets their meaning in Euclidean space. (In a finite metric, the ball B is not a continuous object, so it doesn't really have a "boundary".)

Claim 2 Consider the metric (X, d) where $X = \mathbb{R}^n$ and d is the Euclidean metric. Then

- y sees B if and only if B = B(x, r) intersects $B(y, \alpha \Delta)$.
- y cuts B if and only if B = B(x, r) intersects the boundary of $B(y, \alpha \Delta)$.

The following claim is in the same spirit, but holds for any metric.

Claim 3 Let (X, d) be an arbitrary metric. Then

- If y does not see B then $B \cap B(y, \alpha \Delta) = \emptyset$.
- If y sees B but does not cut B then $B \subseteq B(y, \alpha \Delta)$.

To illustrate the definitions of "sees" and "cuts", consider the following example. The blue ball around x is B. The points y_1 and y_2 both see B; y_3 does not. The point y_2 cuts B; y_1 and y_3 do not. This example illustrates Claim 3: y_1 sees B but does not cut B, and we have $B \subseteq B(y, \alpha \Delta)$.

The most important point for us to consider is the *first* point under the ordering π that sees B. We call this point $y_{\pi(k)}$.

The first k-1 iterations of the algorithm did not assign any point in B to any P_i . To see this, note that $y_{\pi(1)}, \ldots, y_{\pi(k-1)}$ do not see B, by choice of k. So Claim 3 implies that $B \cap B(y_{\pi(i)}, \alpha \Delta) = \emptyset \ \forall i < k$. Consequently

$$B \cap P_i = \emptyset \quad \forall i < k. \tag{2}$$

The point $y_{\pi(k)}$ sees B by definition, but it may or may not cut B. If it does not cut B then Claim 3 shows that $B \subseteq B(y_{\pi(k)}, \alpha \Delta)$. Thus

$$B \cap P_k = \left(\underbrace{B \cap B(y_{\pi(k)}, \alpha \Delta)}_{=B}\right) \setminus \bigcup_{i=1}^{k-1} \underbrace{B \cap P_i}_{=\emptyset} = B,$$

i.e., $B \subseteq P_k$. Since $\mathcal{P}(x) = P_k$, we have shown that

$$y \text{ does not cut } B \implies B \subseteq \mathcal{P}(x).$$

Taking the contrapositive of this statement, we obtain

$$\Pr[B \not\subseteq \mathcal{P}(x)] \leq \Pr[y_{\pi(k)} \text{ cuts } B] = \sum_{i=1}^{n} \Pr[y_{\pi(k)} = y_i \land y_i \text{ cuts } B].$$

Let us now simplify that sum by eliminating terms that are equal to 0.

Claim 4 If $y \notin B(x, \Delta/2 + r)$ then y does not see B.

Claim 5 If $y \in B(x, \Delta/4 - r)$ then y sees B but does not cut B.

So define $a = |B(x, \Delta/4 - r)|$ and $b = |B(x, \Delta/2 + r)|$. Then we have shown that

$$\Pr[B \not\subseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \Pr[y_{\pi(k)} = y_i \land y_i \text{ cuts } B].$$

The remainder of the proof is quite interesting. The main point is that these two events are "nearly independent", since α and π are independent, " y_i cuts B" depends only on α , and " $y_{\pi(k)} = y_i$ " depends primarily on π . Formally, we write

$$\Pr[B \not\subseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \Pr[y_i \text{ cuts } B] \cdot \Pr[y_{\pi(k)} = y_i \mid y_i \text{ cuts } B]$$

and separately upper bound these two probabilities.

The first probability is easy to bound:

$$\Pr[y_i \text{ cuts } B] = \Pr[\alpha \Delta \in [d(x, y) - r, d(x, y) + r]] \leq \frac{2r}{\Delta/4},$$

because 2r is the length of the interval [d(x, y) - r, d(x, y) + r] and $\Delta/4$ is the length of the interval from which $\alpha\Delta$ is randomly chosen.

Next we bound the second probability. Recall that $y_{\pi(k)}$ is defined to be the first element in the ordering π that sees B. Since y_i cuts B, we know that $d(x, y_i) \leq \alpha/2 + r$. Every y_j coming earlier in the ordering has $d(x, y_j) \leq d(x, y_i) \leq \alpha/2 + r$, so y_j also sees B. This shows that there are at least i elements that see B. So the probability that y_i is the *first* element in the random ordering to see B is at most 1/i.

Combining these bounds on the two probabilities we get

$$\Pr[B \not\subseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \frac{8r}{\Delta} \cdot \frac{1}{i} = \frac{8r}{\Delta} \cdot H(a,b),$$

as required.

3 Optimality of these partitions

Theorem 1 from the previous lecture shows that there is a universal constant L = O(1) such that every metric has a $\log(n)/10$ -bounded, L-Lipschitz random partition. We now show that this is optimal.

Theorem 6 There exist graphs G whose shortest path metric (X, d) has the property that any $\log(n)/10$ bounded, L-Lipschitz random partition must have $L = \Omega(1)$.

The graphs we need are expander graphs. In Lecture 20 we defined *bipartite* expanders. Today we need *non-bipartite* expanders. We say that G = (V, E) is a non-bipartite expander if, for some constants c > 0 and $d \ge 3$:

- G is d-regular, and
- $|\delta(S)| \ge c|S|$ for all $|S| \le |V|/2$.

It is known that expanders exist for all n = |V|, d = 3 and $c \ge 1/1000$. (The constant c can of course be improved.)

PROOF: Suppose (X, d) has a $\log(n)/10$ -bounded, L-Lipschitz random partition. Then there exists a particular partition P that is $\log(n)/10$ -bounded and cuts at most an L-fraction of the edges. Every part P_i in the partition has diameter at most $\log(n)/10$. Since the graph is 3-regular, the number of vertices in P_i is at most $3^{\log(n)/10} < n/2$. So every part P_i has size less than n/2. By the expansion condition, the number of edges cut is at least

$$\frac{1}{2}\sum_{i} c \cdot |P_i| = cn/2 = \Omega(|E|).$$

So $L = \Omega(1)$. \Box

4 Appendix: Proofs of Claims

PROOF: (of Claim 3) Suppose y does not see B. Then $d(x, y) > \alpha \Delta + r$. Every point $z \in B$ has $d(x, z) \leq r$, so $d(y, z) \geq d(y, x) - d(x, z) > \alpha \Delta + r - r$, implying that $z \notin B(y, \alpha \Delta)$.

Suppose y sees B but does not cut B. Then $d(x, y) < \alpha \Delta - r$. Every point $z \in B$ has $d(x, z) \leq r$. So $d(y, z) \leq d(y, x) + d(x, z) < \alpha \Delta - r + r$, implying that $z \in B(y, \alpha \Delta)$. \Box

PROOF: (of Claim 4) The hypothesis of the claim is that $d(x, y) > \Delta/2 + r$, which is at least $\alpha \Delta + r$. So $d(x, y) \ge \alpha \Delta + r$, implying that y does not see B. \Box

PROOF: (of Claim 5) The hypothesis of the claim is that $d(x, y) \leq \Delta/4 - r$, which is strictly less than $\alpha \Delta - r$. So $d(x, y) < \alpha \Delta - r$, which implies that y sees B but does not cut B. \Box