CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 23
Prof. Nick Harvey University of British Columbia

We continue our theorem from last time on random partitions of metric spaces

1 Review of Previous Lecture

Define the partial Harmonic sum H(a,b) = Z;’:aﬂ 1/i. Let B(z,r) ={y € X : d(z,y) < r} be the
ball of radius r around z.

Theorem 1 Let (X,d) be a metric with | X| = n. For every A > 0, there is A-bounded random partition
P of X with

Pr[B(z,r) € Plx)] < %T CH(|B@, A — )], |Bx, A2+ 1)) VeeX,Vr>0. (1)

The algorithm to construct P is as follows.

e Pick o € (1/4,1/2] uniformly at random.
e Pick a bijection (i.e., ordering) 7 : {1,...,n} — X uniformly at random.
e Fori=1,...,n

— Set P, = B(w(i),aA) \ U;;llP]

e Output the random partition P = {P,..., P,}.

We have already proven that this outputs a A-bounded partition. So it remains to prove (1).

2 The Proof

Fix any point z € X and radius > 0. For brevity let B = B(z,r). Let us order all points of X as
{y1,...,yn} where d(z,y1) < --- < d(x,yy). The proof involves two important definitions.

e Sees: A point y sees B if d(z,y) < aA + 7.

e Cuts: A point y cuts B if aA —r < d(z,y) < aA + 7.

Obviously “cuts” implies “sees”. To help visualize these definitions, the following claim interprets their
meaning in Euclidean space. (In a finite metric, the ball B is not a continuous object, so it doesn’t
really have a “boundary”.)

Claim 2 Consider the metric (X,d) where X = R"™ and d is the Euclidean metric. Then



e y sees B if and only if B = B(x,r) intersects B(y, aA).

e y cuts B if and only if B = B(x,r) intersects the boundary of B(y, aA).
The following claim is in the same spirit, but holds for any metric.

Claim 3 Let (X,d) be an arbitrary metric. Then

e Ify does not see B then BN B(y,al) = 0.

o Ify sees B but does not cut B then B C B(y,aA).

To illustrate the definitions of “sees” and “cuts”, consider the following example. The blue ball around
x is B. The points y; and y» both see B; y3 does not. The point y» cuts B; y; and y3 do not. This
example illustrates Claim 3: y; sees B but does not cut B, and we have B C B(y, aA).

The most important point for us to consider is the first point under the ordering 7 that sees B. We
call this point Y (x).

The first k£ — 1 iterations of the algorithm did not assign any point in B to any F;. To see this, note that
Yr(1)s - - - » Yn(k—1) 4O not see B, by choice of k. So Claim 3 implies that B N B(yx(;), ®A) = 0 Vi < k.

Consequently
BNP =0 Vi<k (2)

The point y.(x) sees B by definition, but it may or may not cut B. If it does not cut B then Claim 3
shows that B C B(yr), @A). Thus

k—1
BNP, = (BﬁB(yﬂ(k),aA)J) \ UBnp, = B,
B =Ly



i.e., B C Py. Since P(x) = Py, we have shown that
y does not cut B = B C P(x).

Taking the contrapositive of this statement, we obtain

Pr[B € P(x)] < Prlyrm cuts B] = ZPr[y,r(k) =y; A y; cuts B].
i=1

Let us now simplify that sum by eliminating terms that are equal to 0.
Claim 4 Ify & B(z,A/2 4 r) then y does not see B.
Claim 5 Ify € B(x,A/4 —r) then y sees B but does not cut B.

So define a = |B(z,A/4 — )| and b = |B(x,A/2 4+ r)|. Then we have shown that

b

Pr[B € P(x)] < Z Prly-a) =y A yi cuts BJ.
1=a+1

The remainder of the proof is quite interesting. The main point is that these two events are “nearly
independent”, since o and 7 are independent, “y; cuts B” depends only on «, and “yr;) = y;” depends
primarily on 7. Formally, we write

b
Pr[B € P(x)] < Z Prly; cuts B] - Pr[y(x) = vi | yi cuts B]
i=a+1

and separately upper bound these two probabilities.

The first probability is easy to bound:
2
Prly; cuts B] = Pr[aA € [d(z,y) — r,d(x,y) +7r]] < A;él’

because 2r is the length of the interval [d(z,y) — r,d(z,y) + r] and A/4 is the length of the interval
from which aA is randomly chosen.

Next we bound the second probability. Recall that y ) is defined to be the first element in the ordering
m that sees B. Since y; cuts B, we know that d(z,y;) < o/2+7r. Every y; coming earlier in the ordering
has d(z,y;) < d(z,y;) < o/2 + 1, so y; also sees B. This shows that there are at least i elements that
see B. So the probability that y; is the first element in the random ordering to see B is at most 1/i.

Combining these bounds on the two probabilities we get

b
PBEZP@) < 3 %l _ %fl(a,b),

X 1
1=a+1

as required.



3 Optimality of these partitions

Theorem 1 from the previous lecture shows that there is a universal constant L = O(1) such that every
metric has a log(n)/10-bounded, L-Lipschitz random partition. We now show that this is optimal.

Theorem 6 There exist graphs G whose shortest path metric (X, d) has the property that any log(n)/10-
bounded, L-Lipschitz random partition must have L = Q(1).

The graphs we need are expander graphs. In Lecture 20 we defined bipartite expanders. Today we need
non-bipartite expanders. We say that G = (V, E) is a non-bipartite expander if, for some constants
c¢c>0andd > 3:

e (G is d-regular, and

e [0(S)] > c|S| for all |S] < |V]/2.
It is known that expanders exist for all n = |V|, d = 3 and ¢ > 1/1000. (The constant ¢ can of course
be improved.)

PROOF: Suppose (X, d) has a log(n)/10-bounded, L-Lipschitz random partition. Then there exists a
particular partition P that is log(n)/10-bounded and cuts at most an L-fraction of the edges. Every
part P; in the partition has diameter at most log(n)/10. Since the graph is 3-regular, the number of
vertices in P; is at most 318(n)/10 ~ n/2. So every part P; has size less than n/2. By the expansion
condition, the number of edges cut is at least

;chpl] = cn/2 = Q(|E|).

So L =9(1). O

4 Appendix: Proofs of Claims

PROOF:(of Claim 3) Suppose y does not see B. Then d(z,y) > aA + r. Every point z € B has
d(z,z) <r,sod(y,z) >d(y,z) —d(xz,z) > aA +r —r, implying that z ¢ B(y, aA).

Suppose y sees B but does not cut B. Then d(z,y) < aA —r. Every point z € B has d(x,z) < r. So
d(y,z) <d(y,z) +d(z,z) < aA —r+r, implying that z € B(y,aA). O

PROOF:(of Claim 4) The hypothesis of the claim is that d(z,y) > A/2 + r, which is at least aA + r.
So d(z,y) > oA + r, implying that y does not see B. O

PROOF:(of Claim 5) The hypothesis of the claim is that d(z,y) < A/4 — r, which is strictly less than
alA —r. So d(z,y) < aA — r, which implies that y sees B but does not cut B. O
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