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SMC In this community

Many researchers in the NIPS community have contributed to the
field of Sequential Monte Carlo over the last decade.

e Michael Isard and Andrew Blake popularized the method with their
Condensation algorithm for image tracking.

e Soon after, Daphne Koller, Stuart Russell, Kevin Murphy, Sebastian Thrun,
Dieter Fox and Frank Dellaert and their colleagues demonstrated the method
In Al and robotics.

e Tom Griffiths and colleagues have studied SMC methods in cognitive
psychology.
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[Boosted particle filter of Kenji Okuma, Jim Little & David Lowe]



The 20™ century — State estimation
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[Dieter Fox]
http://www.cs.washington.edu/ai/MobiIe_Robotics/mcI/




The 20™ century — State estimation

[Dieter Fox]
http://www.cs.washington.edu/ai/MobiIe_Robotics/mcI/



The 20™ century — State estimation
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The 20™ century — The birth
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[Metropolis and Ulam, 1949]
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Arnaud’s slides will go here
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Sequential Monte Carlo (recap)

P(Xo)P(X1|Xo)P(Y1]|X1)P(X2|X1)P(Y2|X2) P(X5|X2)P(Y3|X3) x P(Xo.3]Y1.3)



Sequences of distributions

e SMC methods can be used to sample approximately from any sequence of
growing distributions {7, }n>1

fn (xlzn)

Tn (xlzn) —

where

— f, : X™ = RT is known point-wise.
f
— — ffn (xlzn)dxl:n

e We introduce a proposal distribution ¢, (x1.,) to approzimate Z,:

= g: Eii:; dn (lel:n)dﬂﬁl;n = /Wn (xl:n) dn (ajl:n)dxl:n



e Then the importance weight becomes:

Importance weights

e Let us construct the proposal sequentially: Introduce ¢, (x,|z1., 1) to
sample component X,, given Xq.,,_1 = T1.p_1-
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SMC algorithm

1. Initialize at time n =1

2. At time n > 2

n—1»

e Sample XS) ~ G (xn] Xl(i)l_1> and augment X( ) (Xl(z) Y(i))

e Compute the sequential weight

(1) )
n (| X1,
Wy o <'>f( 1 D=0\
Jn— 1<X1n 1)% (X X 1)
Then the target approximation is
N
%n (371 n) — Z quz)5y§%) (xlzn)



Example 1: Bayesian filtering

fn (xlzn) =D (lezna ylzn)7 Tn (xl:n) =D (xl:n’ yl:n> ’ Zn — D (ylzn)a
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Example 2: Eigen-particles

Computing eigen-pairs of exponentially large matrices and operators is
an important problem in science. | will give two motivating examples:

I.  Diffusion equation & Schrodinger’s equation in quantum physics

1. Transfer matrices for estimating the partition function of
Boltzmann machines

Both problems are of enormous importance in physics and learning.



Quantum Monte Carlo |~
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where a(r, s) is the entry of A a and column s.
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[JB Anderson, 1975, | Kosztin et al, 1997]



Transfer matrices of Boltzmann Machines
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[see e.g. Onsager, Nimalan Mahendran]




Power method

Let A have M linearly independent eigenvectors, then any ifector v may
represented as a linear combination of the eigenvectors of 4: v = > . ¢;x;,
where c is a constant. Consequently, for sufficiently large n,

A" v & cl@xl ~

2 — Ao = ZCC Ax, = CiALX.
C

A = ZC(”K;




Particle power method

Succesive matrix-vector multiplication maps to Kernel-function multiplication
(a path integral) in the continuous case:

. A L6 = 2a
/. "/U(Xl) H K(Xk|X]{;_1)dX1:n_1 ~C1A ¢(Xn)
k=2

N

The particle method is obtained by defining

f(X1 n) = v(X1) K(xp|Xgp—1)
k=2

Consequently and 1 (x,) — 7(x,). The largest eigenvalue A; of
K is given by the ratio of successive partition functions:

A= —

The importance weights are

v(x1) [Tiemo K (Xk[Xk-1) —W,_, K (xn|Xp-1)
Q (X |X1.0)v(X1) 2;21 K (xp|xk_1) " Q(xn|x1im)

Wn — Wn—l



Example 3: Particle diffusion

o A particle {X,}, -, evolves in a random medium

Xe~p(), Xou| Xn=z~p(-|z).
R St

e At time n, the probability of it being killed is 1—g (X,,) with 0 < g (z) < 1.
-

e One wants to approximate Pr (T > n).

//

Z—




Example 3: Particle diffusion

e Again, we obtain our familiar path integral:

Pr (T > n) .. |Probability of not being killed at n given Xj.,,]
/ / (71 H p (x| Tp-1) H g (z) d1:m
k=1

Probability to survive at n

e Consider

fo(@in) = ple) [[o(@rlee) [] g (e)

k=2

S (T1:0)

where =

T (T1:n)

e SMC is then used to compute Z,,, the probability of not being killed at
time n, and to approximate the distribution of the paths having survived
at time n.

[Del Moral & AD, 2004]



Example 4: SAWs

Goal: Compute the volume Z,, of a self-avoiding random walk, with uniform
distribution on a lattice:

Tn (fclzn) — _11Dn (wlzn)
where

D, = {x1.n € E, such that = ~ zy11 and x) # x; for k # i},
= cardinality of D,,.
SAWs on lattices are often used to study polymers and protein folding.

8 s

[See e.g. Peter Grassberger (PERM) & Alena Shmygelska; Rosenbluth Method]




Example 5: Stochastic control

Consider a Fredholm equation of the 2nd kind (e.g. Bellman backup):
v(xzg) = r(xg)+ /K(azo,xl)v(a:l)d:cl

This expression can be easily transformed into a path integral (Von Neu-
mann series representation):

v(zo) = r(z0) + Z /T(wn) H K(zg—1,2)dT1:0
n=1 k=1

The SMC sampler again follows by choosing
fo(zo) = 7 (20)
fo(@om) = r(zn) || K(ze-1, 1)
k=1

In this case we have a trans-dimensional distribution, so we do a little bit
more work when implementing the method. [AD & Vladislav Tadic, 2005]



Particle smoothing can be used in the E
step of the EM algorithm for MDPs

Likelihood Prior

MDP posterior

Po (o, Q0| Ky 71 )

[See e.g. Matt Hoffman et al, 2007] Marginal likelihood



Example 6: Dynamic Dirichlet processes
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(a) True density

(b) Estimated density

[Francois Caron, Manuel Davy & AD, 2007]



SMC for static models

e Let {m,},>, be a sequence of probability distributions defined D@.\Ch

that each 7, (x) is known up to a normalizing constant, i.e.

unknown known

e We want to sample approximately from 7, (x) and compute sequen-

tially. /"' —

e This differs from the standard SMC, where 7, (z1.,) is defined on A",

71 () o ()
) & ) &
2%

X &) @) > &) &) &>

ro(@) = 716X X i




Static SMC applications

e Sequential Bayesian Inference: 7, (z) = p (| y1.n) -

5B -

n

@

e Global optimization: m, (z) o [7 (z)]™ with {n,} increasing sequence

such that n, — oo.

e Sampling from a fixed target 7, (z) « [u1 ()]™ [r (z)]'~™ where u
is easy to sample from. Use sequence 11 =1 > np—1 > 0y, > Nfina = 0.
Then 71 (x) o< p(z) and 7yingi(z) < T(x)

¢ Rare event simulation 7(4) < 1: 7w, (z) x 7(z)1lg, (z) with Z;
known. Use sequence £y = X D E,_1 D E, D Efina = A. Then
Zfinal =T (A) .

e Classical CS problems: SAT, constraint satisfaction, computing vol-
umes in high dimensions, matrix permanents and so on.



Static SMC derivation

Construct an artificial distribution that is the product of the target dis-
tribution that we want to sample from and a backward kernel L:

n—1

7A-‘:n (xlzn) — _1fn (wlzn)a where fn (xlzn) — fn (xn) H Lk (wk| wk—i—l)
\t t =1

arge ~ _

~~
artificial backward transitions

such that 7, (x,) = [ Tn (1:n) dZ 1.0,

The importance weights become:

Wn _ fn(ajlzn) _ Wn

Kn<x1:n>

Kn_1(z1:n—1) fn(T1n)
- fn1(®1n—1) Kn(T1:0)
fr@n) Ly —1(2n_1|T0)

T fam1 (@a-1) Ko (@] 1)

Wy

For the proposal K(.), we can use any MCMC kernel.

We only care about 7, (z,) = 7~} f, (x,,) so no degeneracy problem.

[Pierre Del Moral, AD, Ajay Jasra, 2006]



Static SMC algorithm

1. Initialize at timen =1

2. At timen > 2

(a) Sample XS) ~ K, (xn\ Xﬁfll) and augment X?(,L) L = (X(Z) X(z))

n—1»

(b) Compute the importance weights

(’b) (1) (2)
@) _ i (0) f”( ) ”1< ’X )
Wa' =Wal (—() ) (—() ~(2) )
frn_1 no1 | Kn | X, | X

n—1
Then the weighted approximation is

N
Tn (Tn) = Z Wéi)(sy(i) (n)

n
1=1

(c) Resample X% ~ 7, (zn) to obtain 7, (z,) = ~ vazl 05 (i) (Tn)-



Static SMC: Choice of L

A default (easiest) choice consists of using a m,-invariant MCMC kernel
K,, and the corresponding reversed kernel L,,_1:

Tn, (xn—l) Kn (xn| xn—l)

T (Tn)

Ln—l (xn—1| xn) —

In this case, the weights simplify to:

o (x)
qui) — Wfrgz—)l :
fn—l (X,r(:21>
This particular choice appeared independently in physics and statistics

(Jarzynski, 1997; Crooks, 1998; Gilks & Berzuini, 2001; Neal, 2001). In
machine learning, it’s often referred to as annealed importance sampling.

Smarter choices of L can be sometimes implemented in practice.



Example 1: Deep Boltzmann machines

71 () mo(x)
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[Firas Hamze, Hot coupling, 2005] [Peter Carbonetto, 2007, 2009]



Variational distance

Varational distance
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Example 2: ABC

e Consider a Bayesian model with prior p (#) and likelihood L (y| @) for data
y. The likelihood is assumed to be intractable but we can sample from it.

e ABC algorithm:

1. Sample 0 ~ p (0)
2. Hallucinate data Z(9 ~ L (2| H(i))

3. Accept samples if hallucinations look like the data —if d (y, Z (i)) < g,
where d: )Y x )Y — RT is a metric.

e The samples are approximately distributed according to:
Te (‘97 33| y) X P (9) L (ZE’ 0) 1d(y,z)§s

The hope is that 7. (0] y) ~ 7 (6|y) for very small .

e Inefficient for € small !

[Beaumont, 2002]



SMC samplers for ABC

e Define a sequence of artificial targets {m. (0|y)} p Where

n=1,...,

E1 =00 >€9 > "+ > Ep =E.

e We can use SMC to sample from {m., (0|y)},_, . p by adopting a Metropolis-
Hastings proposal kernel K, ( (6., z1)| (6n_1, 2n_1)), with importance weights

1d<y,foll) <en

qui) — Wr(ﬁl 1 ‘
d(yazfﬁl)ﬁ&z—l

e Smarter algorithms have been proposed, which for example, compute the
parameters €, and of K, adaptively.

[Pierre Del Moral, AD, Ajay Jasra, 2009]



Final remarks

« SMC Is a general, easy and flexible strategy for sampling from any
arbitrary sequence of targets and for computing their normalizing
constants.

e SMC is benefiting from the advent of GPUs. AWH"UV\ Y Le €
Oxfa rO(

e SMC remains limited to moderately high-dimensional problems.

Thank you!

Nando de Freitas & Arnaud Doucet



Naive SMC for static models

e At time n — 1, you have particles Xﬁﬁl ~ Tp—1 (Tpn_1).

e Move the particles according to a transition kernel
ngi) ~ Ky (xn| ngl)
hence marginally

Xff) ~ by () where p, (x,) = /’nn_l (n_1) Ky (zn| xn_1) dr,_1.

e Our target is m, (z,) so the importance weight is

e Problem: p, (x,) does not admit an analytical expression in general
cases.















