
CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 23

Prof. Nick Harvey University of British Columbia

We continue our theorem from last time on random partitions of metric spaces

1 Review of Previous Lecture

Define the partial Harmonic sum H(a, b) =
∑b

i=a+1 1/i. Let B(x, r) = { y ∈ X : d(x, y) ≤ r} be the
ball of radius r around x.

Theorem 1 Let (X, d) be a metric with |X| = n. For every ∆ > 0, there is ∆-bounded random partition
P of X with

Pr[B(x, r) 6⊆ P(x)] ≤ 8r

∆
· H

(
|B(x,∆/4− r)|, |B(x,∆/2 + r)|

)
∀x ∈ X, ∀r > 0. (1)

The algorithm to construct P is as follows.

• Pick α ∈ (1/4, 1/2] uniformly at random.

• Pick a bijection (i.e., ordering) π : {1, . . . , n} → X uniformly at random.

• For i = 1, . . . , n

– Set Pi = B(π(i), α∆) \ ∪i−1j=1 Pj .

• Output the random partition P = {P1, . . . , Pn}.

We have already proven that this outputs a ∆-bounded partition. So it remains to prove (1).

2 The Proof

Fix any point x ∈ X and radius r > 0. For brevity let B = B(x, r). Let us order all points of X as
{y1, . . . , yn} where d(x, y1) ≤ · · · ≤ d(x, yn). The proof involves two important definitions.

• Sees: A point y sees B if d(x, y) ≤ α∆ + r.

• Cuts: A point y cuts B if α∆− r ≤ d(x, y) ≤ α∆ + r.

Obviously “cuts” implies “sees”. To help visualize these definitions, the following claim interprets their
meaning in Euclidean space. (In a finite metric, the ball B is not a continuous object, so it doesn’t
really have a “boundary”.)

Claim 2 Consider the metric (X, d) where X = Rn and d is the Euclidean metric. Then
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• y sees B if and only if B = B(x, r) intersects B(y, α∆).

• y cuts B if and only if B = B(x, r) intersects the boundary of B(y, α∆).

The following claim is in the same spirit, but holds for any metric.

Claim 3 Let (X, d) be an arbitrary metric. Then

• If y does not see B then B ∩B(y, α∆) = ∅.

• If y sees B but does not cut B then B ⊆ B(y, α∆).

To illustrate the definitions of “sees” and “cuts”, consider the following example. The blue ball around
x is B. The points y1 and y2 both see B; y3 does not. The point y2 cuts B; y1 and y3 do not. This
example illustrates Claim 3: y1 sees B but does not cut B, and we have B ⊆ B(y, α∆).

The most important point for us to consider is the first point under the ordering π that sees B. We
call this point yπ(k).

The first k−1 iterations of the algorithm did not assign any point in B to any Pi. To see this, note that
yπ(1), . . . , yπ(k−1) do not see B, by choice of k. So Claim 3 implies that B ∩ B(yπ(i), α∆) = ∅ ∀i < k.
Consequently

B ∩ Pi = ∅ ∀i < k. (2)

The point yπ(k) sees B by definition, but it may or may not cut B. If it does not cut B then Claim 3
shows that B ⊆ B(yπ(k), α∆). Thus

B ∩ Pk =
(
B ∩B(yπ(k), α∆)︸ ︷︷ ︸

=B

)
\

k−1⋃
i=1

B∩Pi︸ ︷︷ ︸
= ∅

= B,
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i.e., B ⊆ Pk. Since P(x) = Pk, we have shown that

y does not cut B =⇒ B ⊆ P(x).

Taking the contrapositive of this statement, we obtain

Pr[B 6⊆ P(x)] ≤ Pr[yπ(k) cuts B] =

n∑
i=1

Pr[yπ(k) = yi ∧ yi cuts B].

Let us now simplify that sum by eliminating terms that are equal to 0.

Claim 4 If y 6∈ B(x,∆/2 + r) then y does not see B.

Claim 5 If y ∈ B(x,∆/4− r) then y sees B but does not cut B.

So define a = |B(x,∆/4− r)| and b = |B(x,∆/2 + r)|. Then we have shown that

Pr[B 6⊆ P(x)] ≤
b∑

i=a+1

Pr[yπ(k) = yi ∧ yi cuts B].

The remainder of the proof is quite interesting. The main point is that these two events are “nearly
independent”, since α and π are independent, “yi cuts B” depends only on α, and “yπ(k) = yi” depends
primarily on π. Formally, we write

Pr[B 6⊆ P(x)] ≤
b∑

i=a+1

Pr[yi cuts B] · Pr[ yπ(k) = yi | yi cuts B]

and separately upper bound these two probabilities.

The first probability is easy to bound:

Pr[yi cuts B] = Pr[ α∆ ∈ [d(x, y)− r, d(x, y) + r] ] ≤ 2r

∆/4
,

because 2r is the length of the interval [d(x, y) − r, d(x, y) + r] and ∆/4 is the length of the interval
from which α∆ is randomly chosen.

Next we bound the second probability. Recall that yπ(k) is defined to be the first element in the ordering
π that sees B. Since yi cuts B, we know that d(x, yi) ≤ α/2+r. Every yj coming earlier in the ordering
has d(x, yj) ≤ d(x, yi) ≤ α/2 + r, so yj also sees B. This shows that there are at least i elements that
see B. So the probability that yi is the first element in the random ordering to see B is at most 1/i.

Combining these bounds on the two probabilities we get

Pr[B 6⊆ P(x)] ≤
b∑

i=a+1

8r

∆
· 1

i
=

8r

∆
·H(a, b),

as required.
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3 Optimality of these partitions

Theorem 1 from the previous lecture shows that there is a universal constant L = O(1) such that every
metric has a log(n)/10-bounded, L-Lipschitz random partition. We now show that this is optimal.

Theorem 6 There exist graphs G whose shortest path metric (X, d) has the property that any log(n)/10-
bounded, L-Lipschitz random partition must have L = Ω(1).

The graphs we need are expander graphs. In Lecture 20 we defined bipartite expanders. Today we need
non-bipartite expanders. We say that G = (V,E) is a non-bipartite expander if, for some constants
c > 0 and d ≥ 3:

• G is d-regular, and

• |δ(S)| ≥ c|S| for all |S| ≤ |V |/2.

It is known that expanders exist for all n = |V |, d = 3 and c ≥ 1/1000. (The constant c can of course
be improved.)

Proof: Suppose (X, d) has a log(n)/10-bounded, L-Lipschitz random partition. Then there exists a
particular partition P that is log(n)/10-bounded and cuts at most an L-fraction of the edges. Every
part Pi in the partition has diameter at most log(n)/10. Since the graph is 3-regular, the number of
vertices in Pi is at most 3log(n)/10 < n/2. So every part Pi has size less than n/2. By the expansion
condition, the number of edges cut is at least

1

2

∑
i

c · |Pi| = cn/2 = Ω(|E|).

So L = Ω(1). 2

4 Appendix: Proofs of Claims

Proof:(of Claim 3) Suppose y does not see B. Then d(x, y) > α∆ + r. Every point z ∈ B has
d(x, z) ≤ r, so d(y, z) ≥ d(y, x)− d(x, z) > α∆ + r − r, implying that z 6∈ B(y, α∆).

Suppose y sees B but does not cut B. Then d(x, y) < α∆ − r. Every point z ∈ B has d(x, z) ≤ r. So
d(y, z) ≤ d(y, x) + d(x, z) < α∆− r + r, implying that z ∈ B(y, α∆). 2

Proof:(of Claim 4) The hypothesis of the claim is that d(x, y) > ∆/2 + r, which is at least α∆ + r.
So d(x, y) ≥ α∆ + r, implying that y does not see B. 2

Proof:(of Claim 5) The hypothesis of the claim is that d(x, y) ≤ ∆/4 − r, which is strictly less than
α∆− r. So d(x, y) < α∆− r, which implies that y sees B but does not cut B. 2
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