1 Spectral Sparsifiers

1.1 Graph Laplacians

Let $G=(V, E)$ be an unweighted graph. For notational simplicity, we will think of the vertex set as $V=\{1, \ldots, n\}$. Let $e_{i} \in \mathbb{R}^{n}$ be the i th standard basis vector, meaning that e_{i} has a 1 in the i th coordinate and 0 s in all other coordinates. For an edge $u v \in E$, define the vector $x_{u v}$ and the matrix $X_{u v}$ as follows:

$$
\begin{aligned}
x_{u v} & :=e_{u}-u_{v} \\
X_{u v} & :=x_{u v} x_{u v}^{\top}
\end{aligned}
$$

In the definition of $x_{u v}$ it does not matter which vertex gets the +1 and which gets the -1 because the matrix $X_{u v}$ is the same either way.

Definition 1 The Laplacian matrix of G is the matrix

$$
L_{G}:=\sum_{u v \in E} X_{u v}
$$

Let us consider an example.

$X_{13}=$	1	1	2	3	4
		1	0	-1	0
	2	0	0	0	0
	3	-1	0	1	0
	4	0	0	0	0

Note that each matrix $X_{u v}$ has only four non-zero entries: we have $X_{u u}=X_{v v}=1$ and $X_{u v}=X_{v u}=-1$. Consequently, the u th diagonal entry of L_{G} is simply the degree of vertex u. Moreover, we have the following fact.

Fact 2 Let D be the diagonal matrix with $D_{u, u}$ equal to the degree of vertex u. Let A be the adjacency matrix of G. Then $L_{G}=D-A$.

If G had weights $w: E \rightarrow \mathbb{R}$ on the edges we could define the weighted Laplacian as follows:

$$
L_{G}=\sum_{u v \in E} w_{u v} \cdot X_{u v} .
$$

Claim 3 Let $G=(V, E)$ be a graph with non-negative weights $w: E \rightarrow \mathbb{R}$. Then the weighted Laplacian L_{G} is positive semi-definite.

Proof: Since $X_{u v}=x_{u v} x_{u v}^{\top}$, it is positive semi-definite. So L_{G} is a weighted sum of positive semidefinite matrices with non-negative coefficients. Fact 5 in the Notes on Symmetric Matrices implies L_{G} is positive semi-definite.

The Laplacian can tell us many interesting things about the graph. For example:

Claim 4 Let $G=(V, E)$ be a graph with Laplacian L_{G}. For any $U \subseteq V$, let $\chi(U) \in \mathbb{R}^{n}$ be the characteristic vector of U, i.e., the vector with $\chi(U)_{v}$ equal to 1 if $v \in U$ and equal to 0 otherwise. Then $\chi(U)^{\top} L_{G} \chi(U)=|\delta(U)|$.

Proof: For any edge $u v$ we have $\chi(U)^{\top} X_{u v} \chi(U)=\left(\chi(U)^{\top} x_{u v}\right)^{2}$. But $\left|\chi(U)^{\top} x_{u v}\right|$ is 1 if exactly one of u or v is in U, and otherwise it is 0 . So $\chi(U)^{\top} X_{u v} \chi(U)=1$ if $u v \in \delta(U)$, and otherwise it is 0 . Summing over all edges proves the claim.

Similarly, if $G=(V, E)$ is a graph with edge weights $w: E \rightarrow \mathbb{R}$ and L_{G} is the weighted Laplacian, then then $\chi(U)^{\top} L_{G} \chi(U)=w(\delta(U))$.

Fact 5 If G is connected then image $\left(L_{G}\right)=\left\{x: \sum_{i} x_{i}=0\right\}$, which is an $(n-1)$-dimensional subspace.

1.2 Main Theorem

Theorem 6 Let $G=(V, E)$ be a graph with $n=|V|$. There is a randomized algorithm to compute weights $w: E \rightarrow \mathbb{R}$ such that:

- only $O\left(n \log n / \epsilon^{2}\right)$ of the weights are non-zero, and
- with probability at least $1-2 / n$,

$$
(1-\epsilon) \cdot L_{G} \preceq L_{w} \preceq(1+\epsilon) \cdot L_{G},
$$

where L_{w} denotes the weighted Laplacian of G with weights w. By Fact 4 in Notes on Symmetric Matrices, this is equivalent to

$$
\begin{equation*}
(1-\epsilon) x^{\top} L_{G} x \leq x^{\top} L_{w} x \leq(1+\epsilon) x^{\top} L_{G} x \quad \forall x \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

By (1) and Claim 4, the resulting weights are a graph sparsifier of G :

$$
(1-\epsilon) \cdot|\delta(U)| \leq w(\delta(U)) \leq(1+\epsilon) \cdot|\delta(U)| \quad \forall U \subseteq V
$$

The algorithm that proves Theorem 6 is as follows.

- Initially $w=0$.
- Set $k=8 n \log (n) / \epsilon^{2}$.
- For every edge $e \in E$ compute $r_{e}=\operatorname{tr}\left(X_{e} L_{G}^{+}\right)$.
- For $i=1, \ldots, k$
- Let e be a random edge chosen with probability $r_{e} /(n-1)$.
- Increase w_{e} by $\frac{n-1}{r_{e} k}$.

Claim 7 The values $\left\{r_{e} /(n-1): e \in E\right\}$ indeed form a probability distribution.

Proof: (of Theorem 6). How does the matrix L_{w} change during the i th iteration? The edge e is chosen with probability $\frac{r_{e}}{n-1}$ and then L_{w} increases by $\frac{n-1}{r_{e} \cdot k} X_{e}$. Let Z_{i} be this random change in L_{w} during the i th iteration. So Z_{i} equals $\frac{n-1}{r_{e} \cdot k} X_{e}$ with probability $\frac{r_{e}}{n-1}$. The random matrices Z_{1}, \ldots, Z_{k} are mutually independent and they all have this same distribution. Note that

$$
\begin{equation*}
\mathrm{E}\left[Z_{i}\right]=\sum_{e \in E} \frac{r_{e}}{n-1} \cdot \frac{n-1}{r_{e} \cdot k} X_{e}=\frac{1}{k} \sum_{e} X_{e}=\frac{L_{G}}{k} \tag{2}
\end{equation*}
$$

The final matrix L_{w} is simply $\sum_{i=1}^{k} Z_{i}$. To analyze this final matrix, we will use the Ahlswede-Winter inequality. All that we require is the following claim, which we prove later.

Claim $8 Z_{i} \preceq(n-1) \cdot \mathrm{E}\left[Z_{i}\right]$.

We apply Corollary 2 from the previous lecture with $R=n-1$, obtaining

$$
\begin{aligned}
\operatorname{Pr}\left[(1-\epsilon) L_{G} \preceq L_{w} \preceq(1+\epsilon) L_{G}\right] & =\operatorname{Pr}\left[(1-\epsilon) \frac{L_{G}}{k} \preceq \frac{1}{k} \sum_{i=1}^{k} Z_{i} \preceq(1+\epsilon) \frac{L_{G}}{k}\right] \\
& \leq 2 n \cdot \exp \left(-\epsilon^{2} k / 4(n-1)\right) \\
& \leq 2 n \cdot \exp (-2 \ln n)<2 / n .
\end{aligned}
$$

2 Appendix: Additional Proofs

Proof: (of Claim 7) First we check that the r_{e} values are non-negative. By the cyclic property of trace

$$
\operatorname{tr}\left(X_{e} L_{G}^{+}\right)=\operatorname{tr}\left(x_{e}^{\top} L_{G}^{+} x_{e}\right)=x_{e}^{\top} L_{G}^{+} x_{e}
$$

This is non-negative since $L_{G}^{+} \succeq 0$ because $L_{G} \succeq 0$. Thus $r_{e} \geq 0$.

Next, note that

$$
\sum_{e} \operatorname{tr}\left(X_{e} L_{G}^{+}\right)=\operatorname{tr}\left(\sum_{e} X_{e} L_{G}^{+}\right)=\operatorname{tr}\left(L_{G} L_{G}^{+}\right)=\operatorname{tr}\left(I_{\mathrm{im} L_{G}}\right),
$$

where $I_{\mathrm{im} L_{G}}$ is the orthogonal projection onto the image of L_{G}. The image has dimension $n-1$ by Fact 5, and so

$$
\sum_{e} r_{e}=\frac{1}{n-1} \sum_{e} \operatorname{tr}\left(X_{e} L_{G}^{+}\right)=\frac{1}{n-1} \operatorname{tr}\left(I_{\mathrm{im} L_{G}}\right)=1 .
$$

Proof:(of Claim 8). The maximum eigenvalue of a positive semi-definite matrix never exceeds its trace, so

$$
\lambda_{\max }\left(L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}\right) \leq \operatorname{tr}\left(L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}\right)=r_{e} .
$$

By Fact 8 in the Notes on Symmetric Matrices,

$$
L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2} \preceq r_{e} \cdot I .
$$

So, by Fact 4 in the Notes on Symmetric Matrices, for every vector v,

$$
\begin{equation*}
v^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v \leq v^{\top} v \tag{3}
\end{equation*}
$$

Now let us write $v=v_{1}+v_{2}$ where $v_{1}=I_{\mathrm{im} L_{G}} v$ is the projection onto the image of L_{G} and $v_{2}=I_{\text {ker } L_{G}} v$ is the projection onto the kernel of L_{G}. Then $L_{G}^{+/ 2} v_{2}=0$. So

$$
\begin{aligned}
v^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v & =\left(v_{1}+v_{2}\right)^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}}\left(v_{1}+v_{2}\right) \\
& =v_{1}^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v_{1}+\underbrace{2 v_{1}^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v_{2}+v_{2}^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v_{2}}_{=0} \\
& =v_{1}^{\top} \frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} v_{1} \\
& \leq v_{1}^{\top} v_{1}=v^{\top} I_{\mathrm{im} L_{G}} v .
\end{aligned}
$$

Here, the second equality is by the distributive law and the inequality is by (3). Since this holds for every vector v, Fact 4 in the Notes on Symmetric Matrices again implies

$$
\frac{L_{G}^{+/ 2} \cdot X_{e} \cdot L_{G}^{+/ 2}}{r_{e}} \preceq I_{\mathrm{im} L_{G}}
$$

Since $\operatorname{im} X_{e} \subseteq \operatorname{im} L_{G}$, Claim 16 in the Notes on Symmetric Matrices shows this is equivalent to

$$
\frac{n-1}{r_{e} \cdot k} X_{e} \preceq \frac{n-1}{k} L_{G} .
$$

Since (2) shows that $\mathrm{E}\left[Z_{i}\right]=L_{G} / k$, this completes the proof of the claim.

