We continue our theorem from last time on random partitions of metric spaces

1 Review of Previous Lecture

Define the partial Harmonic sum $H(a, b)=\sum_{i=a+1}^{b} 1 / i$. Let $B(x, r)=\{y \in X: d(x, y) \leq r\}$ be the ball of radius r around x.

Theorem 1 Let (X, d) be a metric with $|X|=n$. For every $\Delta>0$, there is Δ-bounded random partition \mathcal{P} of X with

$$
\begin{equation*}
\operatorname{Pr}[B(x, r) \nsubseteq \mathcal{P}(x)] \leq \frac{8 r}{\Delta} \cdot H(|B(x, \Delta / 4-r)|,|B(x, \Delta / 2+r)|) \quad \forall x \in X, \forall r>0 \tag{1}
\end{equation*}
$$

The algorithm to construct \mathcal{P} is as follows.

- Pick $\alpha \in(1 / 4,1 / 2]$ uniformly at random.
- Pick a bijection (i.e., ordering) $\pi:\{1, \ldots, n\} \rightarrow X$ uniformly at random.
- For $i=1, \ldots, n$
- Set $P_{i}=B(\pi(i), \alpha \Delta) \backslash \cup_{j=1}^{i-1} P_{j}$.
- Output the random partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.

We have already proven that this outputs a Δ-bounded partition. So it remains to prove (1).

2 The Proof

Fix any point $x \in X$ and radius $r>0$. For brevity let $B=B(x, r)$. Let us order all points of X as $\left\{y_{1}, \ldots, y_{n}\right\}$ where $d\left(x, y_{1}\right) \leq \cdots \leq d\left(x, y_{n}\right)$. The proof involves two important definitions.

- Sees: A point y sees B if $d(x, y) \leq \alpha \Delta+r$.
- Cuts: A point y cuts B if $\alpha \Delta-r \leq d(x, y) \leq \alpha \Delta+r$.

Obviously "cuts" implies "sees". To help visualize these definitions, the following claim interprets their meaning in Euclidean space. (In a finite metric, the ball B is not a continuous object, so it doesn't really have a "boundary".)

Claim 2 Consider the metric (X, d) where $X=\mathbb{R}^{n}$ and d is the Euclidean metric. Then

- y sees B if and only if $B=B(x, r)$ intersects $B(y, \alpha \Delta)$.
- y cuts B if and only if $B=B(x, r)$ intersects the boundary of $B(y, \alpha \Delta)$.

The following claim is in the same spirit, but holds for any metric.

Claim 3 Let (X, d) be an arbitrary metric. Then

- If y does not see B then $B \cap B(y, \alpha \Delta)=\emptyset$.
- If y sees B but does not cut B then $B \subseteq B(y, \alpha \Delta)$.

To illustrate the definitions of "sees" and "cuts", consider the following example. The blue ball around x is B. The points y_{1} and y_{2} both see $B ; y_{3}$ does not. The point y_{2} cuts $B ; y_{1}$ and y_{3} do not. This example illustrates Claim 3: y_{1} sees B but does not cut B, and we have $B \subseteq B(y, \alpha \Delta)$.

The most important point for us to consider is the first point under the ordering π that sees B. We call this point $y_{\pi(k)}$.

The first $k-1$ iterations of the algorithm did not assign any point in B to any P_{i}. To see this, note that $y_{\pi(1)}, \ldots, y_{\pi(k-1)}$ do not see B, by choice of k. So Claim 3 implies that $B \cap B\left(y_{\pi(i)}, \alpha \Delta\right)=\emptyset \forall i<k$. Consequently

$$
\begin{equation*}
B \cap P_{i}=\emptyset \quad \forall i<k . \tag{2}
\end{equation*}
$$

The point $y_{\pi(k)}$ sees B by definition, but it may or may not cut B. If it does not cut B then Claim 3 shows that $B \subseteq B\left(y_{\pi(k)}, \alpha \Delta\right)$. Thus

$$
B \cap P_{k}=(\underbrace{B \cap B\left(y_{\pi(k)}, \alpha \Delta\right)}_{=B}) \backslash \bigcup_{i=1}^{k-1} \underbrace{B \cap P_{i}}_{=\emptyset}=B
$$

i.e., $B \subseteq P_{k}$. Since $\mathcal{P}(x)=P_{k}$, we have shown that

$$
y \text { does not cut } B \quad \Longrightarrow \quad B \subseteq \mathcal{P}(x)
$$

Taking the contrapositive of this statement, we obtain

$$
\operatorname{Pr}[B \nsubseteq \mathcal{P}(x)] \leq \operatorname{Pr}\left[y_{\pi(k)} \text { cuts } B\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[y_{\pi(k)}=y_{i} \wedge y_{i} \text { cuts } B\right]
$$

Let us now simplify that sum by eliminating terms that are equal to 0 .

Claim 4 If $y \notin B(x, \Delta / 2+r)$ then y does not see B.

Claim 5 If $y \in B(x, \Delta / 4-r)$ then y sees B but does not cut B.

So define $a=|B(x, \Delta / 4-r)|$ and $b=|B(x, \Delta / 2+r)|$. Then we have shown that

$$
\operatorname{Pr}[B \nsubseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \operatorname{Pr}\left[y_{\pi(k)}=y_{i} \wedge y_{i} \text { cuts } B\right]
$$

The remainder of the proof is quite interesting. The main point is that these two events are "nearly independent", since α and π are independent, " y_{i} cuts B " depends only on α, and " $y_{\pi(k)}=y_{i}$ " depends primarily on π. Formally, we write

$$
\operatorname{Pr}[B \nsubseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \operatorname{Pr}\left[y_{i} \text { cuts } B\right] \cdot \operatorname{Pr}\left[y_{\pi(k)}=y_{i} \mid y_{i} \text { cuts } B\right]
$$

and separately upper bound these two probabilities.
The first probability is easy to bound:

$$
\operatorname{Pr}\left[y_{i} \text { cuts } B\right]=\operatorname{Pr}[\alpha \Delta \in[d(x, y)-r, d(x, y)+r]] \leq \frac{2 r}{\Delta / 4}
$$

because $2 r$ is the length of the interval $[d(x, y)-r, d(x, y)+r]$ and $\Delta / 4$ is the length of the interval from which $\alpha \Delta$ is randomly chosen.

Next we bound the second probability. Recall that $y_{\pi(k)}$ is defined to be the first element in the ordering π that sees B. Since y_{i} cuts B, we know that $d\left(x, y_{i}\right) \leq \alpha / 2+r$. Every y_{j} coming earlier in the ordering has $d\left(x, y_{j}\right) \leq d\left(x, y_{i}\right) \leq \alpha / 2+r$, so y_{j} also sees B. This shows that there are at least i elements that see B. So the probability that y_{i} is the first element in the random ordering to see B is at most $1 / i$.

Combining these bounds on the two probabilities we get

$$
\operatorname{Pr}[B \nsubseteq \mathcal{P}(x)] \leq \sum_{i=a+1}^{b} \frac{8 r}{\Delta} \cdot \frac{1}{i}=\frac{8 r}{\Delta} \cdot H(a, b)
$$

as required.

3 Optimality of these partitions

Theorem 1 from the previous lecture shows that there is a universal constant $L=O(1)$ such that every metric has a $\log (n) / 10$-bounded, L-Lipschitz random partition. We now show that this is optimal.

Theorem 6 There exist graphs G whose shortest path metric (X, d) has the property that any $\log (n) / 10-$ bounded, L-Lipschitz random partition must have $L=\Omega(1)$.

The graphs we need are expander graphs. In Lecture 20 we defined bipartite expanders. Today we need non-bipartite expanders. We say that $G=(V, E)$ is a non-bipartite expander if, for some constants $c>0$ and $d \geq 3$:

- G is d-regular, and
- $|\delta(S)| \geq c|S|$ for all $|S| \leq|V| / 2$.

It is known that expanders exist for all $n=|V|, d=3$ and $c \geq 1 / 1000$. (The constant c can of course be improved.)

Proof: Suppose (X, d) has a $\log (n) / 10$-bounded, L-Lipschitz random partition. Then there exists a particular partition P that is $\log (n) / 10$-bounded and cuts at most an L-fraction of the edges. Every part P_{i} in the partition has diameter at $\operatorname{most} \log (n) / 10$. Since the graph is 3 -regular, the number of vertices in P_{i} is at most $3^{\log (n) / 10}<n / 2$. So every part P_{i} has size less than $n / 2$. By the expansion condition, the number of edges cut is at least

$$
\frac{1}{2} \sum_{i} c \cdot\left|P_{i}\right|=c n / 2=\Omega(|E|) .
$$

So $L=\Omega(1)$.

4 Appendix: Proofs of Claims

Proof:(of Claim 3) Suppose y does not see B. Then $d(x, y)>\alpha \Delta+r$. Every point $z \in B$ has $d(x, z) \leq r$, so $d(y, z) \geq d(y, x)-d(x, z)>\alpha \Delta+r-r$, implying that $z \notin B(y, \alpha \Delta)$.

Suppose y sees B but does not cut B. Then $d(x, y)<\alpha \Delta-r$. Every point $z \in B$ has $d(x, z) \leq r$. So $d(y, z) \leq d(y, x)+d(x, z)<\alpha \Delta-r+r$, implying that $z \in B(y, \alpha \Delta)$.

Proof:(of Claim 4) The hypothesis of the claim is that $d(x, y)>\Delta / 2+r$, which is at least $\alpha \Delta+r$. So $d(x, y) \geq \alpha \Delta+r$, implying that y does not see B.

Proof:(of Claim 5) The hypothesis of the claim is that $d(x, y) \leq \Delta / 4-r$, which is strictly less than $\alpha \Delta-r$. So $d(x, y)<\alpha \Delta-r$, which implies that y sees B but does not cut B.

