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So far we have seen two concentration bounds for scalar random variables: Markov and Chernoff. For
our sort of applications, these are by far the most useful. In most introductory probability courses, you
are likely to see another inequality, which is Chebyshev’s inequality. Its strength lies between the
Markov and Chernoff inequalities: the concentration bounds we get from Chebyshev is usually better
than Markov but worse than Chernoff. On the other hand, Chebyshev requires stronger hypotheses
than Markov but weaker hypotheses than Chernoff.

1 Variance

We begin by reviewing variance, and other related notions, which should be familiar from an intro-
ductory probability course. The variance of a random variable X is

Var[X] = E
[(
X − E[X]

)2]
= E[X2]− E[X]2.

The covariance between two random variables X and Y is

Cov[X,Y ] = E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E[XY ]− E[X]E[Y ].

This gives some measure of the correlation between X and Y .

Here are some properties of variance and covariance that follow from the definitions by simple calcula-
tions.

Claim 1 If X and Y are independent then Cov[X,Y ] = 0.

Claim 2 Cov[X + Y,Z] = Cov[X,Z] + Cov[Y, Z].

More generally, induction shows

Claim 3 Cov[
∑

iXi, Z] =
∑

i Cov[Xi, Z].

Claim 4 Var[X + Y ] = Var[X] + Var[Y ] + 2 · Cov[X,Y ].

More generally, induction shows

Claim 5 Let X1, . . . , Xn be arbitrary random variables. Then

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2

n∑
i=1

∑
j>i

Cov[Xi, Xj ].

In particular,

Claim 6 Let X1, . . . , Xn be mutually independent random variables. Then Var[
∑n

i=1Xi] =
∑n

i=1 Var[Xi].
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2 Chebyshev’s Inequality

Chebyshev’s inequality you’ve also presumably seen before. It is a 1-line consequence of Markov’s
inequality.

Theorem 7 For any t > 0,

Pr
[∣∣X − E[X]

∣∣ ≥ t] ≤ Var[X]

t2
.

Proof:

Pr
[∣∣X − E[X]

∣∣ ≥ t] = Pr
[(
X − E[X]

)2 ≥ t2] ≤ E[
(
X − E[X]

)2
]

t2
=

Var[X]

t2
,

where the inequality is by Markov’s inequality. 2

As a quick example, suppose we independently flip n fair coins. What’s the probability that we see
at least 3n/4 heads? Let Xi be the indictator random variable of the event “ith toss is heads”. Let
µ = E[

∑
iXi] = n/2. So we want to analyze Pr[

∑
iXi − µ ≥ n/4].

Bound from Chebyshev: Note that

Var[Xi] = E[X2
i ]− E[Xi]

2 = 1/2− 1/4 = 1/4.

By independence,

Var[
∑

iXi] =
∑
i

Var[Xi] = n/4.

By Chebyshev’s inequality

Pr[
∑

iXi − µ ≥ n/4] ≤ Pr
[∣∣∑

iXi − E[
∑

iXi]
∣∣ ≥ n/4] ≤ Var[

∑
iXi]

(n/4)2
=

n/4

(n/4)2
=

4

n
.

Bound from Chernoff: Chernoff’s inequality gives

Pr[
∑

iXi − µ ≥ n/4] = Pr[
∑

iXi − µ ≥ µ/2] ≤ exp(−(1/2)2µ/3) < 0.96n.

This is better than the bound from Chebyshev for n ≥ 71.

So Chebyshev is weaker than Chernoff, at least for analyzing sums of independent Bernoulli trials. So
why do we bother studying Chebyshev? One reason is that Chernoff is designed for analyzing sums
of mutually independent random variables. That is quite a strong assumption. In some scenarios,
our random variables are not mutually independent, or perhaps we deliberately choose them not to be
mutually independent.

• For example, generating mutually independent random variables requires a lot of random bits
and, as discussed last time, randomness is a “precious resource”. We will see that decreasing the
number of random bits give another method to derandomize algorithms.

• Another important example is in constructing hash functions, which are random-like functions.
Generating a completely random function takes a huge number of random bits. So instead we
often try to use hash functions involving less randomness.
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3 k-wise independence

A set of events E1, . . . , En are called k-wise independent if for any set I ⊆ {1, . . . , n} with |I| ≤ k we
have

Pr[∧i∈IEi] =
∏
i∈I

Pr[Ei].

The term pairwise independence is a synonym for 2-wise independence.

Similarly, a set of discrete random variables X1, . . . , Xn are called k-wise independent if for any set
I ⊆ {1, . . . , n} with |I| ≤ k and any values xi we have

Pr[ ∧i∈I Xi=xi ] =
∏
i∈I

Pr[Xi = xi].

Claim 8 Suppose X1, . . . , Xn are k-wise independent. Then

E[
∏

i∈I Xi ] =
∏
i∈I

E[Xi] ∀I with |I| ≤ k.

Proof: For notational simplicity, consider the case I = {1, . . . , k}. Then

E[
∏k

i=1Xi ] =
∑
x1

∑
x2

· · ·
∑
xk

Pr[ ∧ki=1 Xi=xi ] ·
k∏

i=1

xi

=
∑
x1

∑
x2

· · ·
∑
xk

k∏
i=1

Pr[Xi=xi] · xi (k−wise independence)

=
(∑

x1

Pr[X1=x1] · x1
)
· · ·
(∑

xk

Pr[Xk =xk] · xk
)

=
k∏

i=1

E[Xi].

2

Example: To get a feel for pairwise independence, consider the following three Bernoulli random
variables that are pairwise independent but not mutually independent. There are 4 possible outcomes
of these three random variables. Each of these outcomes has probability 1/4.

X1 X2 X3

0 0 0
0 1 1
1 0 1
1 1 0

They are certainly not mutually independent because the event X1 = X2 = X3 = 1 has probability 0,
whereas

∏3
i=1 Pr[Xi = 1] = (1/2)3. But, by checking all cases, one can verify that they are pairwise

independent.

3.1 Constructing Pairwise Independent RVs

Let F be a finite field and q = |F|. We will construct RVs Y1, · · · , Yq such that each Yi is uniform over
F and the Yi’s are pairwise independent. To do so, we need to generate only two independent RVs X1

and X2 that are uniformly distributed over F. We then define

Yi = X1 + i ·X2. (1)
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Claim 9 Each Yi is uniformly distributed on F.

Proof: For i = 0 we have Yi = X1, which is uniform. For i 6= 0 and any j ∈ F we have

Pr[Yi = j] = Pr[X1 + i ·X2 = j]

= Pr[X2 = (j −X1)/i]

=
∑
x∈F

Pr[ X2 = (j − x)/i ∧ X1 = x ] (total probability law)

=
∑
x∈F

Pr[X2 = (j − x)/i] · Pr[X1 = x] (pairwise independence)

= (1/q) ·
∑
x∈F

Pr[X2 = (j − x)/i]

= (1/q),

since as x ranges through F, (j−x)/i also ranges through all of F. (In other words, the map x 7→ (j−x)/i
is a bijection of F to itself.) So Yi is uniform. 2

Claim 10 The Yi’s are pairwise independent.

Proof: We wish to show that, for any distinct RVs Yi and Yj and any values a, b ∈ F, we have

Pr[ Yi = a ∧ Yj = b ] = Pr[Yi = a] · Pr[Yj = b] = 1/q2.

This event is equivalent to X1 + i ·X2 = a and X1 + j ·X2 = b. We can also rewrite that as:(
1 i
1 j

)
·
(
X1

X2

)
=

(
a
b

)
.

This holds precisely when(
X1

X2

)
=

(
1 i
1 j

)−1
·
(
a
b

)
=

(
ja− ib
b− a

)
/(j − i).

Since X1 and X2 are independent and uniform over F, this event holds with probability 1/q2. 2

Corollary 11 Given 2n mutually independent, uniformly random bits, we can construct 2n pairwise
independent, uniformly random strings in {0, 1}n.

Proof: Apply the previous construction to the finite field F2n . The 2n mutually independent random
bits are used to construct X1 and X2. The random strings Y1, . . . , Y2n are constructed as in (1). 2

3.2 Example: Max Cut with pairwise independent RVs

Once again let’s consider the Max Cut problem. We are given a graph G = (V,E) where V = {1, . . . , n}.
We will choose {0, 1}-valued random variables Y1, . . . , Yn. If Yi = 1 then we add vertex i to U .
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Our original algorithm chose Y1, . . . , Yn to be mutually independent and uniform. Instead we will pick
Y1, . . . , Yn to be pairwise independent and uniform. Then

E[|δ(U)|] =
∑
ij∈E

Pr[ (i∈U ∧ j 6∈U) ∨ (i 6∈U ∧ j∈U) ]

=
∑
ij∈E

Pr[ i∈U ∧ j 6∈U ] + Pr[ i 6∈U ∧ j∈U ]

=
∑
ij∈E

Pr[Yi]Pr[Yj ] + Pr[Yi]Pr[Yj ] (pairwise independence)

=
∑
ij∈E

(
(1/2)2 + (1/2)2

)
= |E|/2

So the original algorithm works just as well if we make pairwise independent decisions instead of mutually
independent decisions for placing vertices in U . The following theorem shows the advantage of making
pairwise independent decisions.

Theorem 12 There is a deterministic, polynomial time algorithm to find a cut δ(U) with |δ(U)| ≥
|E|/2.

Proof: By Corollary 11, we only need b = O(log n) mutually independent, uniform random bits
X1, . . . , Xb in order to generate our pairwise independent, uniform random bits Y1, . . . , Yn. We have
just argued that these pairwise independent Yi’s will give us

EX1,...,Xb
[|δ(U)|] = |E|/2.

So there must exist some particular bits (x1, . . . , xb) such that fixing Xi = xi for all i, we get |δ(U)| ≥
|E|/2. We can deterministically find such bits (x1, . . . , xb) by exhaustive search in 2b = 2O(logn) =
poly(n) trials. This gives a deterministic, polynomial time algorithm. 2

4 Chebyshev with pairwise independent RVs

One of the main benefits of pairwise independent RVs is that Chebyshev’s inequality still works beau-
tifully. Suppose that X1, . . . , Xn are pairwise independent. For any i 6= j,

Cov[Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ] = 0,

by Claim 8. So

Var[
∑n

i=1Xi] =
n∑

i=1

Var[Xi],

by Claim 5. So

Pr[|
∑

iXi − E[
∑

iXi]| > t] ≤
Var[

∑
iXi]

t2
.

This is exactly the same bound that we would get if the Xi’s were mutually independent.

5


	Variance
	Chebyshev's Inequality
	k-wise independence
	Constructing Pairwise Independent RVs
	Example: Max Cut with pairwise independent RVs

	Chebyshev with pairwise independent RVs

