Lecture 14

Prof. Nick Harvey

University of British Columbia

1 Spectral Sparsifiers

1.1 Graph Laplacians

Let G = (V, E) be an unweighted graph. For notational simplicity, we will think of the vertex set as $V = \{1, \ldots, n\}$. Let $e_i \in \mathbb{R}^n$ be the *i*th standard basis vector, meaning that e_i has a 1 in the *i*th coordinate and 0s in all other coordinates. For an edge $uv \in E$, define the vector x_{uv} and the matrix X_{uv} as follows:

$$\begin{array}{rccc} x_{uv} & := & e_u - u_v \\ X_{uv} & := & x_{uv} x_{uv}^\mathsf{T} \end{array}$$

In the definition of x_{uv} it does not matter which vertex gets the +1 and which gets the -1 because the matrix X_{uv} is the same either way.

Definition 1 The Laplacian matrix of G is the matrix

$$L_G := \sum_{uv \in E} X_{uv}$$

Let us consider an example.

Note that each matrix X_{uv} has only four non-zero entries: we have $X_{uu} = X_{vv} = 1$ and $X_{uv} = X_{vu} = -1$. Consequently, the *u*th diagonal entry of L_G is simply the degree of vertex *u*. Moreover, we have the following fact.

Fact 2 Let D be the diagonal matrix with $D_{u,u}$ equal to the degree of vertex u. Let A be the adjacency matrix of G. Then $L_G = D - A$.

If G had weights $w: E \to \mathbb{R}$ on the edges we could define the weighted Laplacian as follows:

$$L_G = \sum_{uv \in E} w_{uv} \cdot X_{uv}.$$

Claim 3 Let G = (V, E) be a graph with non-negative weights $w : E \to \mathbb{R}$. Then the weighted Laplacian L_G is positive semi-definite.

PROOF: Since $X_{uv} = x_{uv}x_{uv}^{\mathsf{T}}$, it is positive semi-definite. So L_G is a weighted sum of positive semidefinite matrices with non-negative coefficients. Fact 5 in the Notes on Symmetric Matrices implies L_G is positive semi-definite. \Box

The Laplacian can tell us many interesting things about the graph. For example:

Claim 4 Let G = (V, E) be a graph with Laplacian L_G . For any $U \subseteq V$, let $\chi(U) \in \mathbb{R}^n$ be the characteristic vector of U, i.e., the vector with $\chi(U)_v$ equal to 1 if $v \in U$ and equal to 0 otherwise. Then $\chi(U)^{\mathsf{T}} L_G \chi(U) = |\delta(U)|$.

PROOF: For any edge uv we have $\chi(U)^{\mathsf{T}} X_{uv} \chi(U) = (\chi(U)^{\mathsf{T}} x_{uv})^2$. But $|\chi(U)^{\mathsf{T}} x_{uv}|$ is 1 if exactly one of u or v is in U, and otherwise it is 0. So $\chi(U)^{\mathsf{T}} X_{uv} \chi(U) = 1$ if $uv \in \delta(U)$, and otherwise it is 0. Summing over all edges proves the claim. \Box

Similarly, if G = (V, E) is a graph with edge weights $w : E \to \mathbb{R}$ and L_G is the weighted Laplacian, then then $\chi(U)^{\mathsf{T}} L_G \chi(U) = w(\delta(U))$.

Fact 5 If G is connected then $image(L_G) = \{x : \sum_i x_i = 0\}$, which is an (n-1)-dimensional subspace.

1.2 Main Theorem

Theorem 6 Let G = (V, E) be a graph with n = |V|. There is a randomized algorithm to compute weights $w : E \to \mathbb{R}$ such that:

- only $O(n \log n/\epsilon^2)$ of the weights are non-zero, and
- with probability at least 1-2/n,

$$(1-\epsilon) \cdot L_G \preceq L_w \preceq (1+\epsilon) \cdot L_G,$$

where L_w denotes the weighted Laplacian of G with weights w. By Fact 4 in Notes on Symmetric Matrices, this is equivalent to

$$(1-\epsilon)x^{\mathsf{T}}L_G x \leq x^{\mathsf{T}}L_w x \leq (1+\epsilon)x^{\mathsf{T}}L_G x \qquad \forall x \in \mathbb{R}^n.$$
(1)

By (1) and Claim 4, the resulting weights are a graph sparsifier of G:

 $(1-\epsilon) \cdot |\delta(U)| \leq w(\delta(U)) \leq (1+\epsilon) \cdot |\delta(U)| \qquad \forall U \subseteq V.$

The algorithm that proves Theorem 6 is as follows.

- Initially w = 0.
- Set $k = 8n \log(n)/\epsilon^2$.
- For every edge $e \in E$ compute $r_e = \operatorname{tr}(X_e L_G^+)$.
- For i = 1, ..., k
- Let e be a random edge chosen with probability $r_e/(n-1)$.
- Increase w_e by $\frac{n-1}{r_e k}$.

Claim 7 The values $\{r_e/(n-1) : e \in E\}$ indeed form a probability distribution.

PROOF: (of Theorem 6). How does the matrix L_w change during the *i*th iteration? The edge *e* is chosen with probability $\frac{r_e}{n-1}$ and then L_w increases by $\frac{n-1}{r_e \cdot k} X_e$. Let Z_i be this random change in L_w during the *i*th iteration. So Z_i equals $\frac{n-1}{r_e \cdot k} X_e$ with probability $\frac{r_e}{n-1}$. The random matrices Z_1, \ldots, Z_k are mutually independent and they all have this same distribution. Note that

$$E[Z_i] = \sum_{e \in E} \frac{r_e}{n-1} \cdot \frac{n-1}{r_e \cdot k} X_e = \frac{1}{k} \sum_e X_e = \frac{L_G}{k}.$$
 (2)

The final matrix L_w is simply $\sum_{i=1}^{k} Z_i$. To analyze this final matrix, we will use the Ahlswede-Winter inequality. All that we require is the following claim, which we prove later.

Claim 8 $Z_i \leq (n-1) \cdot \mathbb{E}[Z_i].$

We apply Corollary 2 from the previous lecture with R = n - 1, obtaining

$$\Pr\left[(1-\epsilon)L_G \preceq L_w \preceq (1+\epsilon)L_G\right] = \Pr\left[(1-\epsilon)\frac{L_G}{k} \preceq \frac{1}{k}\sum_{i=1}^k Z_i \preceq (1+\epsilon)\frac{L_G}{k}\right]$$
$$\leq 2n \cdot \exp\left(-\epsilon^2 k/4(n-1)\right)$$
$$\leq 2n \cdot \exp\left(-2\ln n\right) < 2/n.$$

2 Appendix: Additional Proofs

PROOF: (of Claim 7) First we check that the r_e values are non-negative. By the cyclic property of trace

$$\operatorname{tr}(X_e L_G^+) = \operatorname{tr}(x_e^\mathsf{T} L_G^+ x_e) = x_e^\mathsf{T} L_G^+ x_e,$$

This is non-negative since $L_G^+ \succeq 0$ because $L_G \succeq 0$. Thus $r_e \ge 0$.

Next, note that

$$\sum_{e} \operatorname{tr}(X_{e}L_{G}^{+}) = \operatorname{tr}(\sum_{e} X_{e}L_{G}^{+}) = \operatorname{tr}(L_{G}L_{G}^{+}) = \operatorname{tr}(I_{\operatorname{im}\ L_{G}}),$$

where $I_{\text{im }L_G}$ is the orthogonal projection onto the image of L_G . The image has dimension n-1 by Fact 5, and so

$$\sum_{e} r_{e} = \frac{1}{n-1} \sum_{e} \operatorname{tr}(X_{e} L_{G}^{+}) = \frac{1}{n-1} \operatorname{tr}(I_{\operatorname{im} L_{G}}) = 1.$$

PROOF: (of Claim 8). The maximum eigenvalue of a positive semi-definite matrix never exceeds its trace, so

$$\lambda_{\max}(L_G^{+/2} \cdot X_e \cdot L_G^{+/2}) \leq \operatorname{tr}(L_G^{+/2} \cdot X_e \cdot L_G^{+/2}) = r_e$$

By Fact 8 in the Notes on Symmetric Matrices,

$$L_G^{+/2} \cdot X_e \cdot L_G^{+/2} \preceq r_e \cdot I.$$

So, by Fact 4 in the Notes on Symmetric Matrices, for every vector v,

$$v^{\mathsf{T}} \frac{L_{G}^{+/2} \cdot X_{e} \cdot L_{G}^{+/2}}{r_{e}} v \leq v^{\mathsf{T}} v.$$
(3)

Now let us write $v = v_1 + v_2$ where $v_1 = I_{\text{im } L_G} v$ is the projection onto the image of L_G and $v_2 = I_{\text{ker } L_G} v$ is the projection onto the kernel of L_G . Then $L_G^{+/2} v_2 = 0$. So

$$v^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} v = (v_1 + v_2)^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} (v_1 + v_2)$$

$$= v_1^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} v_1 + \underbrace{2v_1^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} v_2 + v_2^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} v_2}_{=0}$$

$$= v_1^{\mathsf{T}} \frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} v_1$$

$$\le v_1^{\mathsf{T}} v_1 = v^{\mathsf{T}} I_{\text{im } L_G} v.$$

Here, the second equality is by the distributive law and the inequality is by (3). Since this holds for every vector v, Fact 4 in the Notes on Symmetric Matrices again implies

$$\frac{L_G^{+/2} \cdot X_e \cdot L_G^{+/2}}{r_e} \preceq I_{\text{im } L_G}.$$

Since im $X_e \subseteq$ im L_G , Claim 16 in the Notes on Symmetric Matrices shows this is equivalent to

$$\frac{n-1}{r_e \cdot k} X_e \preceq \frac{n-1}{k} L_G.$$

Since (2) shows that $E[Z_i] = L_G/k$, this completes the proof of the claim. \Box