Lecture 13

Prof. Nick Harvey

University of British Columbia

1 Useful versions of the Ahlswede-Winter Inequality

Theorem 1 Let Y be a random, symmetric, positive semi-definite $d \times d$ matrix such that E[Y] = I. Suppose $||Y|| \leq R$ for some fixed scalar $R \geq 1$. Let Y_1, \ldots, Y_k be independent copies of Y (i.e., independently sampled matrices with the same distribution as Y). For any $\epsilon \in (0, 1)$, we have

$$\Pr\left[(1-\epsilon)I \preceq \frac{1}{k} \sum_{i=1}^{k} Y_i \preceq (1+\epsilon)I\right] \geq 1 - 2d \cdot \exp(-\epsilon^2 k/4R).$$

This event is equivalent to the sample average $\frac{1}{k} \sum_{i=1}^{k} Y_i$ having minimum eigenvalue at least $1 - \epsilon$ and maximum eigenvalue at most $1 + \epsilon$.

PROOF: We apply the Ahlswede-Winter inequality with $X_i = (Y_i - E[Y_i])/R$. Note that $E[X_i] = 0$, $||X_i|| \le 1$, and

$$\begin{split} \mathbf{E}[X_i^2] &= \frac{1}{R^2} \mathbf{E}\left[\left(Y_i - \mathbf{E}[Y_i]\right)^2\right] \\ &= \frac{1}{R^2} \left(\mathbf{E}[Y_i^2] - 2\mathbf{E}[Y_i]^2 + \mathbf{E}[Y_i]^2\right) \\ &\preceq \frac{1}{R^2} \mathbf{E}[Y_i^2] \qquad (\text{since } \mathbf{E}[Y_i]^2 \succeq 0) \\ &\preceq \frac{1}{R^2} \mathbf{E}[||Y_i|| \cdot Y_i] \\ &\preceq \frac{R}{R^2} \mathbf{E}[Y_i] \end{split}$$

Finally, since $0 \leq \mathrm{E}[Y_i] \leq I$, we get

$$\lambda_{\max}(\mathbf{E}[X_i^2]) \leq 1/R.$$
(1)

Now we use Claim 15 from the Notes on Symmetric Matrices, together with the inequalities

$$\begin{array}{rcccc} 1+x & \leq & e^x & \forall x \in \mathbb{R} \\ e^x & \leq & 1+x+x^2 & \forall x \in [-1,1]. \end{array}$$

Since $||X_i|| \leq 1$, for any $\lambda \in [0, 1]$, we have $e^{\lambda X_i} \leq I + \lambda X_i + \lambda^2 X_i^2$, and so

$$\mathbf{E}[e^{\lambda X_i}] \preceq \mathbf{E}[I + \lambda X_i + \lambda^2 X_i^2] \preceq I + \lambda^2 \mathbf{E}[X_i^2] \preceq e^{\lambda^2 \mathbf{E}[X_i^2]}.$$

Thus by (1) we have

$$\|\mathbf{E}[e^{\lambda X_i}]\| \leq \|e^{\lambda^2 \mathbf{E}[X_i^2]}\| \leq e^{\lambda^2/R}.$$

The same analysis also shows that $||\mathbf{E}[e^{-\lambda X_i}]|| \leq e^{\lambda^2/R}$. Substituting these two bounds into the basic Ahlswede-Winter inequality from the previous lecture, we obtain

$$\Pr\left[\left\|\sum_{i=1}^{k} \frac{1}{R} (Y_i - \mathbb{E}[Y_i])\right\| > t\right] \leq 2d \cdot e^{-\lambda t} \prod_{i=1}^{k} e^{\lambda^2/R} = 2d \cdot \exp(-\lambda t + k\lambda^2/R).$$

Substituting $t = k\epsilon/R$ and $\lambda = \epsilon/2$ we get

$$\Pr\left[\left\|\frac{1}{R}\sum_{i=1}^{k}Y_{i}-\frac{k}{R}\mathbb{E}[Y_{i}]\right\| > \frac{k\epsilon}{R}\right] \leq 2d \cdot \exp(-k\epsilon^{2}/4R).$$

Multiplying by R/k and using the fact that $E[Y_i] = I$, we have bounded the probability that any eigenvalue of the sample average matrix $\sum_{i=1}^{k} Y_i/k$ is less than $1 - \epsilon$ or greater than $1 + \epsilon$. \Box

Corollary 2 Let Z be a random, symmetric, positive semi-definite $d \times d$ matrix. Define $U := \mathbb{E}[Z]$ and suppose $Z \leq R \cdot U$ for some scalar $R \geq 1$. Let Z_1, \ldots, Z_k be independent copies of Z. For any $\epsilon \in (0, 1)$, we have

$$\Pr\left[(1-\epsilon)U \preceq \frac{1}{k} \sum_{i=1}^{k} Z_i \preceq (1+\epsilon)U\right] \geq 1 - 2d \cdot \exp(-\epsilon^2 k/4R).$$

PROOF: Let $U^{+/2} := (U^+)^{1/2}$ denote the square root of the pseudoinverse of U. Let $I_{\text{im }U}$ denote the orthogonal projection on the image of U. Define the random, positive semi-definite matrices

$$Y := U^{+/2} \cdot Z \cdot U^{+/2}$$
 and $Y_i := U^{+/2} \cdot Z_i \cdot U^{+/2}$.

Because $Z_i \succeq 0$ and $U = E[\sum_i Z_i]$, we have $im(Z_i) \subseteq im(U)$. So Claim 16 in Notes on Symmetric Matrices implies

$$(1-\epsilon)U \preceq \frac{1}{k} \sum_{i=1}^{k} Z_i \preceq (1+\epsilon)U \qquad \Longleftrightarrow \qquad (1-\epsilon)I_{\mathrm{im } U} \preceq \frac{1}{k} \sum_{i=1}^{k} Y_i \preceq (1+\epsilon)I_{\mathrm{im } U}.$$

We would like to use Theorem 1 to obtain our desired bound. We just need to check that the hypotheses of the theorem are satisfied. By Fact 6 from the Notes on Symmetric Matrices, we have

$$Y = U^{+/2} \cdot Z \cdot U^{+/2} \preceq U^{+/2} \cdot (R \cdot U) \cdot U^{+/2} = R \cdot I_{\text{im } U},$$

showing that $||Y|| \leq R$. Next,

$$E[Y] = U^{+/2} \cdot E[Z] \cdot U^{+/2} = U^{+/2} \cdot U \cdot U^{+/2} = I_{im \ U}$$

So the hypotheses of Theorem 1 are almost satisfied, with the small issue that E[Y] is not actually the identity, but merely the identity on the image of U. But, one may check that the proof of Theorem 1 still goes through as long as every eigenvalue of E[Y] is either 0 or 1, i.e., E[Y] is an orthogonal projection matrix. The details are left as an exercise. \Box