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Abstract

We present a novel, flexible, statistical approach
to modeling music, images and text jointly. The
technique is based on multi-modal mixture mod-
els and efficient computation using online EM.
The learned models can be used to browse mul-
timedia databases, to query on a multimedia
database using any combination of music, im-
ages and text (lyrics and other contextual infor-
mation), to annotate documents with music and
images, and to find documents in a database sim-
ilar to input text, music and/or graphics files.

1 INTRODUCTION

An essential part of human psychology is the ability to
identify music, text, images or other information based on
associations provided by contextual information of differ-
ent media. Think no further than a well-chosen image on
a book cover, which can instantly establish for the reader
the contents of the book, or how the lyrics to a familiar
song can instantly bring the song’s melody to mind. In this
paper, we describe an attempt to reproduce this effect by
presenting a method for querying on a multimedia database
with words, music and/or images.

Musically, we focus on monophonic and polyphonic musi-
cal pieces of known structure (MIDI files, full music nota-
tion, etc.). Retrieving these pieces in multimedia databases,
such as the Web, is a problem of growing interest (Hoos,
Renz and Gorg 2001, Huron and Aarden 2002, Pickens
2000). A significant step was taken by Downie (Downie
1999), who initially applied standard text IR techniques to
retrieve music by converting music to text format. Most
research (including (Downie 1999)) has, however, focused
on plain music retrieval. To the best of our knowledge there
has been no attempt to model text and music jointly.

To this we also add the capability of modeling images.
While many different models of image features could be

Figure 1: The CD cover art for “Singles” by The Smiths.
Using this image as input, our querying method returns
the songs “How Soon is Now?” and “Bigmouth Strikes
Again” – also by The Smiths – by probabilistically cluster-
ing the query image, finding database images with similar
histograms, and returning songs associated with those im-
ages. In this case, the high-contrast black-and-white cover
of “Singles” matches the similarly stark cover art of the
CD associated with other Smiths songs (see figure 9).

incorporated, we use a simple multinomial model based on
image histograms. Our work is motivated by similar ap-
proaches to image and text modeling (Barnard and Forsyth
2001, Barnard, Duygulu and Forsyth 2001, Duygulu,
Barnard, de Freitas and Forsyth 2002), and our earlier re-
search in modeling music and text (Brochu and de Freitas
2003). The inclusion of music adds a new interesting di-
mension.

We propose a joint probabilistic model for documents with
any combination of music, images and/or text. This model
is simple, easily extensible, flexible and powerful. It al-
lows users to query multimedia databases using text, im-



ages and/or music as input. It is well suited for browsing
applications as it organizes the documents into “soft” clus-
ters. The document of highest probability in each cluster
can serve as a music or graphical thumbnail for automated
summarization. The model allows one to query with text,
music, and/or image documents to automatically annotate
the document with appropriate musical and/or images, or
to find similar documents (figure 1). It can be used to au-
tomatically recommend or identify similar songs and pic-
tures. It allows for the inclusion of different types of text,
including website content, lyrics, and meta-data such as
hyper-text links. And finally, it is flexible enough to easily
handle new media such as video, and to incorporate differ-
ent models of extant media.

We use an online EM algorithm to train the models as
the data arrives sequentially. This enables us to process
vast quantities of data efficiently and faster than traditional
batch EM.

2 MODEL SPECIFICATION

Our current model is based on documents with text (lyrics
or information about the song), musical scores in GUIDO
notation1 (Hoos et al. 2001), and JPEG image files. We
model the data with a Bayesian multi-modal mixture
model. Words, images and scores are assumed to be condi-
tionally independent given the mixture component label.

We model musical scores with first-order Markov chains,
in which each state corresponds to a note, rest, or the start
of a new voice. Notes’ pitches are represented by the in-
terval change (in semitones) from the previous note, rather
than by absolute pitch, so that a score or query transposed
to a different key will still have the same Markov chain.
Rhythm is represented using the standard fractional mu-
sical measurement of whole-note, half-note, quarter-note,
etc. Rest states are represented similarly, save that pitch is
not represented. See Figure 2 for an example.

Polyphonic scores are represented by chaining the begin-
ning of a new voice to the end of a previous one. In order
to ensure that the first note in each voice appears in both
the row and column of the Markov transition matrix, a spe-
cial “new voice” state with no interval or rhythm serves as
a dummy state marking the beginning of a new voice. The
first note of a voice has a distinguishing “first note” interval
value.

The Markov chain representation of a piece of music
�

is then mapped to a transition frequency table ��� , where����� �	� � denotes the number of times we observe the transi-
tion from state 
 to state � in document

�
. We use � ���  to

denote the initial state of the Markov chain. In essence, this

1GUIDO is a powerful language for representing musical
scores in an HTML-like notation. MIDI files, plentiful on the
World Wide Web, can be easily converted to this format.

[ *3/4 b&1*3/16 b1/16 c#2*11/16 b&1/16
a&1*3/16 b&1/16 f#1/2 ]�

INTERVAL DURATION
0 newvoice 0
1 rest �����
2 firstnote �������
3 +1 �������
4 +2 ���������
5 -2 �������
6 -2 �������
7 +3 �������
8 -5 �����

Figure 2: Sample melody – the opening notes to “The
Yellow Submarine” by The Beatles – in different nota-
tions. From top: standard musical notation (generated
from GUIDO notation), GUIDO notation, and as a series
of states in a first-order Markov chain (also generated from
GUIDO notation).

Markovian approach is analogous to a text bigram model,
save that the states are musical notes and rests rather than
words.

Images are represented as image intensity histograms of
256 equally-spaced bins, each representing a range of
colour values. Each bin’s value is initially equal to the num-
ber of pixels of the image that fall into that range, and then
the entire histogram is normalized to find the relative fre-
quencies of the bins, ��� , where ����� � indicated the relative
frequency value of bin � in image

�
.

The associated text is modeled using a standard term fre-
quency vector � � , where � � � � denotes the number of times
word ! appears in document

�
.

For notational simplicity, we group together the image, mu-
sic and text variable as follows: "#�%$'&��(�*)��+�,)	� �.- . Note
that there is no requirement of uniqueness in the database
for the elements of different "/� . One graphic document
can be associated with any number of text or music docu-
ments, though under this model, each association requires a
separate instance of " . We rely on a human expert to pro-
vide the groupings for each instance of " in the database.

Our multi-modal mixture model is as follows:" �10 2 �3�3457698: ;=<?>9@?ACBED FG 6.HI� <?> @?A � 0 BEDKJ HML N 69OI� <?> @?A � 0 BEDQPMR=SUT N�L V	WX 6 OI� <Y> 6 OI� <?>Z@YA � 0 
[) BEDKT]\ L R L N 6�^I� <?> @YA ! 0 BEDQ_ ^ L Na` (1)

where 2 $b& @?ACBED ) @?A � 0 BaD ) @YA � 0 BED ) @?A � 0 
�) BED ) @?A ! 0 BED - encom-



passes all the model parameters and where ��� A � ���  D ���
if the first entry of � � belongs to state � and is � other-
wise. The three-dimensional matrix @YA � 0 
�) BED denotes the
estimated probability of transitioning from state 
 to state� in cluster B , the matrix @YA � 0 BaD denotes the initial prob-
abilities of being in state � , given membership in clusterB . The vector @YA�BED denotes the probability of each cluster.
The two-dimensional matrices @?A � 0 BaD and @?A ! 0 BED denote the
probabilities of bin � and word ! in cluster B .
The mixture model is defined on the standard probability
simplex &�� B ) @?ACBED � � and � 6.8;=<Y> @?ACBED �	� - . We introduce
the latent allocation variables 
�����& � )����)�� ; - to indicate
that a particular sequence �?� belongs to a specific cluster B .These indicator variables &�
���� � ��� )����)���� - correspond
to an i.i.d. sample from the distribution @YA 
9� � BaD � @YA�BED .
This simple model is easy to extend. For browsing appli-
cations, we might prefer a hierarchical structure with levels�
:" �10 2 �3�U45 698: ;=<?>9@?ACBED 6��: � <?> @?A � 0 BED @YA � �10 B ) � D @YA � � 0 B ) � D @YA � � 0 B ) � D

(2)

This is still a multinomial model, but by applying appropri-
ate parameter constraints we can produce a tree-like brows-
ing structure (Barnard and Forsyth 2001). It is also easy to
formulate the model in terms of aspects and clusters as sug-
gested in (Hofmann 1999, Blei, Ng and Jordan 2002).

2.1 PRIOR SPECIFICATION

We follow a hierarchical Bayesian strategy, where the un-
known parameters 2 and the allocation variables 
 are re-
garded as being drawn from appropriate prior distributions.
We acknowledge our uncertainty about the exact form of
the prior by specifying it in terms of some unknown pa-
rameters (hyperparameters). The allocation variables 
9�
are assumed to be drawn from a multinomial distribution,
Z� 5�� 698 A � � @?A�BaDKD . We place a conjugate Dirichlet prior
on the mixing coefficients @?ACBED 5�� 698 A  D . Similarly, we
place Dirichlet prior distributions � 6 R A ! D on each @?A � 0 BED ,� 6 R A " D on each @YA � 0 
�) BED , � 6 ^ A # D on each @?A ! 0 BED , � 69H A $ Don each @?A � 0 BED , and assume that these priors are indepen-
dent.

The posterior for the allocation variables will be required.
It can be obtained easily using Bayes’ rule:% ; � $ @?A 
Z� � B 0 2 )K" � D � @?A " � 0 B ) 2 D @YA�B 0 2 D@?A " � 0 2 D& @?ACBED '( 69HI� <?> @YA � 0 BED J HML N 69OI� <?>Z@YA � 0 BED P=R=S3T N�L V[W69OI� <?> 69OI� <?> @?A � 0 
�) BED T \ L R L N 6 ^I� <?>�@?A ! 0 BED _ ^ L N )* (3)

3 COMPUTATION

The parameters of the mixture model cannot be computed
analytically unless one knows the mixture indicator vari-
ables. We have to resort to numerical methods. One can
implement a Gibbs sampler to compute the parameters and
allocation variables. This is done by sampling the parame-
ters from their Dirichlet posteriors and the allocation vari-
ables from their multinomial posterior. However, this algo-
rithm is too computationally intensive for the applications
we have in mind. Instead we opt for expectation maxi-
mization (EM) algorithms. We derive batch EM algorithms
for maximum likelihood (ML) and maximum a posteriori
(MAP) estimation. We also derive a very efficient on-line
EM algorithm, which can be interpreted as a quasi-Bayes
procedure (Smith and Makov 1978).

3.1 ML ESTIMATION WITH EM

After initialization, the EM algorithm for ML estimation
iterates between the following two steps:

1. E step: Compute the expectation of the com-
plete log-likelihood with respect to the dis-
tribution of the allocation variables + ML �,.- S0/21 J � T � _ � 354 old 6 W.7 8:9�; @YA 
 )	� )[� )	� 0 2 D=< , where 2 S old W
represents the value of the parameters at the previous
time step.

2. M step: Maximize over the parameters:2 S new W �?>�@ ;BA >DC3 + ML

The + ML function expands to

+ ML � 6�E:� <?> 6 8: ;=<Y> % ; � 809F; G @?ACBED 6.HI� <?> @?A � 0 BaD J H=L N69OI� <Y> @YA � 0 BaD P=R=S3T N�L VKW 69OI� <Y> 69OI� <?> @YA � 0 
[) BEDKT]\ L R L N 6 ^I� <?>�@YA ! 0 BEDK_ ^ L N ` 
In the E step, we have to compute

% ; � using equation (3).
The corresponding M step requires that we maximize + ML

subject to the constraints that all probabilities for the pa-
rameters sum up to 1. This constrained maximization can
be carried out by introducing Lagrange multipliers. The
resulting parameter estimates are:H@ ACBED � �� � 6�E:� <?> % ; �H@YA � 0 BED � � 6 E� <Y> � �K� � % ; �� 6 E� <Y> � �JI � � I � � % ; �H@ A � 0 BED � � 6 E� <Y> � � A � ���  D % ; �� 6 E� <?> % ; �



H@?A � 0 
�) BED � � 6 E� <?> � ��� �	� � % ; �� 6 E� <Y> � 6.O��I <?> � � � � I � � % ; �H@ A ! 0 BED � � 6 E� <Y> � � � � % ; �� 6 E� <Y> � � I � � I � � % ; �
3.2 MAP ESTIMATION WITH EM

The EM formulation for MAP estimation is straightfor-
ward. One simply has to augment the objective function
in the M step, + ML, by adding to it the log prior densities.
That is, the MAP objective function is+ MAP � , - S0/21 � � 354 old 6 W 7 809F; @?A 
 )	" ) 2 D=< � + ML � 8:9�; @YA 2 D
The MAP parameter estimates are:H@YA�BED �  ;�� � � � 6 E� <?> % ; �� 698; I <?>  ; I � � ; � ���H@YA � 0 BED � $ �K� ;�� � � � 6 E� <Y> �(�K� � % ; �� 69H� I <Y> $ � I � ;�� � � � � 6 E� <?> � � I �(� I � � % ; �H@?A � 0 BED � ! �	� ;�� � � � 6 E� <Y> �a� A �+���  D % ; �� 69O� I <?> ! � I � ; � ��� � � 6 E� <?> % ; �H@?A � 0 
�) BED � " � � �[� ;�� � � � 6 E� <?> ����� �	� � % ; �� 69O��I <?> " ��� ��IC� ;�� � � � � 6.O��I <?> � 6 E� <?> ����� ��I � � % ; �H@?A ! 0 BED � # � � ;�� � � � 6�E� <?> � � � � % ; �� 6�^� I <Y> # � I � ;�� � � � � 6FE� <?> � � I � � I � � % ; �
These expressions can also be derived by considering the
posterior modes and by replacing the cluster indicator vari-
able with its posterior estimate

% ; � . This observation opens
up room for various stochastic and deterministic ways of
improving EM.

3.3 ON-LINE EM ALGORITHM

The batch EM algorithms fail to scale well as the num-
ber of database entries becomes very large. To surmount
this problem, we derive an on-line EM algorithm. In this
setting, the training data are supplied one by one and the
model parameters are updated within each time frame using
the current data. A simpler version of this algorithm was
originally proposed as a quasi-Bayes procedure in (Smith
and Makov 1978). There, it was shown that the algorithm
can be interpreted as a stochastic approximation procedure
and, hence, it is possible to prove convergence in stationary
regimes like ours (Deylon, Lavielle and Moulines 1999).
This algorithm has been re-invented a few times in the ma-
chine learning literature (Sato 1999, Sato and Ishii 1998).

Let 2
	 denote the parameter after the � 	� observation " 	 .
We define ��� A " D � _ as the weighted mean of � A " D at time� with respect to the posterior probability of the cluster
allocation variables. Our goal is to derive online updates
for the sufficient statistics required to compute the model

parameters. The updates will be of the form

��� A " D � 	 � ��� A " D � 	�� >� � 	 A � A " 	 D % ; 	 � ��� A " D � 	�� > D
where � 	 denotes the learning rate and

% ; 	 $ @YA 
 	 �B 0 " 	 ) 2
	�� > D . As in the batch scenario, the E step involves
computing the posterior of the allocation variables:

% ; 	 & @?ACBED 	 '( 6 HI� <?> @?A � 0 BaD J H=L �	 6 OI� <Y>Z@YA � 0 BaD P R S3T V W �	
69OI� <?> 69OI� <?> @?A � 0 
�) BaD � \ L R L �	 6 ^I� <Y> @?A ! 0 BaD _ ^ L �	

)*
In the M step, we compute the parametersH@?ACBED 	 � � � � ; � 	H@YA � 0 BED 	 � �C�(� � ; � 	� � � �(� � ; � 	H@?A � 0 BED 	 � � ��� A �  D � ; � 	� � � ; � 	H@ A � 0 
[) BED 	 � �M����� � � ; � 	�J� � ��� � � � ; � 	H@?A ! 0 BED 	 � ��� � � ; � 	�J� � � � � ; � 	
where the online expectations are given by

� � � ; � 	 � � � � ; � 	�� > ��� > 	 7 % ; 	 � � � � ; � 	�� > <���(� � ; � 	 � �C�(� � ; � 	�� > ����� 	 7 �(�K� 	 % ; 	 � ���(� � ; � 	�� > <� : � � � � ; � 	 � � : � � � � ; � 	�� >
����� 	 G : � �(�K� 	 % ; 	 � � : � �(� � ; � 	�� > `

� � � � ; � 	 � ��� � � ; � 	�� > ����� 	 7 � � � 	 % ; 	 � ��� � � ; � 	�� > <� : � � � � ; � 	 � � : � � � � ; � 	�� >
���� 	 G : � � � � 	 % ; 	 � � : � � � � ; � 	�� > `

� �a� A �  D � ; � 	 � � �a� A �  D � ; � 	�� >����! 	 7 � � A �  D 	 % ; 	 � � � � A �  D � ; � 	�� > <�C� ��� � � ; � 	 � �M� � � � � ; � 	�� >����" 	 7 � ��� �	� 	 % ; 	 � �C� ��� � � ; � 	�� > <� : � � ��� � � ; � 	 � � : � � � � � � ; � 	�� >
� ��# 	

FG : � � � � �[� 	 % ; 	 � � : � � ��� � � ; � 	�� > $%
(4)



To ensure convergence, one should choose decaying learn-
ing rates � � 	 � A � � � ��� D � > . As shown in (Smith and Makov
1978), for the upate of

H@ ACBED , � and � are functions of the
Dirichlet hyperparameters. This suggests that one could
use the priors to specify the learning rates: we are currently
investigating this avenue.

Figure 3: Probability mass distribution across clusters dis-
covered from our test dataset using online EM.

4 EXPERIMENTS

To test the model with text, images and music, we clus-
tered on a database of musical scores with associated text
documents and JPEG images. The database is composed
of various types of musical scores – jazz, classical, tele-
vision theme songs, and contemporary pop and electronic
music – each of which has an associated text file and image
file, as represented by the combined media variable " � .
The scores are represented in GUIDO notation. The as-
sociated text files are a song’s lyrics, where applicable, or
textual commentary on the score for instrumental pieces,
all of which were extracted from the World Wide Web. The
image file for each piece is an image of the cover of the CD
on which the song appears.

The experimental database contains 100 scores, each with a
single associated text document and image. There is noth-
ing in the model, however, that requires this one-to-one
association of text documents and scores – this was done
solely for testing and pedagogical simplicity. In a deploy-
ment such as the world wide web, one would routinely ex-
pect one-to-many or many-to-many mappings between the
scores and text.

We tested our database with the various versions of EM de-
scribed above. We found that standard batch ML EM gave
the least satisfactory results, distributing probability mass
across the maximum number of clusters in a nondetermin-
istic fashion. Batch MAP and online EM give better results,
and regularize to a smaller number of more intuitive clus-

CLUSTER SONG
�����

1 The Beatles – Good Day Sunshine 0.1667
1 other – ’The Addams Family’ theme 0.0043
2 J. S. Bach – Invention #1 1.0000
2 J. S. Bach – Invention #2 1.0000
2 other – ’The Jetsons’ Theme 1.0000
...

...
...

3 Nine Inch Nails – Down In It 1.0000
3 Nine Inch Nails – The Perfect Drug 0.9998
3 Nine Inch Nails – Wish 1.0000
...

...
...

4 The Cure – 10:15 Saturday Night 1.0000
4 Moby – Flower 0.6667
4 other – ’The Addams Family’ theme 0.9957
...

...
...

5 The Smiths – Girlfriend in a Coma 1.0000
5 The Cure – Push 0.9753
5 Nine Inch Nails – The Perfect Drug 0.0002
...

...
...

7 The Prodigy – One Love 1.0000
7 PJ Harvey – Down by the Water 1.0000
7 Rogers & Hart – Blue Moon 1.0000
...

...
...

8 Soft Cell – Tainted Love 1.0000

Figure 4: Representative probabilistic cluster allocations
using ML estimation via online EM.

ters. There is little difference in the clusters found by batch
MAP and online EM. In our experiments, we found online
EM to run in significantly less time than batch EM, and
online EM is the clustering method used in the following
sections. Figures 3 and 4 show some representative cluster
probability assignments obtained with online EM estima-
tion.

By and large, the clusters are intuitive. The 15 pieces by J.
S. Bach each have very high (@ � �  �	�	� ) probabilities of
membership in the same cluster, as do the 13 pieces from
the band Nine Inch Nails. A few curious anomalies exist.
The theme song to the television show The Jetsons is in-
cluded in the same cluster as the Bach pieces, for example.

4.1 DEMONSTRATING THE UTILITY OF
MULTI-MODAL QUERIES

A major intended use of the text-score-image model is
for searching documents on a combination of text, im-
ages and/or music. Consider a hypothetical example, us-
ing text and music only: A music fan is struggling to recall
a dimly-remembered song with a strong repeating single-
pitch, dotted-eight-note/sixteenth-note bass line, and lyrics
containing the words “come on, get down.” We can use
our database non-probabilistically to find all instances of" � for which � � contains all the words at least once and�+� contains each of the desired transitions at least once.



QUERY RETRIEVED SONGS

“come on, get down” Erksine Hawkins – Tuxedo
Junction

Moby – Bodyrock
Nine Inch Nails – Last
Sherwood Schwartz – ‘The
Brady Bunch’ theme song

The Beatles – Got to Get You
Into My Life

The Beatles – I’m Only Sleeping
The Beatles – Yellow Submarine
Moby – Bodyrock
Moby – Porcelain
Gary Portnoy – ‘Cheers’ theme
song

Rodgers & Hart – Blue Moon

“come on, get down” Moby – Bodyrock

Figure 5: Examples of query matches, using only text, only
musical notes, and both text and music. The combined
query is more precise.

A search on the text portion alone turns up four documents
which have matching lyrics. A search on the notes alone
returns seven documents which have matching transitions.
But a combined search returns only the correct document
(figure 5).

4.2 PROBABILISTIC QUERYING

While retrieving documents on a deterministic, ‘all-or-
nothing’ basis can be useful for small datasets, or on very
precise queries, it is often desirable for a query to return not
a complete subset of matching responses, but an arbitrary
number of ranked responses. This also allows us to query
using graphic files as input.

To perform a probabilistic multimodal query, we sim-
ply sample probabilistically without replacement from the
clusters. A query + is composed of one or more media – a
text string + _ , a series of musical transitions + T , and/or
an image + J . The probability of sampling from each clus-
ter, @YA�B 0 + D , is computed using equation 3, and assigning a
value of 1 to any multinomial probability modeling a non-
occurring medium. Sampling probabilistically from clus-
ters allows us to search the database without checking ev-
ery entry.

In each iteration 
 , a cluster B is selected by randomly sam-

pling from @YA�B 0 + D , and the matching criteria are applied
against each instance of "/� for which @?A "/� 0 BaD ��� in
which � is some small threshold to ensure that we do not
inefficiently examine documents with negligible degrees of
membership in the cluster. The matching criteria consists
of using each instance of " as a generative multinomial
model, and calculating @?A + 0 " � D .
@YA + 0 " � D � 69HI� <?> � �(�K� � � ! J � �� 69H� I <Y> 7 � � I � � � ! J � � <

����� L H
69OI� <?>�� � �[� � � ! T � �� 6.O��I <?> 7 � � I � � � ! T � � <
	 PMR=S ��� L V W69OI� <?> 69OI� <?>�� ����� �	� � � ! T � �� 69O� I <?> 7 � � I � � � ! T � � < 	

��� L \ L R6 ^I� <?> � � � � � � ! _ � �� 6 ^� I <?> 7 � � I � � � ! _ � � <
���� L ^ (5)

! J ) ! T ) and
! _ are independent conjugate Dirichlet pri-

ors, typically very close to one. The selected " � is then> @ ; A >DC � @?A + 0 " � D . Once selected, a given " � cannot be
reselected. If this results in a cluster no longer having any
values of " � such that @?A " � 0 BaD ��� , the cluster is assigned
a probability of zero and the remaining cluster probabilities
are renormalized.

Figure 6: Precision-recall curve showing average results,
over 1000 randomly-generated queries, combining music
and text matching criteria (solid line), and music, text and
image criteria (dashed).

4.3 PRECISION AND RECALL

We evaluated our retrieval system with randomly generated
queries. In our first evaluation, we defined a query + as



INPUT CLOSEST MATCH

J. S. Bach – Toccata and Fugue in D Minor (score) J. S. Bach – Invention #5
Nine Inch Nails – Closer (score & lyrics) Nine Inch Nails – I Do Not Want This
T. S. Eliot – The Waste Land (text poem) The Cure – One Hundred Years

Figure 7: The results of associating songs in the database with other text and/or musical input. The input is clustered
probabilistically and then associated with the existing song that has the least Euclidean distance in that cluster. The
association of The Waste Land with The Cure’s thematically similar One Hundred Years is likely due to the high co-
occurrence of relatively uncommon words such as water, death, and year(s).

composed of a random series of 1 to 5 note transitions, + Tand 1 to 5 words, + _ . We then determine the actual num-
ber of matches � in the database, where a match is defined
as a song " � such that all elements of + T and + _ have
a frequency of 1 or greater. In order to avoid skewing the
results by using unrealistically narrow or broad queries, we
reject any query that has ����� or � ��� � .

For the second experiment, we included a random image
histogram representation, + J . The nature of our model
required us to arbitrarily determine a query generation
method and matching criteria. To generate this histogram,
we selected a random image from the set of "#� for which
the corresponding � � and � � match the generated + _ and+ T , and then sampled from a Gaussian in which the means
were equal to the bins of the selected image and using the
covariance matrix of all the images in the database. Two
images are considered a match if the Euclidean distances
between them is � �  � .
We then sampled probabilistically from a set of clusters
discovered with online EM, using equation 5 to find re-
sults. Based on previous experiments, we set the Dirich-
let priors at

! J � �  � , ! _ � �  � � and
! T � �  ���F� � .

Once all the matches were returned, we computed the stan-
dard precision-recall curve (Baeza-Yates and Ribeiro-Neto
1999), as shown in figure 6. Our querying method enjoys a
high precision until recall is approximately �F��� , and expe-
riences a relatively modest deterioration of precision there-
after.

4.4 ASSOCIATION

The probabilistic nature of our approach allows us the flex-
ibility to use our techniques and database for tasks beyond
traditional querying. One of the more promising avenues
of exploration is associating documents with each other
probabilistically. This could be used, for example, to find
suitable songs for web sites or presentations (matching on
text), or for recommending songs similar to one a user en-
joys (matching on scores).

Given an entire input document as a query, + , we first
cluster + by finding the most likely cluster as determined
by computing >�@ ;BA > C ; @?ACB 0 + D (equation 3). Input docu-

QUERY RETRIEVED SONGS	�
���
other – ‘The Jetsons’ theme song
Nine Inch Nails – Burn
R.E.M. – Man on the Moon	�
����
The Smiths – Girlfriend in a Coma
Joy Division – Love Will Tear Us Apart
The Beatles - I’m Only Sleeping	�
����
The Smiths – How Soon is Now?
Moby – Alone
The Smiths – Bigmouth Strikes Again	�
 ��� 
�� � 
 � �
The Smiths – Girlfriend in a Coma
The Smiths – Bigmouth Strikes Again
The Smiths – How Soon is Now?

Figure 8: The results of the experiment described in the
text. The song “The Boy With the Torn in His Side” by
The Smiths was represented by text (lyrics), music (score),
and image (album cover shown in figure 1), as a query&D+ J ) + T )5+ _ - . Shown are the top three matches for each
component separately, and for all three together. The best
results are achieved when all three media are submitted in
the query.

ments containing text or music only can be clustered using
only those components of the database. Input documents
that combine text and music are clustered using all the data.
Once the input document has been clustered, we can find its
closest association by computing the distance from the in-
put document to the other document vectors in the cluster.
The distance can be defined in terms of matches, Euclidean
measures, or cosine measures after carrying out latent se-
mantic indexing (Deerwester, Dumais, Furnas, Landauer
and Harshman 1990). A few selected examples of associa-
tions found in our database in this way are shown in figure
7. The results are often reasonable, though unexpected be-
havior occasionally occurs.

As a demonstration of the power of this approach, we tested
the retrieval algorithm using as input the song “The Boy
With the Thorn in His Side” by The Smiths. The musical
portion + T is extracted from a GUIDO file, which was
generated from a MIDI file. The text portion + _ is a based
on the song’s lyrics. The image histogram + J is derived
from the cover of the album on which the song appears (fig-
ure 1). This song was intentionally chosen for this demon-
stration, as all the images associated with the songs in the



Figure 9: CD cover art that matched the queries in figure
8. Clockwise from top left: “Girlfriend in a Coma,” “How
Soon is Now?,” “Alone,” “Bigmouth Strikes Again.” The
album by Moby is incorrectly returned when the query is
based on the image in figure 1 alone. When music and text
information is added, only the three albums by The Smiths
are returned.

database are also the CD cover art for the songs, and many
albums from The Smiths feature high-contrast black-and-
white cover photographs.

Using various elements of the set of variables&D+ J ) + T )5+ _ - , we ran the query algorithm as pre-
sented in section 4.2. The top three ranked results of each
trial are shown in figure 8. The various images that were
matched in the trials are shown in figure 9.

5 CONCLUSIONS

We feel that the probabilistic approach to querying on mu-
sic, text and images presented here is powerful, flexible,
and novel, and suggests many interesting areas of future
research. One immediate goal is to test this approach on
larger databases. In the future, we should be able to incor-
porate audio by extracting suitable features from the sig-
nals. This will permit querying by singing, humming, or
via recorded music. Segmentation and feature extraction
can be used to model images in a more sophisticated man-
ner, and other media, such as video.
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