CPSC 536N: Randomized Algorithms 2011-12 Term 2

Lecture 14
Prof. Nick Harvey University of British Columbia

1 Spectral Sparsifiers

1.1 Graph Laplacians

Let G = (V, E) be an unweighted graph. For notational simplicity, we will think of the vertex set as
V ={1,...,n}. Let ¢; € R™ be the ith standard basis vector, meaning that e¢; has a 1 in the ith
coordinate and Os in all other coordinates. For an edge uv € E, define the vector x,, and the matrix
Xuv as follows:

Ty = €y — Uy

Xuw = mwx;rw

In the definition of x,, it does not matter which vertex gets the +1 and which gets the —1 because the
matrix X, is the same either way.

Definition 1 The Laplacian matrixz of G is the matrizc

Lo = Z Xuw

wek

Let us consider an example.
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Note that each matrix X, has only four non-zero entries: we have X, = X, = 1 and X, = X,, = —1.
Consequently, the uth diagonal entry of Lg is simply the degree of vertex u. Moreover, we have the
following fact.

Fact 2 Let D be the diagonal matriz with D, ,, equal to the degree of vertex w. Let A be the adjacency
matriz of G. Then Lg =D — A.

If G had weights w : E — R on the edges we could define the weighted Laplacian as follows:

Z Wy - Xuv-

wekE

Claim 3 Let G = (V, E) be a graph with non-negative weights w : E — R. Then the weighted Laplacian
L is positive semi-definite.

PROOF: Since X,, = xwwuv, it is positive semi-definite. So Lg is a weighted sum of positive semi-
definite matrices with non-negative coefficients. Fact 5 in the Notes on Symmetric Matrices implies Lg
is positive semi-definite. O

The Laplacian can tell us many interesting things about the graph. For example:

Claim 4 Let G = (V,E) be a graph with Laplacian Lg. For any U C V, let x(U) € R™ be the
characteristic vector of U, i.e., the vector with x(U), equal to 1 if v € U and equal to 0 otherwise. Then
X(U)T Lg x(U) = [6(U))].

ut [ x(U)7 24| is 1 if exactly one
v € §(U), and otherwise it is 0.

)T

PROOF: For any edge uv we have x(U)T Xy, x(U ) (U
wx(U) =

of w or v is in U, and otherwise it is 0. So x(U)T X,
Summing over all edges proves the claim. O
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Similarly, if G = (V, E) is a graph with edge weights w : E — R and L is the weighted Laplacian, then
then x(U)" La x(U) = w(8(U)).

Fact 5 If G is connected then image(Lg) = {x : > ,x; = 0}, which is an (n — 1)-dimensional
subspace.

1.2 Main Theorem

Theorem 6 Let G = (V,E) be a graph with n = |V|. There is a randomized algorithm to compute
weights w : E — R such that:

e only O(nlogn/e®) of the weights are non-zero, and
e with probability at least 1 —2/n,
(1—€)-Lg =X Ly 2 (14¢€) - Lg,

where L,, denotes the weighted Laplacian of G with weights w. By Fact 4 in Notes on Symmetric
Matrices, this is equivalent to

(1—ea"Lex < "Lyz < (1+€)a' Loz Vo € R™. (1)
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By (1) and Claim 4, the resulting weights are a graph sparsifier of G:

(I—¢)-16(U)] < w(d(U)) < (1+¢€)-]6(U)] YU C V.
The algorithm that proves Theorem 6 is as follows.

e Initially w = 0.
e Set k = 8nlog(n)/e

e For every edge e € E compute 7, = tr(XeLzS).

Fori=1,...,k

e Let e be a random edge chosen with probability r./(n — 1).

n—1
re k

° Increase we by
Claim 7 The values {r./(n —1) : e € E} indeed form a probability distribution.

PROOF:(of Theorem 6). How does the matrix L, change during the ith iteration? The edge e is chosen
with probability -¢; and then L, increases by X Let Z; be this random change in L,, during the

ith iteration. So Z equals —X with probablhty . The random matrices Z1, ..., Z) are mutually
independent and they all have this same dlstrlbutlon Note that

N @
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The final matrix L,, is simply 2?21 Z;. To analyze this final matrix, we will use the Ahlswede-Winter
inequality. All that we require is the following claim, which we prove later.

Claim 8 Z; < (n—1)-E[Z}].

We apply Corollary 2 from the previous lecture with R = n — 1, obtaining
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Pr[(l—e)LG =< L, =X (l—i-E)LG]

IAIN

2 Appendix: Additional Proofs

PROOF:(of Claim 7) First we check that the r. values are non-negative. By the cyclic property of trace
tr(Xc L) = tr(z] Lize) = ol Lixe,
This is non-negative since LE > 0 because Lg = 0. Thus r., > 0.
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Next, note that
S (X L) = ()X LE) = tr(Leld) = (T Lo),
e e

where iy 1, is the orthogonal projection onto the image of Lg. The image has dimension n — 1 by
Fact 5, and so

1 1
S = £y = - =
e = gy 2 tXeld) = Sy ulline) = 1

a

PROOF:(of Claim 8). The maximum eigenvalue of a positive semi-definite matrix never exceeds its trace,
S0
Amax( L ? Xe - L) < (@ Xe L% = e

By Fact 8 in the Notes on Symmetric Matrices,
L? X LG < v L
So, by Fact 4 in the Notes on Symmetric Matrices, for every vector v,

L+/2 X L+/2
vl =€ €76y < vl (3)
Te

Now let us write v = vy +v2 where v1 = Ijy, 1, v is the projection onto the image of Lg and v = Iyer 1, v

is the projection onto the kernel of Lg. Then Lgﬂ vy = 0. So

+/2 +/2 +/2 +/2
TLG/ 'Xe'LG/ TLG’/ 'Xe'LG/

v v = (v +vg) (v1 + v2)
Te Te
2 x. L 2 2 x. . 2 12 x. . 2
= o =€ £ G g+ 20] =€ A R TA L A
Te Te Te
=0
+/2 +/2
— TLG/ ‘Xe'LG/
= U V1
Te
< vlTvl = vTIim La -

Here, the second equality is by the distributive law and the inequality is by (3). Since this holds for
every vector v, Fact 4 in the Notes on Symmetric Matrices again implies

+/2 +/2
LG N X(i N LG

Te

= Iim Lo

Since im X, C im Lg, Claim 16 in the Notes on Symmetric Matrices shows this is equivalent to

n—1 n—1
X, <
re -k ¢ k

Lg.

Since (2) shows that E[Z;] = Lg/k, this completes the proof of the claim. O
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