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Abstract

MCMC methods for sampling from the space of
DAGs can mix poorly due to the local nature of
the proposals that are commonly used. It has
been shown that sampling from the space of node
orders yields better results [FK03, EW06]. Re-
cently, Koivisto and Sood showed how one can
analytically marginalize over orders using dy-
namic programming (DP) [KS04, Koi06]. Their
method computes the exact marginal posterior
edge probabilities, thus avoiding the need for
MCMC. Unfortunately, there are four drawbacks
to the DP technique: it can only use modular
priors, it can only compute posteriors over modu-
lar features, it is difficult to compute a predictive
density, and it takes exponential time and space.
We show how to overcome the first three of these
problems by using the DP algorithm as a pro-
posal distribution for MCMC in DAG space. We
show that this hybrid technique converges to the
posterior faster than other methods, resulting in
more accurate structure learning and higher pre-
dictive likelihoods on test data.

1 Introduction

Directed graphical models are useful for a variety of tasks,
ranging from density estimation to scientific discovery.
One of the key challenges is to learn the structure of these
models from data. Often (e.g., in molecular biology) the
sample size is quite small relative to the size of the hy-
pothesis space. In such cases, the posterior over graph
structures given data, p(G|D), gives support to many pos-
sible models, and using a point estimate (such as MAP)
could lead to unwarranted conclusions about the structure,
as well as poor predictions about future data. It is there-
fore preferable to use Bayesian model averaging. If we are
interested in the probability of some structural feature f
(e.g., f(G) = 1 if there is an edge from node i to j and

f(G) = 0 otherwise), we can compute posterior mean es-
timate E(f |D) =

∑
G f(G)p(G|D). Similarly, to predict

future data, we can compute the posterior predictive distri-
bution p(x|D) =

∑
G p(x|G)p(G|D).

Since there are O(d!2(d
2)) DAGs (directed acyclic graphs)

on d nodes [Rob73], exact Bayesian model averaging is
intractable in general.1 Two interesting cases are when it
is tractable are averaging over trees [MJ06] and averag-
ing over graphs given a known node ordering [DC04]. If
the ordering is unknown, we can use MCMC techniques
to sample orders, and sample DAGs given each such or-
der [FK03, EW06, HZ05]. However, Koivisto and Sood
[KS04, Koi06] showed that one can use dynamic program-
ming (DP) to marginalize over orders analytically. This
technique enables one to compute all marginal posterior
edge probabilities, p(Gij = 1|D), exactly in O(d2d) time.
Although exponential in d, this technique is quite practical
for d ≤ 20, and is much faster than comparable MCMC
algorithms on similar sized problems2

Unfortunately, the DP method has three fundamental limi-
tations, even for small domains. The first problem is that it
can only be used with certain kinds of graph priors which
satisfy a “modularity” condition, which we shall explain in
Section 3 below. Although this seems like a minor tech-
nical problem, it can result in significant bias. This can
lead to unwarranted conclusions about structure, even in
the large sample setting, as we shall see below. The second
problem is that it can only compute posteriors over modu-
lar features; thus it cannot be used to compute the proba-
bility of features like “is there a path between nodes i and
j via k”, or “is i an ancestor of j”. Such long-distance fea-
tures are often of more interest than direct edges. The third
problem is that it is expensive to compute predictive densi-

1For example, the number of DAGs on d nodes for d = 2 : 9
are 3, 25, 543, 29281, 3781503, 1.1e9, 7.8e11, 1.2e15.

2Our Matlab/C implementation takes 1 second for d = 10
nodes and 6 minutes for d = 20 nodes on a standard laptop. The
cost is dominated by the marginal likelihood computation, which
all algorithms must perform. Our code is freely available at www.
cs.ubc.ca/˜murphyk/StructureLearning.



ties, p(x|D). Since the DP method integrates out the graph
structures, it has to keep all the training data D around, and
predict using p(x|D) = p(x,D)/p(D). Both terms can
be computed exactly using DP, but this requires re-running
DP for each new test case x. In addition, since the DP algo-
rithm assumes complete data, if x is incompletely observed
(e.g., we want to “fill in” some of it), we must run the DP
algorithm potentially an exponential number of times. For
the same reason, we cannot sample from p(x|D) using the
DP method.

In this paper, we propose to fix all three of these short-
comings by combining DP with the Metropolis Hastings
(MH) algorithm. The basic idea is simply to use the DP
algorithm as an informative (data driven) proposal distri-
bution for moving through DAG space, thereby getting
the best of both worlds: a fast deterministic approxima-
tion, plus unbiased samples from the correct posterior,
Gs ∼ p(G|D). These samples can then be used to com-
pute the posterior mean of arbitrary features, E[f |D] ≈
1
S

∑S
s=1 f(Gs), or the posterior predictive distribution,

p(x|D) ≈ 1
S

∑S
s=1 p(x|Gs). Below we will show that

this hybrid method produces much more accurate estimates
than other approaches, given a comparable amount of com-
pute time.

The idea of using deterministic algorithms as a proposal
has been explored before e.g. [dFHSJR01], but not, as far
as we know, in the context of graphical model structure
learning. Further, in contrast to [dFHSJR01], our proposal
is based on an exact algorithm rather than an approximate
algorithm.

2 Previous work

The most common approach to estimating (features of) the
posterior p(G|D) is to use the Metropolis Hastings (MH)
algorithm, using a proposal that randomly adds, deletes or
reverses an edge; this has been called MC3 for Markov
Chain Monte Carlo Model Composition [MY95]. (See also
[GC03] for some improvements, and [MR94] for a related
approach called Occam’s window [MR94].) Unfortunately,
this proposal is very local, and the resulting chains do not
mix well in more than about 10 dimensions. An alter-
native is to use Gibbs sampling on the adjacency matrix
[MKTG06]. In our experience, this gets “stuck” even more
easily, although this can be ameliorated somewhat by using
multiple restarts, as we will see below.

A different approach, first proposed in [FK03], is to sample
in the space of node orderings using MH, with a proposal
that randomly swaps the ordering of nodes. For example,

(1, 2, 3, 4, 5, 6) → (1, 5, 3, 4, 2, 6)

where we swapped 2 and 5. This is a smaller space (“only”
O(d!)), and is “smoother”, allowing chains to mix more

easily. [FK03] provides experimental evidence that this ap-
proach gives much better results than MH in the space of
DAGs with the standard add/ delete/ reverse proposal. Un-
fortunately, in order to use this method, one is forced to
use a modular prior, which has various undesirable conse-
quences that we discuss below (see Section 3). Ellis and
Wong [EW06] realised this, and suggested using an im-
portance sampling correction. However, computing the ex-
act correction term is #P-hard, and we will see below that
their approximate correction yields inferior results to our
method.

An alternative to sampling orders is to analytically inte-
grate them out using dynamic programming (DP) [KS04,
Koi06]. We do not have space to explain the DP algo-
rithm in detail, but the key idea is the following: when
considering different variable orderings — say (3, 2, 1) and
(2, 3, 1) — the contribution to the marginal likelihood for
some nodes can be re-used. For example, p(X1|X2, X3) is
the same as p(X1|X3, X2), since the order of the parents
does not matter. By appropriately caching terms, one can
devise an O(d!2d) algorithm to exactly compute the margi-
nal likelihood and marginal posterior features.

To compute the posterior predictive density, p(x|D), the
standard approach is to use a plug-in estimate p(x|D) ≈
p(x|Ĝ(D)). Here Ĝ may be an approximate MAP esti-
mate computed using local search [HGC95], or the MAP-
optimal DAG which can be found by the recent algorithm
of [SM06] (which unfortunately takes O(d!2d) time.) Al-
ternatively, Ĝ could be a tree; this is a popular choice for
density estimation since one can compute the optimal tree
structure in O(d2 log d) time [CL68, MJ00].

It can be proven that averaging over the uncertainty in
G will, on average, produce higher test-set predictive
likelihoods [MGR95]. The DP algorithm can compute
the marginal likelihood of the data, p(D) (marginaliz-
ing over all DAGs), and hence can compute p(x|D) =
p(x, D)/p(D) by calling the algorithm twice. (We only
need the “forwards pass” of [KS04], using the feature
f = 1; we do not need the backwards pass of [Koi06].)
However, this is very expensive, since we need to compute
the local marginal likelihoods for every possible family on
the expanded data set for every test case x. Below we will
show that our method gives comparable predictive perfor-
mance at a much lower cost, by averaging over a sample of
graphs.

3 Modular priors

Some of the best current methods for Bayesian structure
learning operate in the space of node orders rather than the
space of DAGs, either using MCMC [FK03, EW06, HZ05]
or dynamic programming [KS04, Koi06]. Rather than be-
ing able to define an arbitrary prior on graph structures
p(G), methods that work with orderings define a joint prior



over graphs G and orders ≺ as follows:

p(≺, G) =
1
Z

d∏

i=1

qi(U≺
i )ρi(Gi)× I(consistent(≺, G))

where Ui is the set of predecessors (possible parents) for
node i in ≺, and Gi is the set of actual parents for node i.
We say that a graph structure G = (G1, . . . , Gd) is con-
sistent with an order (U1, . . . , Ud) if Gi ⊆ Ui for all i.
(In addition we require that G be acyclic, so that ≺ exists.)
Note that Ui and Gi are not independent. Thus the qi and ρi

terms can be thought of as factors or constraints, which de-
fine the joint prior p(≺, G). This is called a modular prior,
since it decomposes into a product of local terms. It is im-
portant for computational reasons that ρi(Gi) only give the
prior weight to sets of parents, and not to their relative or-
der, which is determined by qi(Ui).

From the joint prior, we can infer the marginal prior over
graphs, p(G) =

∑
≺ p(≺, G). Unfortunately, this prior fa-

vors graphs that are consistent with more orderings. For
example, the fully disconnected graph is the most proba-
ble under a modular prior, and trees are more probable than
chains, even if they are Markov equivalent (e.g., 1←2→3 is
more probable than 1→2→3). This can cause problems for
structural discovery. To see this, suppose the sample size is
very large, so the posterior concentrates its mass on a sin-
gle Markov equivalence class. Unfortunately, the effects of
the prior are not “washed out”, since all graphs with the
equivalence class have the same likelihood. Thus we may
end up predicting that certain edges are present due to arte-
facts of our prior, which was merely chosen for technical
convenience.

In the absence of prior knowledge, one may want to use
a uniform prior over DAGs3. However, this cannot be en-
coded as a modular prior. To see this, let us use a uni-
form prior over orderings, qi(Ui) = 1, so p(≺) = 1/(d!).
This is reasonable since typically we do not have prior
knowledge on the order. For the parent factors, let us use
ρi(Gi) = 1; we call this a “modular flat” prior. How-
ever, this combination is not uniform over DAGs after we
sum over orderings: see Figure 1. A more popular alter-
native (used in [KS04, Koi06, FK03, EW06]) is to take
ρi(Gi) ∝

(
d−1
|Gi|

)−1
; we call this the “Koivisto” prior. This

prior says that different cardinalities of parents are consid-
ered to be equally likely a priori. However, the resulting
p(G) is even further from uniform: see Figure 1.

Ellis and Wong [EW06] recognized this problem, and tried
to fix it as follows. Let p∗(G) = 1

Z

∏
i ρ∗i (G) be the de-

sired prior, and let p(G) be the actual modular prior im-
plied by using ρ∗i and qi = 1. We can correct for the bias

3One could argue that we should use a uniform over PDAGs,
but we will often be concerned with learning causal models from
interventional data, in which case we have to use DAGs.

Modular-Flat: KL from uniform = 0.56

Ellis: KL from uniform = 1.03

Koivisto: KL from uniform = 2.82
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Figure 1: Some priors on all 29,281 DAGs on 5 nodes.
Koivisto prior means using ρi(Gi) ∝

(
d−1
|Gi|

)−1
. Ellis prior

means the same ρi, but dividing by the number of consis-
tent orderings for each graph (computed exactly). Modular
flat means using ρi(Gi) ∝ 1. This is the closest to uniform
in terms of KL distance, but will still introduce artifacts. If
we use ρi(Gi) ∝ 1 and divide by the number of consistent
orders. we will get a uniform distribution, but computing
the number of consistent orderings is #P-hard.

by using an importance sampling weight given by

w(G) =
p∗(G)
p(G)

=
1
Z

∏
i ρ∗i (Gi)∑

≺
1
Z

∏
i ρ∗i (Gi)I(consistent(≺, G))

If we set ρ∗i = 1 (the modular flat prior), then this becomes

w(G) =
1∑

≺ I(consistent(≺, G)

Thus this weighting term compensates for overcounting
certain graphs, and induces a globally uniform prior,
p(G) ∝ 1. However, computing the denominator (the
number of orders consistent with a graph) is #P-complete
[BW91]. Ellis and Wong approximated this sum using
the sampled orders, w(G) ≈ 1∑S

s=1 I(consistent(≺s,G))
.

However, these samples ≺s are drawn from the posterior
p(≺ |D), rather than the space of all orders, so this is not
an unbiased estimate. Also, they used ρi(Gi) ∝

(
d−1
|Gi|

)−1
,

rather than ρi = 1, which still results in a highly non uni-
form prior, even after exact reweighting (see Figure 1). In
contrast, our method can cheaply generate samples from an
arbitrary prior.

4 Our method

As mentioned above, our method is to use the Metropolis-
Hastings algorithm with a proposal distribution that is a



mixture of the standard local proposal, that adds, deletes
or reverses an edge at random, and a more global proposal
that uses the output of the DP algorithm:

q(G′|G) =
{

qlocal(G′|G) w.p. β
qglobal(G′) w.p. 1− β

The local proposal chooses uniformly at random from all
legal single edge additions, deletions and reversals. De-
note the set of acyclic neighbors generated in this way by
nbd(G). We have

qlocal(G′|G) =
1

|nbd(G)|I(G′ ∈ nbd(G))

The global proposal includes an edge between i and j with
probability pij+pji ≤ 1, where pij = p(Gij |D) are the ex-
act marginal posteriors computed using DP (using a modu-
lar prior). If this edge is included, it is oriented as i→j w.p.
qij = pij/(pij + pji), otherwise it is oriented as i←j. Af-
ter sampling each edge pair, we check if the resulting graph
is acyclic. (The acyclicity check can be done in amortized
constant time using the ancestor matrix trick [GC03].) This
leads to

qglobal(G′) =


∏

i

∏

j>i

(pij + pji)I(G′ij+G′ji>0)




×

∏

ij

q
I(G′ij=1)

ij


 I(acyclic(G′))

We can then accept the proposed move with probability

α = min
(

1,
p(D|G′)p(G′)
p(D|G)p(G)

q(G|G′)
q(G′|G)

)

If we set β = 1, we get the standard local proposal. If
we set β = 0, we get a purely global proposal. Note
that qglobal(G′) is independent of G, so this is an indepen-
dence sampler. We tried various other settings of β (in-
cluding adapting it according to a fixed schedule), which
results in performance somewhere in between purely local
and purely global.

For β > 0 the chain is aperiodic and irreducible, since the
local proposal has both properties [RC04, MY95]. How-
ever, if β = 0, the chain is not necessarily aperiodic and ir-
reducibile, since the global proposal may set pij = pji = 0.
This problem is easily solved by truncating edge marginals
which are too close to 0 or 1, and making the appropriate
changes to qglobal(G′). Specifically, any pij < C is set to
C, while pij > 1−C are set to 1−C. We used C = 1e−4
in our experiments.

In this paper, we assume all the conditional probability
distributions (CPDs) are multinomials (tables), p(Xi =
k|XGi = j, θ) = θijk. We make the usual assump-
tions of parameter independence and modularity [HGC95],
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Figure 2: SAD error vs running time on the 5 node Cancer
network. The Gibbs sampler performs poorly, therefore we
replot the graph with it removed (bottom figure). Note that
140 seconds corresponds to about 130,000 samples from
the hybrid sampler. The error bars (representing one stan-
dard deviation across 25 chains starting in different condi-
tions) are initially large, because the chains have not burned
in. This figure is best viewed in colour.

and we use uniform conjugate Dirichlet priors θij ∼
Dir(αi, . . . , αi), where we set αi = 1/(qiri), where qi

is the number of states for node Xi and ri is the number
of states for the parents XGi . The resulting marginal like-
lihood,

p(D|G) =
∏

i

p(Xi|XGi)

=
∏

i

∫
[
∏
n

p(Xn,i|Xn,Gi , θi)]p(θi|Gi)dθi

can be computed in closed form, and is called the BDeu
(Bayesian Dirichlet likelihood equivalent uniform) score
[HGC95]. We use AD trees [ML98] to compute these terms
efficiently. Note that our technique can easily be extended
to other CPDs, provided p(Xi|XGi) can be computed or
approximated (e.g., using BIC).

5 Experimental results

5.1 Speed of convergence to the exact posterior
marginals

In this section we compare the accuracy of different al-
gorithms in estimating p(Gij = 1|D) as a function of
their running time, where we use a uniform graph prior
p(G) ∝ 1. (Obviously we could use any other prior or
feature of interest in order to assess convergence speed, but
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Figure 3: Similar to Figure 2, but on the 6 node CHD
dataset.
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Figure 4: Area under the ROC curve (averaged over 10
MCMC runs) for detecting edge presence for different
methods on the d = 20 node child network with n = 10k
samples using 200 seconds of compute time. The AUC of
the exact DP algorithm is indistinguishable from the global
method and hence is not shown.
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Figure 5: Area under the ROC curve (averaged over 10
MCMC runs) for detecting path presence for different
methods on the d = 20 node child network with n = 10k
samples using 200 seconds of compute time.

this seemed like a natural choice, and enables us to com-
pare to the raw output of DP.) Specifically, we compute the
sum of absolute differences (SAD), St =

∑
ij |p(Gij =

1|D) − qt(Gij = 1|D)|, versus running time t, where
p(Gij = 1|D) are the exact posterior edge marginals (com-
puted using brute force enumeration over all DAGs) and

qt(Gij |D) is the approximation based on samples up to
time t. We compare 5 MCMC methods: Gibbs sampling
on elements of the adjacency matrix, purely local moves
through DAG space (β = 1), purely global moves through
DAG space using the DP proposal (β = 0, which is an inde-
pendence sampler), a mixture of local and global (probabil-
ity of local move is β = 0.1), and an MCMC order sampler
[FK03] with Ellis’ importance weighting term.4 (In the fig-
ures, these are called as follows: β = 1 is “Local”, β = 0
is “Global”, β = 0.1 is “Hybrid”.) In our implementation
of the order sampler, we took care to implement the var-
ious caching schemes described in [FK03], to ensure a fair
comparison. However, we did not use the sparse candidate
algorithm or any other form of pruning.

For our first experiment, we sampled data from the 5 node
“cancer network” of [FMR98] and then ran the different
methods. In Figure 2, we see that the DP+MCMC samplers
outperform the other samplers. We also consider the well-
studied coronary heart disease (CHD) dataset [Edw00].
This consists of about 200 cases of 6 binary variables,
encoding such things as “is your blood pressure high?”,
“do you smoke?”, etc. In Figure 3, we see again that our
DP+MCMC method is the fastest and the most accurate.

5.2 Structural discovery

In order to assess the scalability of our algorithm, we next
looked at data generated from the 20 node “child” network
used in [TBA06]. We sampled n = 10, 000 records using
random multinomial CPDs sampled from a Dirichlet, with
hyper-parameters chosen by the method of [CM02] (which
ensures strong dependencies between the nodes). We then
compute the posterior over two kinds of features: edge fea-
tures, fij = 1 if there is an edge between i and j (in ei-
ther orientation), and path features, fij = 1 if there is a
directed path from i to j. (Note that the latter cannot be
computed by DP; to compute it using the order sampler
of [FK03] requires sampling DAGs given an order.) We
can no longer compare the estimated posteriors to the exact
posteriors (since d = 20), but we can compare them to the
ground truth values from the generating network. Follow-
ing [Hus03, Koi06], we threshold these posterior features
at different levels, to trade off sensitivity and specifity. We
summarize the resulting ROC curves in a single number,
namely area under the curve (AUC).

The results for edge features are shown in Figure 4. We
see that the DP+MCMC methods do very well at recov-
ering the true undirected skeleton of the graph, obtaining
an AUC of 1.0 (same as the exact DP method). We see that
our DP+MCMC samplers are significantly better (at the 5%
level) than the DAG sampler and the order sampler. The or-

4Without the reweighting term, the MCMC order sampler
[FK03] would give the same results (as measured by SAD) as
the DP method [KS04, Koi06], only much, much slower.
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Figure 6: Test set likelihood vs training time on the syn-
thetic d = 15, N = 1500 dataset. The bottom figure
presents the “good” algorithms in higher detail by remov-
ing the poor performers. Results for the factored model
are an order of magnitude worse and therefore not plotted.
Note that the DP algorithm actually took over two hours to
compute.

der sampler does not do as well as the others, for the same
amount of run time, since each sample is more expensive
to generate.

The results for path features are shown in Figure 5. Again
we see that the DP+MCMC method (using either β = 0
or β = 0.1) yields statistically significant improvement (at
the 5% level) in the AUC score over other MCMC methods
on this much harder problem.

5.3 Accuracy of predictive density

In this section, we compare the different methods in terms
of the log loss on a test set:

` = E log p(x|D) ≈ 1
m

m∑

i=1

log p(xi|D)

where m is the size of the test set and D is the training set.
This is the ultimate objective test of any density estimation
technique, and can be applied to any dataset, even if the
“ground truth” structure is not known. The hypothesis that
we wish to test is that methods which estimate the posterior
p(G|D) more accurately will also perform better in terms
of prediction. We test this hypothesis on three datasets:
synthetic data from a 15-node network, the “adult” US cen-
sus dataset from the UC Irvine repository and a biologi-
cal dataset related to the human T-cell signalling pathway
[SPP+05].

In addition to DP and the MCMC methods mentioned
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Figure 7: Test set log likelihood vs training time for the
d = 14,N = 49k “Adult” dataset. DP algorithm actu-
ally took over 350 hours to compute. The factored and
maximum likelihood tree results are omitted since they are
many orders of magnitude worse and ruin the graph’s verti-
cal scale.
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Figure 8: Test set log likelihood vs training time on the
d = 11,N = 5400 T-cell data. DP algorithm actually took
over 90 hours to compute. The factored model and optimal
tree plugins are again omitted for clarity. The bottom part
of the figure is a zoom in of the best methods.



above, we also measured the performance of plug-in esti-
mators consisting of: a fully factorized model (the discon-
nected graph), the maximum likelihood tree [CL68], and
finally the MAP-optimal DAG gotten from the algorithm
of [SM06]. We measure the likelihood of the test data as
a function of training time, `(t). That is, to compute each
term in ` we use p(xi|D) = 1

St

∑St

s=1 p(xi|Gs), where St

is the number of samples that can be computed in t seconds.
Thus a method that mixes faster should produce better es-
timates. Note that, in the Dirichlet-multinomial case, we
can quickly compute p(x|Gs) by plugging in the posterior
mean parameters:

p(x|Gs) =
∏

ijk

θ
I(xi=j,xGi

=k)

ijks

where θijks = E[θijk|D, Gs]. If we have missing data, we
can use standard Bayes net inference algorithms to com-
pute p(x|Gs, θ).

In contrast, for DP, the “training” cost is computing the
normalizing constant p(D), and the test time cost involves
computing p(xi|D) = p(xi, D)/p(D) for each test case xi

separately. Hence we must run the DP algorithm m times to
compute ` (each time computing the marginal likelihoods
for all families on the augmented data set xi, D). DP is
thus similar to a non-parametric method in that it must keep
around all the training data, and is expensive to apply at
run-time. This method becomes even slower if x is missing
components: suppose k binary features are missing, then
we have to call the algorithm 2k times to compute p(x|D).

For the first experiment, we generated several random net-
works, sampling the nodes’ arities u.a.r. from between
2-4 and the parameters from a Dirichlet. Next, we sam-
pled 100d records (where d is the number of nodes) and
performed 10-fold cross-validation. Here, we just show
results for a 15-node network, which is representative of
the other synthetic cases. Figure 6 plots the mean predic-
tive likelihood across cross-validation folds and 5 indepen-
dent sampler runs against training time. On the zoomed
plot at the bottom, we can see that the hybrid and global
MCMC methods are significantly better than order sam-
pling. Furthermore, they seem to be better than exact DP,
which is perhaps being hurt by its modular prior. All
of these Bayes model averaging (BMA) methods (except
Gibbs) significantly beat the plugin estimators, including
the MAP-optimal structure.

In the next experiment we used the “adult” US census
dataset, which consists of 49,000 records with 14 attributes,
such as “education”, “age”, etc. We use the discretized ver-
sion of this data as previously used in [MW03]. The aver-
age arity of the variables is 7.7. The results are shown in
Figure 7. The most accurate method is DP, since it does ex-
act BMA (although using the modular prior), but it is also
the slowest. Our DP+MCMC method (with β = 0.1) pro-
vides a good approximation to this at a fraction of the cost
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Figure 9: 4 traceplots of training set likelihood for each
sampler on the adult dataset, starting from different values.
The bottom-right figure combines runs from the order and
global samplers and shows the behaviour of the chains in
the first 25 seconds.

(it took over 350 hours to compute the predictive likeli-
hood using the DP algorithm). The other MH methods also
do well, while Gibbs sampling does less well. The plug-
in DAG is not as good as BMA, and the plug-in Chow-Liu
tree and plug-in factored model do so poorly on this dataset
that their results are not shown (lest they distort the scale).
(These results are averaged over 10 MCMC runs and over
10 cross validation folds.)

Finally, we applied the method to a biological data set
[SPP+05] which consists of 11 protein concentration levels
measured (using flow cytometry) under 6 different inter-
ventions, plus 3 unperturbed measurements. 600 measure-
ments are taken in each condition yielding a total dataset of
N = 5400 records. Sachs et al. discretized the data into
3 states, and we used this version of the data. We modi-
fied the marginal likelihood computations to take into ac-
count the interventional nature of the data as in [CY99].
The results are shown in Figure 8. Here we see that DP
gives the best result, but takes 90 hours. The global, hybrid
and order samplers all do almost at well at a fraction of the
cost. The local proposal and Gibbs sampling perform about
equally. All methods that perform BMA beat the optimal
plugin.

5.4 Convergence diagonstics

In Figure 9 we show a traceplot of the training set margi-
nal likelihood of the different methods on the Adult dataset.
(Other datasets give similar results.) We see that Gibbs is
“sticky”, that the local proposal explores a lot of poor con-
figurations, but that both the global and order sampler do
well. In the bottom right we zoom in on the plots to illus-
trate that the global sampler is lower variance and higher
quality than the order sampler. Although the difference



does not seem that large, the other results in this paper
suggest that the DP proposal does in fact outperform the
order sampler.

6 Summary and future work

We have proposed a simple method for improving the con-
vergence speed of MCMC samplers in the space of DAG
models. Alternatively, our method may be seen as a way of
overcoming some of the limitations of the DP algorithm of
Koivisto and Sood [KS04, Koi06].

The logical next step is to attempt to scale the method be-
yond its current limit of 22 nodes, imposed by the expo-
nential time and space complexity of the underlying DP
algorithm. One way forward might be to sample partitions
(layers) of the variables in a similar fashion to [MKTG06],
but using our DP-based sampler rather than Gibbs sampling
to explore the resulting partitioned spaces. Not only has the
DP-based sampler been demonstrated to outperform Gibbs,
but it is able to exploit layering very efficiently. In particu-
lar, if there are d nodes, but the largest layer only has size
m, then the DP algorithm only takes O(d2m) time. Using
this trick, [KS04] was able to use DP to compute exact edge
feature posteriors for d = 100 nodes (using a manual parti-
tion). In future work, we will try to simultaneously sample
partitions and graphs given partitions.
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