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1 Spectral Sparsifiers

1.1 Graph Laplacians

Let G = (V,E) be an unweighted graph. For notational simplicity, we will think of the vertex set as
V = {1, . . . , n}. Let ei ∈ Rn be the ith standard basis vector, meaning that ei has a 1 in the ith
coordinate and 0s in all other coordinates. For an edge uv ∈ E, define the vector xuv and the matrix
Xuv as follows:

xuv := eu − uv
Xuv := xuvx

T
uv

In the definition of xuv it does not matter which vertex gets the +1 and which gets the −1 because the
matrix Xuv is the same either way.

Definition 1 The Laplacian matrix of G is the matrix

LG :=
∑
uv∈E

Xuv

Let us consider an example.
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Note that each matrix Xuv has only four non-zero entries: we have Xuu = Xvv = 1 and Xuv = Xvu = −1.
Consequently, the uth diagonal entry of LG is simply the degree of vertex u. Moreover, we have the
following fact.

Fact 2 Let D be the diagonal matrix with Du,u equal to the degree of vertex u. Let A be the adjacency
matrix of G. Then LG = D −A.

If G had weights w : E → R on the edges we could define the weighted Laplacian as follows:

LG =
∑
uv∈E

wuv ·Xuv.

Claim 3 Let G = (V,E) be a graph with non-negative weights w : E → R. Then the weighted Laplacian
LG is positive semi-definite.

Proof: Since Xuv = xuvx
T
uv, it is positive semi-definite. So LG is a weighted sum of positive semi-

definite matrices with non-negative coefficients. Fact 5 in the Notes on Symmetric Matrices implies LG

is positive semi-definite. 2

The Laplacian can tell us many interesting things about the graph. For example:

Claim 4 Let G = (V,E) be a graph with Laplacian LG. For any U ⊆ V , let χ(U) ∈ Rn be the
characteristic vector of U , i.e., the vector with χ(U)v equal to 1 if v ∈ U and equal to 0 otherwise. Then
χ(U)T LG χ(U) = |δ(U)|.

Proof: For any edge uv we have χ(U)TXuv χ(U) = (χ(U)T xuv)2. But |χ(U)T xuv| is 1 if exactly one
of u or v is in U , and otherwise it is 0. So χ(U)TXuv χ(U) = 1 if uv ∈ δ(U), and otherwise it is 0.
Summing over all edges proves the claim. 2

Similarly, if G = (V,E) is a graph with edge weights w : E → R and LG is the weighted Laplacian, then
then χ(U)T LG χ(U) = w(δ(U)).

Fact 5 If G is connected then image(LG) = { x :
∑

i xi = 0 }, which is an (n − 1)-dimensional
subspace.

1.2 Main Theorem

Theorem 6 Let G = (V,E) be a graph with n = |V |. There is a randomized algorithm to compute
weights w : E → R such that:

• only O(n log n/ε2) of the weights are non-zero, and

• with probability at least 1− 2/n,

(1− ε) · LG � Lw � (1 + ε) · LG,

where Lw denotes the weighted Laplacian of G with weights w. By Fact 4 in Notes on Symmetric
Matrices, this is equivalent to

(1− ε)xTLGx ≤ xTLwx ≤ (1 + ε)xTLGx ∀x ∈ Rn. (1)
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By (1) and Claim 4, the resulting weights are a graph sparsifier of G:

(1− ε) · |δ(U)| ≤ w(δ(U)) ≤ (1 + ε) · |δ(U)| ∀U ⊆ V.

The algorithm that proves Theorem 6 is as follows.

• Initially w = 0.

• Set k = 8n log(n)/ε2.

• For every edge e ∈ E compute re = tr(XeL
+
G).

• For i = 1, . . . , k

• Let e be a random edge chosen with probability re/(n− 1).

• Increase we by n−1
re k

.

Claim 7 The values {re/(n− 1) : e ∈ E} indeed form a probability distribution.

Proof:(of Theorem 6). How does the matrix Lw change during the ith iteration? The edge e is chosen
with probability re

n−1 and then Lw increases by n−1
re·kXe. Let Zi be this random change in Lw during the

ith iteration. So Zi equals n−1
re·kXe with probability re

n−1 . The random matrices Z1, . . . , Zk are mutually
independent and they all have this same distribution. Note that

E[Zi] =
∑
e∈E

re
n− 1

· n− 1

re · k
Xe =

1

k

∑
e

Xe =
LG

k
. (2)

The final matrix Lw is simply
∑k

i=1 Zi. To analyze this final matrix, we will use the Ahlswede-Winter
inequality. All that we require is the following claim, which we prove later.

Claim 8 Zi � (n− 1) · E[Zi].

We apply Corollary 2 from the previous lecture with R = n− 1, obtaining

Pr
[
(1− ε)LG � Lw � (1 + ε)LG

]
= Pr

[
(1− ε)LG

k
� 1

k

k∑
i=1

Zi � (1 + ε)
LG

k

]
≤ 2n · exp

(
− ε2k/4(n− 1)

)
≤ 2n · exp

(
− 2 lnn

)
< 2/n.
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2 Appendix: Additional Proofs

Proof:(of Claim 7) First we check that the re values are non-negative. By the cyclic property of trace

tr(XeL
+
G) = tr(xTe L

+
Gxe) = xTe L

+
Gxe,

This is non-negative since L+
G � 0 because LG � 0. Thus re ≥ 0.
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Next, note that ∑
e

tr(XeL
+
G) = tr(

∑
e

XeL
+
G) = tr(LGL

+
G) = tr(Iim LG

),

where Iim LG
is the orthogonal projection onto the image of LG. The image has dimension n − 1 by

Fact 5, and so ∑
e

re =
1

n− 1

∑
e

tr(XeL
+
G) =

1

n− 1
tr(Iim LG

) = 1.

2

Proof:(of Claim 8). The maximum eigenvalue of a positive semi-definite matrix never exceeds its trace,
so

λmax(L
+/2
G ·Xe · L+/2

G ) ≤ tr(L
+/2
G ·Xe · L+/2

G ) = re.

By Fact 8 in the Notes on Symmetric Matrices,

L
+/2
G ·Xe · L+/2

G � re · I.

So, by Fact 4 in the Notes on Symmetric Matrices, for every vector v,

vT
L
+/2
G ·Xe · L+/2

G

re
v ≤ vTv. (3)

Now let us write v = v1+v2 where v1 = Iim LG
v is the projection onto the image of LG and v2 = Iker LG

v

is the projection onto the kernel of LG. Then L
+/2
G v2 = 0. So

vT
L
+/2
G ·Xe · L+/2

G

re
v = (v1 + v2)

TL
+/2
G ·Xe · L+/2

G

re
(v1 + v2)

= vT1
L
+/2
G ·Xe · L+/2

G

re
v1 + 2vT1

L
+/2
G ·Xe · L+/2

G

re
v2 + vT2

L
+/2
G ·Xe · L+/2

G

re
v2︸ ︷︷ ︸

=0

= vT1
L
+/2
G ·Xe · L+/2

G

re
v1

≤ vT1 v1 = vTIim LG
v.

Here, the second equality is by the distributive law and the inequality is by (3). Since this holds for
every vector v, Fact 4 in the Notes on Symmetric Matrices again implies

L
+/2
G ·Xe · L+/2

G

re
� Iim LG

.

Since im Xe ⊆ im LG, Claim 16 in the Notes on Symmetric Matrices shows this is equivalent to

n− 1

re · k
Xe �

n− 1

k
LG.

Since (2) shows that E[Zi] = LG/k, this completes the proof of the claim. 2
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