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Stat 521A
Lecture 1

Introduction; directed graphical models
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Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property  (3.3)
• Deriving graphs from distributions (3.4)



3

Administrivia

• Class web page
www.cs.ubc.ca/~murphyk/Teaching/Stat521A-spring08

• Join groups.google.com/group/stat521a-spring09

• Office hours: Fri 10-11 am 
• Final project due Fri Apr 24th

• Weekly homeworks

• Grading
– Final project: 60% 
– Weekly Assignments: 40%
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Auditing

• If you want to ‘sit in’ on the class, please register for 
it as ‘pass/fail’; you will automatically pass as long 
as you show up for (most of ) the class (no other 
requirements!)

• If you take it for real credit, you will likely learn 
more…
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Homeworks

Weekly homeworks, out on Tue, due back on Tue

• Collaboration policy: 
– You can collaborate on homeworks if you write the name 

of your collaborators on what you hand in; however, you 
must understand everything you write, and be able to do 
it on your own

• Sickness policy:
– If you cannot do an assignment, you must come see me 

in person; a doctor's note (or equivalent) will be required.
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Workload

• This class will be quite time consuming.

• Attending lectures: 3h.
• Weekly homeworks: about 3h.

• Weekly reading: about 10h.
• Total: 16h/week. 
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Pre-requisites

• You should know
– Basic applied math (calculus, linear algebra)
– Basic probability/ statistics e.g. what is a covariance 

matrix, linear/logistic regression, PCA, etc 
– Basic data structures and algorithms (e.g., trees, lists, 

sorting, dynamic programming, etc)
– Prior exposure to machine learning (eg CS540) and/or 

multivariate statistics is strongly recommended



8

Textbooks

• “Probabilistic graphical models: principles and 
techniques”, Daphne Koller and Nir Friedman (MIT 
Press 2009, in press).

• We will endeavour to cover the first 900 (of 1100) 
pages!

• Copies available at Copiesmart copy center in the 
village (next to McDonalds) from Thursday

• I may hand out some chapters from Michael 
Jordan’s draft book, “Probabilistic graphical 
models”

• I am writing my own book “Machine learning: a 
probabilistic approach”; I may hand out some 
chapters from this during the semester.
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Matlab

• Matlab is a mathematical scripting language widely
used for machine learning (and engineering and
numerical computation in general).

• Everyone should have access to Matlab via their 
CS or Stats account.

• You can buy a student version for $170 from the 
UBC bookstore. Please make sure it has the Stats 
toolbox.

• Matt Dunham has written an excellent Matlab
tutorial which is on the class web site – please 
study it carefully!
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PMTK

• Probabilistic Modeling Toolkit is a Matlab package I 
am currently developing to go along with my book.

• It uses the latest object oriented features of Matlab
2008a and will not run on older versions.

• It is designed to replace my earlier ‘Bayes net 
toolbox’.

• PMTK will form the basis of some of the 
homeworks, and may also be useful for projects. 
(Currently support for GMs is very limited.)

• http://www.cs.ubc.ca/~murphyk/pmtk/
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Learning objectives

• By the end of this class, you should be able to
– Understand basic principles and techniques of 

probabilistic graphical models 
– Create suitable models for any given problem
– Derive the algorithm (equations, data structures etc) 

needed to apply the model to data
– Implement the algorithm in reasonably efficient Matlab
– Demonstrate your skills by doing a reasonably 

challenging project
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Ask questions early and often!
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Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property  (3.3)
• Deriving graphs from distributions (3.4)
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Supervised learning

• Predict output given inputs, ie compute p(h|v)

• Regression:   h  in R
• Classification: h in {1,…,C}
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Structured output learning

• Model joint density of p(h,v) (or maybe p(h|v))

• Then infer p(h|v)  - state estimation
• MAP estimation (posterior mode)

• Posterior marginals

• Also need to estimate parameters and structure

h
∗ = argmax

h1
, . . . , argmax

hn
p(h|v, θ)

h∗1 =
∑

h2

. . . ,
∑

hn

p(h|v,θ)

Pixels   Symptoms   Phenotype     Features

Labels    Diseases     Genotype    Low-dim rep



16

Density estimation

• Model joint density of all variables

• No distinction between inputs and outputs: different 
subsets of variables can be observed at different 
times (eg for missing data imputation)

• Can run model in any ‘direction’
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Water sprinkler joint distribution

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W )

Cloudy

Sprinkler Rainy

WetGrass
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Inference

• Prior that sprinkler is on

• Posterior that sprinkler is on given that grass is wet

• Posterior that sprinkler is on given that grass is wet 
and it is raining

p(S = 1) =

1∑

c=0

1∑

r=0

1∑

w=0

p(C = c, S = 1, R = r,W = w) = 0.3

p(S = 1|W = 1) =
p(S = 1,W = 1)

p(W = 1)
= 0.43

p(S = 1|W = 1, R = 1) =
p(S = 1,W = 1, R = 1)

p(W = 1, R = 1)
= 0.19

Explaining away
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Bag of words model

• bag-of-words representation of text documents
• Xi=1 iff word i occurs in document
• Define a joint distribution over bit vectors, p(x1,…,xn)
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Inference

• Given word Xi occurs, which other words are likely 
to co-occur?

• What is the probability of any particular bit vector?

• Sample (generate) documents from joint p(x)
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Bayesian classifiers

• Define joint p(y,x) = p(x|y) p(y) on document class 
label and bit vectors

• Can infer class label using Bayes rule

• If y is hidden, we can use this to cluster documents.
• In both cases,  we need to define p(x|y=c)

p(y = c|x) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′)

Class prior
Class posterior

Class-conditional density

Normalization constant
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Naïve Bayes assumption

• The simplest approach is to assume each feature is 
conditionally independent given the class/cluster Y

• In this case, we can write

• The number of parameters is reduced from
O(C Kd) to O(C K d), assuming C classes and K-ary
features

Xi ⊥ Xj |Y = c

p(x|y = c) =

d∏

j=1

p(xj |y = c)
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Conditional independence

• In general, making CI assumptions is one of the 
most useful tools in representing joint probability 
distributions in terms of low-dimensional quantities, 
which are easier to estimate from data

• Graphical models are a way to represent CI 
assumptions using graphs

• The graphs provide an intuitive representation, and 
enable the derivation of efficient algorithms
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Graphical models

• There are many kinds of graphical models

• Directed Acyclic graphs – “Bayesian networks”
• Undirected graphs – “Markov networks”

• Directed cyclic graphs – “dependency networks”
• Partially directed acyclic graphs (PDAGs) – “chain 

graphs”

• Factor graphs
• Mixed ancestral graphs

• Etc
• Today we will focus on DAG models
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Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property  (3.3)
• Deriving graphs from distributions (3.4)
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CI properties of DAGs

• Defn 3.2.1. A BN structure G is a DAG whose 
nodes represent rvs X1,…,Xn. Let Pa(Xi) be the 
parents of Xi, and Nd(Xi) be the non-descendants 
of Xi. Then G encodes the following directed local 
Markov assumptions:

Iℓ(G) = {Xi ⊥ Nd(Xi)|Pa(Xi)}

Student network

G ⊥ S|D, I

I ⊥ D

. . .
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Another Example

Red (X8) ⊥ pink | blue
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I-maps

• Def 3.2.2. Let I(P) be the set of independence 
assertions of the form X ⊥ Y | Z that hold in P

• Def 3.2.3. We say G is an I-map for set I if I(G) ⊆ I 

(hence the graph does not make any false 
independence assumptions) 

P |=X ⊥ Y |Z
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I-maps: examples

• Examples 3.2.4, 3.2.5

Imaps = X Y,  X -> Y, X <- Y
Imaps = X -> Y, X <- Y

(
0.08 0.32
0.12 0.43

)
=

(
0.4
0.6

)(
0.2 0.8

)
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I-map to factorization

• Def 3.2.5. A distribution P factorizes over a DAG G 
if it can be written in the form

• Thm 3.2.7. If G is an I-map for P, then P factorizes 
according to G.

• Proof: by the chain rule, we can always write

• By the local markov assumption, we can drop all 
the ancestors except the parents. QED.

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|Pa(Xi))

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|X1:i−1)
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Student network

p(I,D,G, S, L) =

p(I)p(D|I)p(G|I,D)p(S|I,D,G)p(L|I,D,G, S)

= p(I)p(D|)p(G|I,D)p(S|I)p(L|S)
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Naïve Bayes classifier

p(y,x) = p(y)

d∏

j=1

p(xj|y)
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Bayes net = DAG + CPD

• A DAG defines a family of distributions, namely all 
those that factorize in the specified way.

• Def 3.2.6. A Bayes net is a DAG G together with a 
set of local Conditional Probability Distributions 
p(X_i|Pa(X_i)).

CPTs:
Each row is a different
multinomial distribution,
One per parent combination



34

Water sprinkler BN

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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Joint distribution for sprinkler network 

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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CPDs

• CPDs can be any conditional distribution 
p(X_i|Pa(X_i))

• If Xi has no parents, this is an unconditional 
distribution

• For discrete variables, it is common to use tables 
(conditional multinomials)

• However, CPTs have O(K|pa|) parameters; we will 
consider more parsimonious representations (such 
as logistic regression) – see ch 5

• For continuous variables, it is common to use linear 
regression to define CPDs (see ch 7)
p(Xi|Pa(Xi) = u, θi) = N (Xi|u

Tθi, σ
2
i )
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Representing parameters as nodes

p(y,x, θ) = p(y|π)p(π)
d∏

j=1

p(xj |y,φj)p(φj)

We will return to this representation when we discuss parameter estimation
DAGs are widely used for Hierarchical Bayesian models



38

Genetic inheritance

• G(x) = genotype (allele) of person x at given locus, 
say {A,B,O} x {A,B,O}

• B(x) = phenotype (blood group) in {A,B,O}

• P(B(c)|G(c)) = penetrance model
• P(G(c)|G(p),G(m)) = transmission model
• P(G(c)) = priors for founder nodes
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Factorization to I-map

• Thm 3.2.9. If P factorizes over G, then G is an I-
map for P.

• Proof (by example)

• We need to show all the 
local Markov properties
hold in P eg. RTP

• By factorization and elementary probability,

p(S|I,D,G, L) = p(S|I)

p(S|I,D,G,L) =
p(S, I,D,G, L)

p(I,D,G,L)

=
p(I)p(D)p(G|I,D)p(L|G)p(S|I)

p(I)p(D)p(G|I,D)p(L|G)
= p(S|I)
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Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property  (3.3)
• Deriving graphs from distributions (3.4)
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Global Markov properties

• The DAG defines local markov properties

• We would like to be able to determine global 
markov properties, i.e., statements of the form

for some function f.
• There are several equivalent ways to define f: 
• Bayes ball
• d-separation 
• Ancestral separation (ch 4)

Iℓ(G) = {Xi ⊥ Nd(Xi)|Pa(Xi)}

I(G) = {X ⊥ Y |Z : f(X, Y, Z,G)}
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Chains

• Consider the chain

• If we condition and y, x and z are independent

p(x, y, z) = p(x)p(y|x)p(z|y)

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)

=
p(x, y)p(z|y)

p(y)

= p(x|y)p(z|y)
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Common cause

• Consider the “tent”

• Conditioning on Y makes X and Z independent

p(x, y, z) = p(y)p(x|y)p(z|y)

p(x, z|y) =
p(x, y, z)

p(y)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y)
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V-structure (common effect) 

• Consider the v-structure

• X and Z are unconditionally independent

but are conditionally dependent

p(x, y, z) = p(x)p(z)p(y|x, z)

p(x, z|y) =
p(x)p(z)p(y|x, z)

p(y)
�= f(x)g(z)

p(x, z) =
∑

y

p(x, y, z) =
∑

y

p(x)p(z)p(y|x, z) = p(x)p(z)
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Explaining away

• Consider the v-structure

• Let X, Z ∈ {0,1} be iid coin tosses.

• Let Y = X + Z.
• If we observe Y, X and Z are coupled.
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Explaining away

• Let Y = 1 iff burglar alarm goes off,

• X=1 iff burglar breaks in
• Z=1 iff earthquake occurred

• X and Z compete to explain Y, and hence become 
dependent

• Intuitively, p(X=1|Y=1) > p(X=1|Y=1,Z=1)
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Bayes Ball Algorithm

• XA ⊥ XB | XC if we cannot get a ball from any node 

in A to any node in B when we shade the variables 
in C. Balls can get blocked as follows.



48

Example
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Example
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Observing descendant of a v-structure

Eg if W=Y (deterministic)

Current rules do not give this. X -> Y -> Z is blocked.
What happens when ball goes X -> Y -> W?
We want the ball to “bounce back” and then go W -> Y -> Z.
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Boundary conditions (source X = destn Z)



52

Observing descendant of a v-structure
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Markov blankets for DAGs

• The Markov blanket of a node is the set that 
renders it independent of the rest of the graph.

• This is the parents, children and co-parents.

p(Xi|X−i) =
p(Xi,X−i)∑
x p(Xi,X−i)

=
p(Xi, U1:n, Y1:m, Z1:m, R)∑
x p(x, U1:n, Y1:m, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)

∑
x p(Xi = x|U1:n)[

∏
j p(Yj |Xi = x,Zj)]P (U1:n, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x,Zj)]

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)

Useful for Gibbs sampling

MB(X) = minimal set Us.t.X ⊥ X \ {X} \ U |U
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Another example

Red node (X8) indep of rest (black) given MB (blue parents, green children, 
pink co-parents)
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Active trails

• Whenever influence can flow from  to Y via Z, we say that 
the trail X <-> Y <-> Z is active.

• Causal trail: X -> Z -> Y. Active iff Z not obs.
• Evidential trail: X <- Z <- Y. Active iff Z not obs
• Common cause: X <- Z -> Y. Active iff Z not obs
• Common effect; X -> Z <- Y. Active iff either Z or one of its 

descendants is observed.
• Def 3.3.1. Let G be a BN structure, and X1 <-> … <-> Xn be 

a trail in G. Let E be a subset of nodes. The trail is active 
given E if

• Whenever we have a v-structure Xi-1 -> Xi <- Xi+1, then Xi or 
one of its desc is in E

• No other node along the trail is in E
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Example

• D-> G <- I ->S not active for E={}

• D-> G <- I ->S is active for E={L}
• D-> G <- I ->S not active for E={L,I}

• Non-monotonic
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d-separation

• Def 3.3.2,  We say X and Y are d-separated given 
Z, denoted d-sep_G(X;Y|Z),  if there is no active 
trail between any node in X to any node in Y, given 
Z. The set of such independencies is denoted

• Thm 3.3.3. (Soundness of dsep). If P factorizes 
according to G, then I(G) ⊆ I(P).

• False thm (completeness of dsep). For any P that 
factorizes according to G, if X ⊥ Y | Z in I(P), then 

despG(X;Y|Z) (i.e., P is faithful to G)

I(G) = {X ⊥ Y |Z : dsepG(X;Y |Z)}
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Outline

• DAGs
– global Markov (3.3)
– deriving graphs from distributions (3.4)

• UGs
– Global Markov property (4.3.1)
– Parameterization (4.2)
– Gibbs distributions, energy based models (4.4.1)
– Local and pairwise Markov properties (4.3.2)
– From distributions to graphs (4.3.3)
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Active trails

• Whenever influence can flow from  to Y via Z, we say that 
the trail X <-> Y <-> Z is active.

• Causal trail: X -> Z -> Y. Active iff Z not obs.
• Evidential trail: X <- Z <- Y. Active iff Z not obs
• Common cause: X <- Z -> Y. Active iff Z not obs
• Common effect; X -> Z <- Y. Active iff either Z or one of its 

descendants is observed.
• Def 3.3.1. Let G be a BN structure, and X1 <-> … <-> Xn be 

a trail in G. Let E be a subset of nodes. The trail is active 
given E if

• Whenever we have a v-structure Xi-1 -> Xi <- Xi+1, then Xi or 
one of its desc is in E

• No other node along the trail is in E
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Example

• D-> G <- I ->S not active for E={}

• D-> G <- I ->S is active for E={L}
• D-> G <- I ->S not active for E={L,I}

• Non-monotonic
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d-separation

• Def 3.3.2,  We say X and Y are d-separated given 
Z, denoted d-sep_G(X;Y|Z),  if there is no active 
trail between any node in X to any node in Y, given 
Z. The set of such independencies is denoted

• Thm 3.3.3. (Soundness of dsep). If P factorizes 
according to G, then I(G) ⊆ I(P).

• False thm (completeness of dsep). For any P that 
factorizes according to G, if X ⊥ Y | Z in I(P), then 

despG(X;Y|Z) (i.e., P is faithful to G)

I(G) = {X ⊥ Y |Z : dsepG(X;Y |Z)}
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Faithfulness
• Def 3.3.4. A distribution P is faithful to G if, whenever X ⊥ Y 

| Z in I(P), we have dsep_G(X;Y|Z) i.e., there are no “non-
graphical” independencies buried in the parameters

• A simple unfaithful distribution, with Imap A->B:

•

Such distributions are “rare”
• Thm 3.3.7. For almost all distributions P that factorize over 

G (ie except for a set of measure zero in the space of CPD 
parameterizations), we have that I(P)=I(G)



7

Markov equivalence

• A DAG defines a set of distributions. Different DAGs may 
encode the same set and hence are indistinguishable given 
observational data.

• Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2). 
The set of all DAGs can be partitioned into I-equivalence 
classes.

• Def 3.4.11. Each can be represented by a class PDAG: only 
has a directed edge if every member shares that edge.
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Identifying I-equivalence 

• Def 3.3.11. The skeleton of a DAG is an undirected 
graph obtained by dropping the arrows.

• Thm 3.3.12. If G1 and G2 have the same skeleton 
and the same v-structures, they are I-equivalent.

• However, there are structures that are I-equiv but 
do not have same v-structures (eg fully connected 
DAG).

• Def 3.3.13. A v-structure X->Z<-Y is an immorality if 
there is no edge between X and Y (unmarried 
parents who have a child)

• Thm 3.3.14. G1 and G2 have the same skeleton 
and set of immoralities iff they are I-equiv.
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Examples
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Markov properties of DAGs

• DF: F factorizes over G
• DG: I(G) ⊆ I(P)  
• DL: Il(G) ⊆ I(P)  

Based on Jordan ch 4
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Deriving graphs from distributions

• So far, we have discussed how to derive 
distributions from graphs.

• But how do we get the DAG?

• Assume we have access to the true distribution P, 
and can answer questions of the form

• For finite data samples, we can approximate this 
oracle with a CI test – the frequentist approach to 
graph structure learning (see ch 18)

• What DAG can be used to represent P?

P |=X ⊥ Y |Z
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Minimal I-map

• The complete DAG is an I-map for any distribution 
(since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the 
removal of even a single edge from K renders it not 
an I-map.

• To derive a minimal I-map, we pick an arbitrary 
node ordering, and then find some minimal subset 
U  to be Xi’s parents, where

• (K2 algorithm replace this CI test with a Bayesian 
scoring metric: sec 18.4.2).

Xi ⊥ {X1, . . . , Xi−1} \ U |U
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Effect of node ordering

• “Bad” node orderings can result in dense, 
unintuitive graphs.

• Eg L,S,G,I,D. Add L. Add S: must add L as parent, 
since               .  Add G: must add L,S as parents.P � |=L ⊥ S
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Perfect maps

• Minimal I-maps can have superfluous edges.

• Def 3.4.2. Graph K is a perfect map for a set of 
independencies I if I(K)=I. K is a perfect map for P if 
I(K)=I(P).

• Not all distributions can be perfectly represented by 
a DAG.

• Eg let Z = xor(X,Y) and use some independent prior 
on X, Y. Minimal I-map is X -> Z <- Y. However, X 
⊥ Z in I(P), but not in I(G).

• Eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}, A dep | B,C, 

etc
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Finding perfect maps

• If P has a perfect map, we can find it in polynomial 
time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence, 
so we return the PDAG that represents the 
corresponding equivalence class.

• The method  has 3 steps (see sec 3.4.3)
– Identify undirected skeleton
– Identify immoralities
– Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer 
causal models from observational data, but this 
claim is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995

*
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Global Markov property of UGs

• Def 4.3.1. The path X_1 - … - X_k is active given E 
if none of the nodes on the path are in E.

• Def 4.3.2. The global Markov assumptions 
associated with a UG H are 

I(H) = {X ⊥ Y |Z : sepH(X ;Y |Z)}

•eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}

sepH(X;Y |Z)⇒ sepH(X ;Y |Z
′)∀Z ⊂ Z ′

Monotonic, unlike d-separation
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Parameterization

• To specify a specific distribution, we need to associate 
parameters (local distributions) with the graph.

• CPDs cannot be used because they are not symmetric, and 
the chain rule need not apply.

• Marginals cannot be used because a product of marginals
does not define a consistent joint.

• Instead we multiply a product of factors (potentials), one 
per maximal clique, and then compute a global 
normalization constant Z (partition function)

P(A,B,C,D) = 1/Z φ(A,B,D) φ(B,C,D)

Z = ∑_{A,B,C,D} φ(A,B,D) φ(B,C,D) 
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Misconception network

P(A,B,C,D) = 1/Z φ(A,B) φ(A,D) φ(C,D) φ(C,B)
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Multiplying factors

• Def 4.2.2. We multiply factors by matching up 
corresponding dimensions

� Ψ(X,Y,Z) = φ1(X,Y) · φ2(Y,Z)
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Factors are not marginals

• In the misconception network, the marginal on A,B 
is

• But the local clique potential is

• Factors are local affinities or preferences, but get 
combined with other terms in a non-local way
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Factorization and I-maps

• Thm 4.3.3. If P factorizes over H, then H is an I-
map for P, ie. I(H) ⊆ I(P). (Soundness of 

separation.)
• Proof. Suppose Z separates X from Y. Then we can 

partition the factors such that

QED.
• Def 2.1.11. A distribution is positive if P(x)>0 for all 

x.
• Thm 4.3.4 (Hammersley Clifford). If P is positive, 

and H is an I-map for P, then P factorizes over H:

p(x) = (1/Z)f(X,Z)g(Y, Z)

p(x) = (1/Z)
∏

c

φc(xc)
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Gibbs distributions

• Def 4.2.3. A Gibbs distribution is defined as

• The Di are the domains or scopes of the factors. 
We can infer the graph by connecting up all nodes 
in the same domain. If the Di are on pairs of nodes 
(edges), we call it a pairwise Markov random field.

• For a complete graph, we could have one factor per 
edge or a single clique potential for the whole 
graph.

p(X1, . . . ,Xn) =
1

Z
φ1(D1)× · · · × φm(Dm)
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Factor graphs

• For a complete graph, we could have one factor per 
edge or a single clique potential for the whole 
graph.

• Factor graphs can  distinguish these cases.

• Def 4.4.1. Square nodes = factors, ovals = rv’s.
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Energy based models

• It is common to work with energies = negative log 
factors/ potentials (low energy = more probable)

φ(D) = exp(−ǫ(D)) p(x1, . . . , xn) = 1/Z exp[−

m∑

i=1

ǫi(Di)]



29

Ising model

• X_i = +1 if atom is spin up, X_i = -1 if spin down

• Define edge energy as

• If spins equal (aligned), product is +1, else -1. 
• w_{i,j} = 0.5 (E(anti-aligned)-E(aligned)). If +ve, 

model aligns atoms (ferromagnetic). If –ve, spins 
should be different (anti-ferromagnetic).

• Define local node energy (external field) as

• Overall distribution

ǫi,j(xi, xj) = −wi,jxixj

ǫi(xi) = −uixi

p(x1, . . . , xn) =
1

Z
exp




∑

i<j

wi,jxixj +
∑

i

uixi
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Ising models capture pairwise correlation

• Energy can be written as

ǫ(x) = −
∑

i<j

wi,jxixj −
∑

i

uixi

= − 1

2
xTWx − uTx

= − 1

2
(x − µ)TW(x− µ) + c

µ = −W−1u

c = 1

2
µTWµ
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Phase transition

• The strength of the interactions is modulated by a global 
temperature parameter T

• Large temperature “flattens” the energy landscape and 
makes the uniform distribution most probable

• Small temperature makes the distribution “peaky”
• One can compute the density of pure vs mixed state 

configurations as a function of T (as the number of atoms -> 
∞). There is often a phase transition: as T exceeds a critical 

temperature, there is a sudden regime change.
• This has computational analogs in the mixing time of 

Markov chains.

p(x) =
1

Z
exp (−ǫ(x)/T )
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Samples from an Ising model

See GibbsDemoIsing in PMTK/bookCode
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Image denoising

argmax_x P(x|y) is best guess of denoised image

p(x,y) = p(x)p(y|x) =
1

Z

∏

<ij>

φij(xi, xj)
∏

i

p(yi|xi)

See GibbsDemoIsing in PMTK/bookCode
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Hopfield network

• A Hopfield network is a stochastic, recurrent neural 
network.

• It is equivalent to a fully connected Ising model. 

• Weights are learned.
• Often used for associative memory/ pattern 

completion.
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Boltzmann machine

• A Boltzmann machine is a Hopfield network (Ising
model) with hidden nodes.

• A restricted Boltzmann machine (RBM) is a 
bipartite BM. This supports efficient block Gibbs 
sampling (see ch 12).
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Local Markov assumption

• So far, we have defined the global Markov 
assumptions using simple graph separation.

• We now consider some variants.

• The boundary of a node α, bd(α), is all nodes which 
are directly connected to it.

• The closure is cl(α) = bd(α)U α. 
• Def 4.3.9. The local Markov properties of H are

• i.e. a is indep of rest given
its Markov blanket bd(a). 

Il(H) = {α ⊥ S \ cl(α)|bd(α)}
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Pairwise Markov assumption

• Def 4.3.7. The pairwise Markov independencies 
associated with H are

• i.e., a is independent of b given rest if not directly 
connected.

Ip(H) = {α ⊥ β|S \ {α, β} : α− β �∈ H}
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Markov properties

• G: I(G) ⊆ I(P)  

• L: Il(G) ⊆ I(P)
• P: Ip(G) ⊆ I(P) 

• If P is positive, all are equivalent.

Based on Jordan ch 4, thm numbers refer to Koller&Friedman
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Problems caused by determinism

• If the distribution is not positive, pairwise indep
does not imply local or global indep.

• Ex 4.3.15. Let P be any distribution over (X1,…,Xn). 
Make 3 identical copies of each variable, Xi, Xi’, Xi’’. 
Let H be the empty MRF on this expanded state 
space. This satisfies the pairwise Markov properties 
eg Xi and Xi’ are independent, because the 
remaining nodes contain Xi’’. Also, X_i and X_j are 
independent, because the remaining nodes contain 
X_i’. However, H does not satisfy local or global 
indep.
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From distributions to graphs

• How do we derive a graph from a distribution?

• For positive distributions, there are two 
approaches, based on pairwise and local prop.

• Thm 4.3.17. Let P be a +ve dist. Let H be an MRF 
in which we add an edge X-Y for all X,Y which 
cannot be made independent when conditioned on 
any other set:

Then H is the unique minimal I-map for P.
P � |=(X ⊥ Y |X \ {X, Y })
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From distributions to graphs

• Thm 4.3.18. Let P be a +ve dist. For each node X, 
let MB_P(X) be a minimal set of nodes U rendering 
X indep of the rest:

Add an edge X-Y for all Y in MB_P(X). Then H is a 
unique minimal I-map for P.

X ⊥ X \ {X} \ U |U ∈ I(P )
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Announcements

• Hw1 out today, due back Thur 22nd (in class)

• How many people will do hw?
• Matlab access?

• Join groups.google.com/group/stat521a-
spring09 email list 

• How many people have bought/ will buy book?

• Auditors: please fill out form
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Outline

• Hammersley Clifford theorem (4.4.2)

• Log-linear models (Wasserman ch 19)
• Directed vs undirected graphs (4.5)

• Conditional random fields, chain graphs (4.6)
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Hammersley Clifford Thm

• Thm 4.4.9. If IP(H) ⊆ I(P), and P is strictly positive, 

then P factorizes over the max cliques of H, i.e.

P (x) =
1

Z

∏

c

ψc(xc)



5

Mobius inversion lemma

• Let V be a finite set with elements. Let Ψ and Φ be 
functions defined over all possible subsets. Then

is equivalent to the statement

Ψ(a) =
∑

b:b⊆a

Φ(b)

Φ(a) =
∑

b:b⊆a

(−1)|a\b|Ψ(b)
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Mobius inversion lemma

• Proof

• RTP
and vice versa.

Φ(b) =
∑

c:c⊆b

(−1)|b\c|Ψ(c)⇒ Ψ(a) =
∑

b:b⊆a

Φ(b)

Since the inner sum is zero unless a\c={} (ie c=a),
since number of subsets of even cardinality is equal to the number of subsets
of odd cardinality. 

∑

b:b⊆a

Φ(b) =
∑

b:b⊆a

∑

c:c⊆b

(−1)|b\c|Ψ(c)

=
∑

c:c⊆a






∑

b:c⊆b⊆a

(−1)|b\c|





Ψ(c)

=
∑

c:c⊆a






∑

h:h⊆a\c

(−1)|h|





Ψ(c)

= Ψ(a)
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Over parameterization

• A standard parameterization of an MRF is over 
parameterized eg the information about B is stored 
in both cliques {A,B} and {B,C}.

• We can shift probability mass from one factor to 
another without affecting the overall distribution. 



8

Canonical parameterization

• Choose a distinguished setting of the variables,
S* = (s1

*, … sn
*). Augment any partial setting by filling in the 

rest with these default values.

• Define the log probability of a partial assignment 

• Define the canonical energy function as

• This defines energy for {A,B,C}, subtracts off influence of 
{A,B}, {B,C}, {C,A}, adds back influence of singletons, 
subtracts off baseline

Ŝa = (Sa, S
∗
−a)

Ha(S) = logP (Ŝa)

φa(S) =
∑

b:b⊆a

(−1)|a\b|Hb(S)
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Misconception : canonical params

φA,B(a
1, b1, c, d) =

∑

z∈{A,B},{A},{B},{}

(−1)|{A,B}\z|Hz(a
1, b1, c, d)

= (−1)0H(a1, b1, c∗, d∗) + (−1)1H(a1, b∗, c∗, d∗)

+(−1)1H(a∗, b1, c∗, d∗) + (−1)2H(a∗, b∗, c∗, d∗)

= (−13.49)− (−11.18)− (−9.58) + (−3.18) = 4.09
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Hammersley Clifford Thm

• Thm 4.4.9. If IP(H) ⊆ I(P), and P is positive, then P 

factorizes over the max cliques of H.
• Proof.

• Define

• By Mobius inversion lemma

• Define ψa(Sa) = exp φa(Sa). Then

Ha(S) = logP (Ŝa)
φa(S) =

∑

b:b⊆a

(−1)|a\b|Hb(S)

HS(S) =
∑

a:a⊆S

φa(S)

P (S) = expHS(S) = exp
∑

a:a⊆

φa(S) =
∏

a:a⊆S

ψa(S)
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Hammersley Clifford proof II

• We have shown the distribution can be written as a 
product of potential functions

• The final step is to show that φa(S) is zero unless a 
is a maximal clique.

• Let α,β ∈ a be 2 nodes without an edge, and let c = 

a \ {α,β}. Let H_a = H_a(S). Then

P (S) =
∏

a:a⊆S

ψa(S)

φa(S) =
∑

b:b⊆c

(−1)|c\b|
(
Hb −Hb∪α −Hb∪β +Hb∪{α,β}

)
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Hammersley Clifford proof III

• Define d=S \ {α,β}. By the pairwise Markov 
property, α ⊥ β | d and hence
Hb∪{α,β} −Hb∪α = log

p(Sb, Sα, Sβ , S
∗
d\b)

p(Sb, Sα, S∗β , S
∗
d\b)

= log
p(Sα|Sb, S

∗
d\b)p(Sβ, Sb, S

∗
b\d)

p(Sα|Sb, S∗d\b)p(S
∗
β, Sb, S

∗
b\d)

= log
p(S∗α|Sb, S

∗
d\b)p(Sβ, Sb, S

∗
b\d)

p(S∗α|Sb, S
∗
d\b)p(S

∗
β, Sb, S

∗
b\d)

= log
p(Sb, S

∗
α, Sβ , S

∗
d\b)

p(Sb, S∗α, S
∗
β , S

∗
d\b)

= Hb∪β −Hb

φa(S) =
∑

b:b⊆c

(−1)|c\b|
(
Hb −Hb∪α −Hb∪β +Hb∪{α,β}

)

Hence all the terms on the RHS below vanish whenever we can find an
α and β that are not connected within a.

QED
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Summary 

• F: P factorizes over G
• G: I(G) ⊆ I(P)  
• L: Il(G) ⊆ I(P)

• P: Ip(G) ⊆ I(P) 

Based on Jordan ch 4, thm numbers refer to Koller&Friedman
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Log-linear models

• Let X=(X1,…,Xm), Xj in {1,…,rj}. The joint density is 
a multinomial with N=r1 x … rm states. (Contigency
table.) Let S={1,..,m}.

• Thm (Wasserman p292), The pmf can be written as

where the ψ satisfy:
� ψ0(x) is a constant

� ψΑ(x) only depends on xA, not other bits
• If i in A, and xi=0, then ψA(x)=0 

log p(x) =
∑

A⊂S

ψA(x)

Based on Wasserman’s “All of statistics”, ch 19
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Example: Bernoulli

• Let X ~ Ber(θ), 0 < θ < 1. Then

• Multinom. Param space

• Log-linear param space

p(x) = θx(1− θ)1−x = px1p
1−x
2

log p(x) = ψ∅(x) + ψ1(x)

ψ∅(x) = log(p2)

ψ1(x) = x log

(
p1
p2

)

{(p1, p2) : pj ≥ 0, p1 + p2 = 1}

{(β0 = log(p2), β1 = log(p1/p2)) : e
β0+β1 + eβ0 = 1}
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Example: 2  way contingency

• X_1 in {0,1}, X_2 in {0,1,2}.

log p(x) = ψ∅(x) + ψ1(x) + ψ2(x) + ψ12(x)

ψ∅(x) = log p00

ψ1(x) = x1 log

(
p10
p00

)

ψ2(x) = I(x2 = 1) log

(
p01
p00

)
+ I(x2 = 2) log

(
p02
p01

)

ψ12(x) = I(x1 = 1, x2 = 1) log

(
p11p00
p01p10

)
+ I(x1 = 1, x2 = 2) log

(
p12p00
p02p10

)
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Graphical log-linear models

• Def. A log-linear model is graphical if \psiA(x)=0 iff
{i,j} ⊂ A and (i,j) is not an edge, i.e., if you can add 

a term to the model and the graph does not 
change, the model is not graphical.

• Eg this is graphical, since eg edge 1-5 is missing, 
and all terms containing (1,5) are 0

log p(x) = ψ0 + ψ1(x) + ψ2(x) + ψ3(x) + ψ4(x) + ψ5(x)

+ψ12(x) + ψ23(x) + ψ25(x) + ψ34(x) + ψ35(x) + ψ45(x)

+ψ235(x) + ψ345(x)

If we remove the 3-way terms,
the graph is the same.
This would not be graphical.
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Hierarchical log-linear models

• Def. A log-linear model is hierarchical if ψ(A)=0 and 
A ⊂ B implies ψ(B)=0

• Thm: graphical implies hierarchical but not 
necessarily the reverse.

• Eg. Hierarchical but not graphical

• Eg. Not hierarchical.

log p(x) = ψ0(x) + ψ1(x) + ψ2(x) + ψ3(x) + ψ12(x) + ψ13(x) + ψ23(x)

log p(x) = ψ0(x) + ψ3(x) + ψ12(x)
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Model generators

• Hierarchical models can be written succinctly using 
generators.

• Eg. X=(X_1,X_2,X_3). M = 1.2 + 1.3 stands for

• M = 1.2.3 is the saturated model (complete graph)

• M = 1 + 2 + 3 is the empty graph

• M = 1.2  represents

log p = ψ0 + ψ1 + ψ2 + ψ3 + ψ12 + ψ13

log p = ψ0 + ψ1 + ψ2 + ψ3 + ψ12 + ψ13 + ψ23 + ψ123

log p = ψ0 + ψ1 + ψ2 + ψ3

log p = ψ0 + ψ1 + ψ2 + ψ12
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Moralization

• Def 4.5.2. The moral graph M(G) of a DAG is 
obtained by adding an undirected edge between X 
and Y if both are unmarried parents of a common 
child, and then dropping all the arrows.
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DAG to UG

• Intuitively, connecting the parents prevents any 
unwanted independence assumptions: given Z, X 
and Y are dependent (explaining away)

• Thm 4.5.4. The moralization M(G) is a minimal
I-map for DAG G.
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An alternative to d-separation

• Suppose we want to determine if G := X ⊥ Y | Z

• It is tempting to think that simple separation in the 
moral graph will yield d-separation. However, we 
should not connect unmarried parents unless their 
children or descendants are observed.

• Therefore we remove all nodes  except for U=X,Y,Z 
and their ancestors (ancestral graph) - (Any loops 
back to U via descendants must be via v-structures, 
and are therefore blocked.)

• We then moralize the resulting graph and use 
simple separation.
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Ancestral graph example

U={1,4,5,7}  - remove 8,9,10
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Ancestral + Moralization examples

d-sep(D; I |L): false d-sep(D; I | S, A): true
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d-Separation revisited

• Thm 4.5.6. Let U = X u Y u Z. Let G’ = G[U] be the 
induced BN over U and Ancestors(U). Let H = 
moral(G’). Then d-sepG(X;Y|Z) iff sepH(X;Y|Z).
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UG to DAG

• We may have to add many new edges

• Add nodes in alphabetical order. 
• When add C, not B ⊥ C | A hence add edge



29

Chordal graphs

• Def 2.2.15. Let X_1 – X_2 … - X_1 be a loop in a 
graph (ignoring edge directions). A chord is an 
edge connecting Xi, Xj for two non-consecutive 
nodes. A graph is chordal (triangulated) if every 
loop  of length k>=4 has a chord. 
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UG to DAG

• Thm 4.5.11. Let H be an MRF and G be any 
minimal I-map for H. Then G is necessarily chordal.

• The process of converting UG to DAG, and DAG to 
UG, adds edges.

• When does this conversion not add edges?
• Thm 4.5.16. I(H)=I(G) iff H and G are both chordal.
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CRFs

• A Markov random field (MRF) is an unconditional 
density p(y) represented by an UG

• A conditional random field is a conditional density 
p(y|x) represented by an UG, where each y node is 
conditioned on (potentially) all the x nodes.

• Discriminative; no need to model input features.

p(y|x) =
1

Z(x)

∏

c

φ(yc;x)

Cf logistic regression with multiple
output nodes
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CRFs vs CBNs

• A conditional DAG can sometimes be inferior to a 
conditional UG due to blocking of info flow

• Eg consider a conditional chain (aka Maximum 
Entropy Markov Model): H1 ⊥ V2 – no backwards 

information flow (“label bias problem”) due to v-
structure/ local normalization

p(h|v) =
∏

t

p(ht|ht−1,vt)
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CRFs for text analysis

Part of speech tagging and noun-phrase segmentation

Begin
Inside/end
Other
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Skip-chain CRFs

Mrs Green spoke today in New York. Green chairs the finance committee.
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CRFs for low-level vision

Super-pixels Local classifier CRF
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Chain graphs

• Each chain component is an UG, connected 
together in a DAG.

p(A, ..., I) = p(A)p(B)p(C,D,E|A,B)p(F,G|C,D)p(I |C,H)p(H)

p(C,D,E|A,B) =
1

Z(A,B)
φA(A,C)φ2(B,E)φ3(C,D)φ4(D,E)

p(F,G|C,D) = ...

p(I|C,H) = ...
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Admin

• CS auditors: please turn in your form to Joyce 
Poon, who will pass it to Laks for signing
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Outline

• Aside on canonical parameterization (ex 4.4.14)

• Structured factors (4.4.1.2)
• Structured CPDs (5.2-5.6)

• Temporal models (6.2)
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Degrees of freedom of a UGM

Why do we just need 8 numbers to uniquely parameterize the distribution?

Eg a^1, b^1, c^1, d^1, (a^1,b^1), (b^1,c^1), (c^1,d^1), (a^1,d^1)
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Num params = rank of feature matrix

• Let F(n, i)=1 iff i’th bit vector turns on n’th feature 

• Each feature specifies a value for every pair of 
nodes connected by an edge, and hence is a vector 
in R^{16}. 4 edges, 3 unique settings = 12 rows.

Rank  = 8

Eg a^1, b^1, c^1, d^1, (a^1,b^1), (b^1,c^1), (c^1,d^1), (a^1,d^1)

2 4 6 8 10 12 14 16

2

4

6

8

10

12
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Rank of feature matrix
• edges = {[1 2], [1 3], [2 4], [3 4]};
• ndx = 1;
• F = zeros(0, 2^4);
• for e=1:length(edges)
• s = edges{e}(1); t = edges{e}(2);
• for j=1:2
• for k=1:2

• if j==2 && k==2, continue; end
• for x=1:16
• xv= ind2subv([2 2 2 2], x);
• if xv(s)==j && xv(t)==k
• F(ndx,x)=1;
• end
• end
• ndx = ndx + 1;
• end
• end
• end
• rank(F)
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Log-linear factors

• A factor defined on m discrete rv’s with K states 
needs Km parameters.

• Imagine a factor on triples of letters. Instead of 
having 263 numbers, we can define binary features 
that only turn on for certain values, eg fing(x) = 1 iff
x1=‘I’,x2=‘n’,x3=‘g’. This has weight ωing. We define 

φc(xc) = exp(

k∑

i=1

wc,ifc,i(xc))
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Tables are a special case

Jordan, fig 19.1
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CRF features

• Typical features used in a CRF model for language 
processing (X=words, Y=labels)

• F1(Yt,Xt,Xt-1,Xt+1) = I(Xt-1=“New”, Xt=“York”, 
Xt+1=“Times”, Yt=“Object”)

• F2(Yt,Xt,Xt-1,Xt+1) = I(Xt-1=“New”, Xt=“York”, Xt+1 ≠
“Times”, Yt=“Place”)

• Models often have ~100k manually specified 
features.

• Common to use L1 regularization to sparsify.

• Can also perform feature induction, by eg greedily 
creating conjunctions or disjunctions
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Exponential family (maxent) models

• Combining all the local potentials

p(x) =
1

Z

∏

c

φc(xc)

φc(xc) = exp(

k∑

i=1

wc,ifc,i(xc))

p(x) =
1

Z
exp(

∑

i

wifi(xci))

DAGs are a special case where each φc(xc) = p(Xi|Pa(Xi)) sums to 1, so Z=1

See ch 8
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Tabular CPDs

• If all nodes are discrete and have K values, we  can 
represent p(X_i|Pa(X_i)) as a table, with one row 
per conditioning case (K^#pa), and K columns 
which sum to 1

• If K and/or #pa is large, this is too many 
parameters, so we seek more parsimonious 
representations.
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Deterministic CPDs

• In some cases, the child is a deterministic function 
of the parents, eg bloodtype is determined by the 2 
alleles

• Deterministic nodes often denoted by double-
ringed oval.

• Determinism can imply additional (non-graphical) 
independencies

• Eg D ⊥ E | A,B since C = fn(A,B) 

Det-sep
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Context specific independence (CSI)

• Sometimes, the set of edges which are “active”
depends on the value of the nodes

• Eg Y is a noisy observation of object X1, or X2.
Z specifies the identity of the measurement. Let X 
=multiplexer(X1,X2, Z). Then X2 ⊥ Y | Z=1. So our 

posterior on X2 is not affected by the 
measurement.  (Data association ambiguity)



16

Contingently acyclic BNs

• Sometimes we can define a directed graph with 
cycles, but where some of the edges are not active 
for a given setting of certain variables C.

• If we can guarantee that the graph is a DAG for 
each context C=c, the result is a mixture of 
differently structured BNs.

• This is called a Bayesian multinet.
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Tree-structured CPDs

• Different parents can be rendered irrelevant, 
depending on the values

Eg. J | S,L if A=0  since we go down left branch of tree 

P(J|A,S,L)
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Printer fault diagnosis in MS windows

• Uses tree structured CPDs, since different sets of 
variables are relevant in different contexts
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Rule-structured CPDs

• Specify a pattern and a value
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Logistic regression (sigmoid BNs)

• Suppose all nodes are binary. We can use logreg
CPDs

p(y = 1|x) = σ(w0 +
k∑

i=1

wixi) σ(u) =
1

1 + e−u



21

Multinomial logreg

• If Y is K-ary, and the parents are binary or cts, we 
can use a softmax function

p(y = j|x) =
exp(wT

j x)
∑K

j′=1 exp(w
T
j′x)

For K-ary parents, use 1-of-K encoding
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Independence of causal influence

• We can model the effects of many parents by 
assuming that each parent is corrupted by 
independent noise, and the results are 
deterministically combined via a simple function 
such as OR or MAX
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Noisy-or model

• Each Xi in {0,1} gets passed through a noisy wire to 
produce Zi in {0,1}. 0 maps to 0, 1 maps to 0 wp wi
(failure probability). λi=1-wi is the prob. that Xi alone 
turns on Y.

• The Zi’s are combined in an OR to produce Z. Then 
Y=Z.

• The only way Y can be off is if all Zi’s are off, which 
means all the wires for Xi st Xi=1 independently 
failed: 

p(y = 0|x) =
∏

i:xi=1

wi =

k∏

i=1

wxii

p(y = 1|x) = 1− p(y = 0|x)

Popular in cogsci models of causality
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Example

• P(fever=0|cold=1, flu=0, malaria=0)=0.6

• P(fever=0|cold=0, flu=1, malaria=0)=0.2
• P(fever=0|cold=0, flu=0, malaria=1)=0.1

Cold Flu Malaria p(Fever=1) p(Fever=0)
0 0 0 0.0 1.0
0 0 1 0.0 0.1
0 1 0 0.8 0.2
0 1 1 0.98 0.02 = 0.2× 0.1
1 0 0 0.4 0.6
1 0 1 0.94 0.0.6 = 0.6× 0.1
1 1 0 0.88 0.12 = 0.6× 0.2
1 1 1 0.988 0.012 = 0.6× 0.2× 0.1

Russell & Norvig, p501
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Leak nodes

• If Y=0 and all Xi=0, the CPD assigns 0 probability 
to this event. To prevent this, we add a leak node, 
X0=1, which is always on, to model “any other 
cause”. The leak can fail wp w0.

W0=1 W0=0.5
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BN20 networks

• In medical diagnosis, it is common to construct 2 
layered bipartite networks of binary nodes, 
mapping diseases to symptoms (findings).

• Because of the large number of parents, the child 
nodes use noisy-or.

• Conditional on F, the diseases D are correlated.
• The QMR-DT network is a standard testbed for 

evaluating approximate inference algorithms.
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Negative findings

• If Fi=1, the disease parents fight to explain the 
finding. Hence they become fully correlated.

• But if Fi=0, the parents are independent! Hence the 
p(Fi=0|Pa(Fi)) likelihood fully factorizes, and does 
not make inference harder (homework).
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Conditional linear Gaussian CPDs

• If Y is continuous and  all the parents are cts we 
can define

• Networks of linear Gaussian CPDs define a joint 
multivariate Gaussian (see ch 7)

• For discrete parents u, we can use 1-of-K and LG, 
or we can use a different set of parameters for each 
discrete setting (CLG). The resulting distribution is 
a mixture of Gaussians, where each discrete 
setting defines a mixture component.

p(y|x) = N (y|xTw, σ2)

p(y|x,u = k) = N (y|xTwk, σ
2

k)
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Example of CLG network

Russell & Norvig, p502



30

Hybrid network

Russell & Norvig, p502

P(buys=1|cost) = logreg or probit.
Joint distribution is no longer mixture of Gaussians.
Closed-form inference no longer possible (see ch14).
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Encapsulated BNs

• We can embed a BN inside a CPD, and “hide” the 
internal nodes using an interface layer.

• This, combined with parameter tying, yields OOBN.
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Markov chains

• We can define a distribution over a semi-infinite sequence 
X_1, X_2, … by using a discrete-time Markov chain with 
tied parameters (stationary)

p(x|θ) = p(x1|π)
∞∏

t=T

p(Xt|Xt−1, A)

A(i, j) = p(Xt = j|Xt−1 = i)
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State transition diagram

Picture of the stochastic finite state automaton
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Hidden Markov Models

• An HMM is a function of a Markov chain.

• We observe Vt, hidden state is Ht in {1,…,K}
• P(Ht=j|Ht-1=i) is the transition model

• P(Vt|Ht=j) is the observation model (eg mixture of 
Gaussians)
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HMMs for speech recognition

Bigram model of words Pronunciation model : word -> phonemes

Acoustic model: phonemes -> observations
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State space models

• Same graph (CI assumptions) as HMM, but now X 
and Y are real-valued vectors

• Special case: linear dynamical system (LDS) 

p(xt|xt−1) = N (xt|Axt−1,Q)

p(yt|xt) = N (yt|Hxt,R)

xt = Axt−1 +N (0,Q)

yt = Hxt +N (0,R)
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Example: tracking in 2D






x1t
x2t
ẋ1t
ẋ2t




 =






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




×






x1t−1
x2t−1
ẋ1t−1
ẋ2t−1




+






w1t
w2t
w3t
w4t






(
y1t
y2t

)
=

(
1 0 0 0
0 1 0 0

)
×






x1t
x2t
ẋ1t
ẋ2t




+






v1t
v2t
v3t
v4t
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LDS as DGM

For linear Gaussian systems, sparse matrices = sparse graphs

A =






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1






H =

(
1 0 0 0
0 1 0 0

)
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Dynamic Bayes Nets

If the variables are discrete, the transition matrix of the compound
model (all 4 variables) is not sparse or structured. So the graph
structure is crucial.

P(X1(t),X2(t) | X1(t-1),X2(t-1)

See ch 15
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Outline

• Template models (6.3-6.5)

• Structural uncertainty (6.6)
• Multivariate Gaussians (7.1)

• Gaussian DAGs (7.2)
• Gaussian MRFs (7.3)
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Parameter tying

• A DBN defines a distribution over an unboundedly 
large number of variables by assuming that they all 
share the same CPDs.

• This is called parameter tying (weight sharing).

• It is useful even for fixed sized models in order to 
help learning (pool the sufficient statistics).

• We now discuss notational conventions (“syntactic 
sugar”) for representing large “unrolled” networks 
with shared parameters.
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Plates

• Plates are useful for specifying simple repetitive 
patterns, as frequently arise in hierarchical 
Bayesian models
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Plates
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Unrolled network

Grade(s,c) in {A,B,C} is encoded on edges.
Cf discrete probabilistic matrix factorization
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Limitations of plates

• There are various structures that plates cannot 
represent

• Eg DBNs

• Eg genotype(x1) depends on genotype(x2), where 
x2=parent(x1)

• We can write programs to generate graphs of 
specified structure, but we would like a declarative 
representation language for such repetitive patterns 
so that no new code has to be written
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Beyond plates

• Probabilistic Relational Models (PRMs) encode 
large DAG models with tied CPDs

• Relational Markov Networks encode large MRFs
with tied factors

• Markov Logic Networks are like RMNs, except the 
factors are represented in log-linear form, and the 
features are represented as logical expressions
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Markov Logic Networks
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Directed vs undirected models

• Undirected models are simpler: no need to worry 
about cycles, lots of freedom in defining factors

• However, in a UG, the probability of a node 
depends on the *size* of the graph and/or its 
connectivity, even if all the other nodes are hidden.

• This may not be desirable.
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Structural uncertainty

• For a fixed domain, if we do not know the graph 
structure, we may estimate it using model selection.

• But for relational domains, the structure may 
change depending on the values of the nodes

• Eg. Genotype(x1) -> genotype(x2) is only active if 
parent(x1,x2)=true

• In addition, we may be uncertain about how many 
objects exist in the world

• Eg. In tracking, 3 blips on the radar is consistent 
with {0,1,…, infty} objects in the world!
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Data association ambiguity
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Citation matching

Are these the same article?
Huge industry concerned with database merging
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DAG model

• Assumes there is an unknown number of authors 
and papers, which generates the observed set of 
citation strings.
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UG model

• No unknown objects. Just enforce that citations are 
the same.

• Need 3 way factor to encode transitivity of 
sameness relation: S(c1,c2), and S(c2,c3) => 
S(c1,c3)

• And if 2 docs are same, text should be similar: 
Factor(s(c1,c2), T(c1), T(c2))
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MVN: 2 parameterizations

• Moment form

• Information (canonical) form

N (x|µ,Σ) def= 1

(2π)d/2|Σ|1/2 exp[−
1
2 (x− µ)TΣ

−1(x− µ)]

Λ
def
= Σ−1

η
def
= Σ−1µ

N (x|η,Λ) =
|Λ|1/2
(2π)d/2

exp[− 1
2 (x

TΛx+ ηTΛ−1η − 2xTη)]

= exp[c− 1
2x

TΛx+ xTη]

precision (information) matrix
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Moment and anonical form

• Canonical form is denoted

• Moment form

x ∼ NC(b,Q) ⇐⇒ p(x) ∝ exp
(
− 1
2
xTQx+ bTx

)

N (µ,Q−1) = NC(Qµ,Q)
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Independencies in MVN

• Thm 7.1.3. Let X ~ MVN. Xi ⊥ Xj iff Σi,j=0

• Thm 7.1.4. let X ~ MVN with info matrix J. Then 
Ji,j=0 iff Xi ⊥ Xj | X-ij

• Factorization thm. 

x ⊥ y|z ⇐⇒ p(x,y, z) = f(x, vz)g(y, vz)
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Indep => uncorrelated

• Ex 7.2.1. For any p(X,Y), if X ⊥ Y then Cov[X,Y]=0.

Cov[x, y] =

∫ ∫
p(x, y)(x− x)(y − y)dxdy

= (

∫
p(x)(x− x)dx)(

∫
p(y)(y − y)dy)

= (x− x)(y − y) = 0
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Uncorrelated & MVN => indep

• Ex 7.2.2. If p(X,Y) is Gaussian, and Cov[X,Y]=0, 
then X ⊥ Y.

• Pf. The bivariate Gaussian can be written as

• If \rho=0, then 

• Hence by factorization thm, x1 \perp x2.

p(x1, x2) =
1

2πσ1σ2
√
1− ρ2

exp[− 1

2(1− ρ2)
(
(x1 − µ1)

2

σ21
+
(x2 − µ2)

2

σ22

−2ρ (x1 − µ1)

σ1

(x2 − µ2)

σ2
)]

p(x1, x2) =
1

2πσ1σ2
exp[−1

2
(
(x1 − µ1)

2

σ21
+
(x2 − µ2)

2

σ22
)]

= f(x1)g(x2)
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Uncorrelated not imply independent

• Ex 7.2.3. Find an example where Cov[X,Y]=0 yet 
not X ⊥ Y.

• Let X ~ U(-1,1) and Y=X^2. Clearly Y is dependent 
on X yet one can show (exercise) that Cov(X,Y)=0.

• Let X ~ N(0,1) and Y= W X, p(W=-1)=p(W=1)=0.5. 
Clearly Y is dependent on X, yet one can show 
(exercise) that Y ~ N(0,1) and Cov[X,Y]=0.
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Independencies in MVN

• Thm 7.1.3. Let X ~ MVN. Xi ⊥ Xj iff Σi,j=0

• Pf. By ex 7.2.1, we have => direction.
• By ex 7.2.2, we have that <= direction.

• By ex 7.2.3, we have that X ~ MVN is necessary for 
<= direction to work. 
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Conditional Independencies in MVN

• Thm 7.1.4. let X ~ MVN with info matrix J. Then 
Ji,j=0 iff Xi ⊥ Xj | X-ij

• Pf. Let mu=0.

• The second term does not involve xi xj, and nor 
does the first iff Qij=0. Hence this factorizes into 
f(xi,x-ij) g(xj,x-ij) iff Qij=0. QED.

p(xi, xj ,x−ij) ∝ exp(− 1
2

∑

k,l

xkQklxl)

∝ exp



− 1
2xixj(Qij +Qji)− 1

2

∑

{k,l}�={i,j}

xkQklxl
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Structural zeros

. 

Σ =




4 2 −2
2 5 −5
−2 −5 8



 , Λ = Σ−1 =




0.3125 −0.125 0
−0.125 0.5833 0.3333
0 0.3333 0.3333





Zeros in the precision matrix correspond to missing edges in the UGM
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Marginals and conditionals

Marginal p(x2)
Moment N (x2|µ2,Σ2)
Info N (x2|η2 −Λ21Λ−111 η1,Λ22 −Λ21Λ−111 Λ12)

Conditional p(x2|x1)
Moment N (x1|µ1 +Σ12Σ−122 (x2 − µ2),Σ11 −Σ12Σ−122 Σ21)
Info N (x2|η1 −Λ12x2,Λ11)

Marginalization easy in moment form.
Conditioning easy in canonical form.
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Conditioning in canonical form

• Thm (Conditioning).                              

• Thm (soft conditioning) . 

• We can accumulate evidence by addition of matrix-
vector products,  and then compute posterior mean 
at end by solving Qb = mu.                                            

x ∼ NC(b,Q) y|x ∼ N (x,P−1)

x|y ∼ NC(b+Py,Q+P)
Precisions add

x ∼ NC(b,Q)⇒ xA|xB ∼ NC(bA −QABxB,QAA)

and



29

Partial correlation coefficient

• Let X ~ Mvn with precision matrix

• The conditional distribution p(x1,x2|x3,…,xd) is 
bivariate Gaussian with covariance

• The partial correlation coefficient is given by

Ω = Σ−1 =






ω11 . . . ω1d
...

. . .
.. .

ωd1 . . . ωdd






(
ω11 ω12
ω21 ω22

)−1
=

1

ω11ω22 − (ω12)2
(
ω22 −ω12
−ω21 ω11

)

ρ1,2|3,...,d
def
=

Cov[X1, X2|X3:d]√
Var [X1|X3:d]Var [X2|X3:d]

=
−ω21√
ω11ω22
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Conditioning in moment form

• Thm (Rue&Held p26). 

• Thus to find the mean we need to solve the linear 
system

• Eg if A={i} we have

QAAµA|B = QAAµA −QABxB +QABµB

x ∼ N (µ,Q−1)⇒
xA|xB ∼ N (µA|B ,Q−1

AA)

µA|B = µA −Q−1
AAQAB(xB − µB)

E[xi|x−i] = µi −
1

Qii

∑

j:j �=i

Qij(xj − µj)

prec(xi|x−i) = Qii
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Proof

• Assume \mu=0 for simplicity. Then

• Compare this to a Gaussian with precision K and 
mean m

• We see that Q_{AA} is the conditional precision and 
the conditional mean is given by

p(xA|xB) ∝ exp

(
− 1
2

(
xA xB

)(QAA QAB

QBA QBB

)(
xA
xB

))

∝ exp
(
− 1
2x

T
AQAAxA − (QABxB)

TxA
)

p(z) ∝ exp
(
− 1
2
zTKz+ (Km)T z

)

QAAµA|B = −QABxB

QED
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Soft conditioning in moment form

x ∼ N (µ,Σ)
y|x ∼ N (x,S)
x|y ∼ N (µx|y ,Σx|y)
Σ−1x|y = Σ−1 + S−1

Σ−1x|yµx|y = Σ−1µ+ S−1y

Bayes rule for linear Gaussian systems
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Linear Gaussian DGMs

• A CPD is linear Gaussian if

• A DGM is linear Gaussian if all CPDs are LG.
• Such networks define a joint Gaussian. Each node 

is given by

where εi ~ N(0,1) and E[εi εj] = Ii,j.
• W is lower triangular matrix: w_{i,j} = weights into i from j.

p(xi|xπi) = N (xi|
∑

j∈πi

wijxj + bi, vi)

xi =
∑

j∈πi

wijxj + bi +
√
viǫi
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LG DGM to MVN

• We can compute the global mean and covariance 
recursively, in topological order

xi =
∑

j∈πi

wijxj + bi +
√
viǫi

E[xi] =
∑

j∈πi

wijE[xj ] + bi

Cov[xi, xj ] = E[(xi − E[xi])(xj − E[xj ])]

= E



(xi − E[xi])






∑

k∈πj

wjk(xk − E[xk]) +
√
vjǫj










=
∑

k∈πj

wjkCov[xi, xk] + Ii,jvj

Bishop p371
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LG DGM to MVN

• Consider a chain x1 -> x2 -> x3

• In general, when adding node (k+1)

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)

Σ =




v1 w21v1 w32w31v1

w21v1 v2 + w221v1 w32(v2 + w221v1)
w32w21v1 w32(v2 + w221v1) v3 + w232(v2 + ww21v1)





K&F Thm 7.2.2
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Alternative parameterization

• The results are much “prettier” if we write

where the offset is given by

• Then we have

Xj = µj +
∑

k∈πj

wjk(Xk − µk) +
√
vjZj

w
(0)
j = µj −

∑

k∈πj

wjkµk

(x− µ) = W(x− µ) + ST z =W(x− µ) + e
e = ST z = (I−W)(x− µ)






e1
e2
...
ed






=






1
−w21 1
−w32 −w31 1

...
. . .

−wd1 −wd2 . . . −wd,d−1 1











x1 − µ1
x2 − µ2

...
xd − µd
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DAG weights = Cholesky Decomposition

T =






1
−w21 1
−w32 −w31 1

...
. . .

−wd1 −wd2 . . . −wd,d−1 1






x− µ = (I−W)−1e
def
= Ue = UST z

def
= AT z

Σ = Var [x] = Var [x− µ]
= Var [AT z] = ATVar [z]A = ATA

= USTSUT = UDUT

Σ−1 = U−TD−1U−1 = (I−W)TD−1(I−W)
def
= TTD−1T



39

Chains

• Consider a chain X1 -> X2 -> … -> X5

• The DAG and UG are both sparse (same CI)
n = 5;
w=randn(n,1);
W = spdiags([w zeros(n,1) zeros(n,1)], -1:1, n, n) ;
T = eye(n)-W;
D = diag(ones(n,1));
K = T' * D* T;

>> full(W)
ans =

0 0 0 0 0
1.1909 0 0 0 0

0 1.1892 0 0 0
0 0 -0.0376 0 0
0 0 0 0.3273 0

>> K
K =

2.4183 -1.1909 0 0 0
-1.1909 2.4141 -1.1892 0 0

0 -1.1892 1.0014 0.0376 0
0 0 0.0376 1.1071 -0.3273
0 0 0 - 0. 3273 1. 0000
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Diamond

• DAG is sparse, Sigma and SigmaInv are dense 

W =
0 0 0 0

0.5488 0 0 0
0.7152 0 0 0

0 0.6028 0.5449 0
>> K
K =

1.8127 -0.5488 -0.7152 0
-0.5488 1.3633 0.3284 -0.602 8
-0.7152 0.3284 1.2969 -0.544 9

0 -0.6028 -0.5449 1.000 0
>> inv(K)
ans =

1.0000 0.5488 0.7152 0.720 5
0.5488 1.3012 0.3925 0.998 2
0.7152 0.3925 1.5115 1.060 2
0. 7205 0. 9982 1. 0602 2. 1793
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Gaussian MRFs

• Defn. A GMRF is a Gaussian of the form N(µ,Q-1) 
where Qij ≠ 0 iff Gij ≠ 0 (Q=precision matrix)

• Thm. For a GMRF, the following properties are 
equivalent.

• Pairwise Markov:
• Local Markov:

• Global Markov:

xi ⊥ xj |x−ij if Gi,j = 0 and i 
= j

xi ⊥ x−i,ne(i)|xne(i)
xA ⊥ xB |xC

Blacks indep given gray Black indep of white given gray Black indep
striped given gray

Rue&Held p25
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MVN to Gaussian UGM

• We can convert any MVN into a UGM with pairwise
potentials which are quadratics

J
def
= Σ−1

h
def
= Jµ

N (x|h,J) = exp[c− 1
2x

TJx+ xTh]

log p(x) = c− 1
2

∑

i

[Ji,ix
2
i + hixi]− 1

2

∑

i

∑

j

Ji,jxixj

= c+
∑

i

φi(xi) +
∑

i

∑

j>i

φi,j(xi, xj)

φi(xi) = − 1
2 [Ji,ix

2
i + hixi]

φi,j(xi, xj) = −Ji,jxixj
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Pairwise UGM to MVN

• Consider a UGM in which the node and edge 
potentials are quadratics

• We can always rewrite the corresponding 
unnormalized distribution as

• But the normalization constant Z will only be finite if 
J is positive definite.

ǫi(xi) = di0 + di1x1 + di2x
2
i

ǫij(xi, xj) = ai,j00 + ai,j01xi + aij10xj + aij11xixj + aij02x
2
i + aij20x

2
j

p′(x) = exp[− 1
2
xTJx+ xTh]
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Sufficient conditions on info matrix

• Def 7.3.1. A matrix J is attractive if, for all i \neq j, 
we have that all partial correlations are non-neg

• Thm 7.3.2. If J is attractive, then p is a valid MVN.
• Def 7.3.1b. A matrix J is diagonally dominant if, for 

all rows i,

• Thm 7.3.2b. If J is diagonally dominant, then p is a 
valid MVN.

− Ji,j√
Ji,iJj,j

≥ 0

Jii >
∑

j �=i

|Ji,j |
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Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

is called pairwise normalizable if

• Thm 7.3.4. If the MRF is pairwise normalizable, 
then it defines a valid Gaussian.

• Sufficient but not necessary eg.

ǫi(xi) = di0 + di1x1 + di2x
2
i

ǫij(xi, xj) = ai,j00 + ai,j01xi + aij10xj + aij11xixj + aij02x
2
i + aij20x

2
j

di2 > 0,∀i
(

aij02 aij11/2

aij11/2 aij20

)
and is psd for all i,j




1 0.6 0.6
0.6 1 0.6
0.6 0.6 1




May be able to reparameterize the node/
edge potentials to ensure pairwise normalized.
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Conditional autoregressions (CAR)

• We can parameterize a GMRF in terms of its full 
conditionals

• From before, we have

• To be a valid MVN we must set

E[xi|x−i] = µi −
∑

j:j∼i

βij(xj − µj)

prec[xi|x−i] = κi > 0

E[xi|x−i] = µi −
1

Qii

∑

j:j �=i

Qij(xj − µj)

prec(xi|x−i) = Qii

κi = Qii, βij =
Qij
κi

, κiβij = κjβji

Q = diag(κ)(I+ β)

Rue&Held p29
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Outline

• Exponential family: what?(8.2)
• Why? (Extra)

• Connection with GMs (8.3)
• Entropy  (8.4)

• Projections (8.5)
• Querying a distribution (“inference”) – 2.1.5

• Worst case complexity of exact inference (9.1)
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Exponential family

• Def 8.2.2. The exponential family is a set of 
distributions of the form

Where x ∈ X are the variables, h(x) defines the 
support (must not depend on θ), T(x) ∈ RK are the 
sufficient statistics, θ ∈ Θ ⊆ RM are the parameters, 
t(θ) in RK are the natural parameters, and Z(θ) ∈ R+

is the partition function.
We would like Θ to be a convex open subset of RM, 

and to be non-redundant (iff t(θ) is invertible).

p(x|θ) =
1

Z(θ)
h(x) exp

(
t(θ)TT(x)

)

Z(θ) =
∑

x∈S

h(x) exp
(
t(θ)TT(x)

)
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Examples

• X ~ Ber(θ). 

• X ~ N(µ,σ2).

T(x) = [I(x = 0), I(x = 1)]

t(θ) = [log θ, log(1− θ)]

Z(θ) = 1

p(x) = exp
(
T(x)T t(θ)

)

Θ = [0, 1],X = {0, 1}

Θ = R× R+,X = R

p(x) =
1√
2πσ

exp(− 1

2σ2
x2 +

µ

σ2
x− 1

2σ2
µ2)

T(x) = [x, x2]

t(µ, σ2) = [
µ

σ2
,− 1

2σ2
]

Z(µ, σ2) =
√
2πσ exp(

µ2

2σ2
)
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Non-examples

• Let X ~ Unif(a,b). Then

• Support depends on \theta.

• Let X ~ ∑k πk f(x,φk) – mixture model. Cannot be 
written in required form.

p(x|θ) =
1

b− a
I(a ≤ x ≤ b) = exp(log

1

b− a
))I(a ≤ x ≤ b)



7

Linear exponential family

• Consider the set

• If Θ is open and convex, and t(θ)=θ, we say it is a 
linear exponential family.

• We write

• Or

Θ = {θ ∈ RK :
∫
exp(θTT(x))dx <∞}

p(x|η) =
1

Z(η)
h(x) exp[ηTT(x)]

Z(η) =

∫
h(x) exp[ηTT(x)]dx

p(x|η) = h(x) exp[ηTT(x)− A(η)]

A(η) = logZ(η)
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Bernoulli try 1

• .

• However, (log \theta, log (1-\theta)) is a curve, not a 
convex subset. Also, it is redundant. 

T(x) = [I(x = 0), I(x = 1)]

η = [log θ, log(1− θ)]

p(x) = exp
(
ηTT(x)

)
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Bernoulli try 2

• Define
T (x) = [I(x = 1)]

η = log
θ

1− θ

Z(η) = 1 +
θ

1− θ
=

1

1− θ

p(x) =
1

Z(η)
exp(ηT (x)) = (1− θ) exp(x log

θ

1− θ
)

p(x = 0) = (1− θ)

p(x = 1) = (1− θ)
θ

1− θ
= θ

Θ = R
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Gaussian – natural params

η = [
µ

σ2
,− 1

2σ2
]

T(x) = [x, x2]

The natural parameter space is R× R−
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Finite sufficient statistics

• Defn. A statistic is a function of the data, T(D), 
where D=(x1,…,xn). A sufficient statistic is one that 
contains all the information in the data. More 
formally, T is sufficient for θ if θ -> T(D) -> D. 

• Let Xi ~ ExpFam. The likelihood is given by

• Hence the distribution has sufficient statistics of 
size K, independent of n

• Thm (Pitman-Koopman-Darmois). The expfam is 
the only family (amongst those where support is 
indep of theta) with fixed sized suff stat.

p(D|θ) =

n∏

i=1

p(xi|θ) =
1

Z(θ)n
[
∏

i

h(xi)] exp(t(θ)
T

n∑

i=1

T(xi))

T(D) =

n∑

i=1

T(xi))



13

Non-parametric models

• Parametric = fixed sized theta

• Exp fam = fixed size suff stat
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LogZ is MGF

• Consider a linear expfam

• Define

• Then

p(x|η) =
1

Z(η)
h(x) exp[ηTT(x)]

1

g(η)

def
= Z(η) =

∫
h(x) exp[ηTT(x)]dx

1 = g(η)

∫
h(x) exp[ηTT(x)]dx

0 = ∇g(η)
∫

h(x) exp[ηTT(x)]dx

+g(η)

∫
h(x) exp[ηTT(x)]T(x)dx

∫
p(x|η)T(x)dx = −∇g(η)

∫
h(x) exp[ηTT(x)]dx
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LogZ is MGF

∫
p(x|η)T(x)dx = −∇g(η)

∫
h(x) exp[ηTT(x)]dx

−∇ log g(η) = −∇g(η)
g(η)

= −(∇g(η))(
∫

h(x) exp[ηTT(x)]dx)

E[T(X)] = −∇ log g(η) = ∇ logZ(η)
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MLE is moment matching

• Proof

• Example. Gaussian, T(X) = (X, X^2).

log p(D|θ) = −n logZ(θ) + θTT(D)
∇θℓ(θ) = −n∇θ logZ(θ) +T(D) = 0

ET(X) =
1

n
T(D)

E[X ] = µ =
1

n

∑

i

xi

Var [X] = (EX2)− (EX)2

E[X2] = σ2 + µ2 =
1

n

∑

i

x2i

σ2 =
1

n

∑

i

x2i − µ2
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Conjugate priors 

• Defn. A prior p(θ) ∈ F is conjugate to a likelihood 
p(D|θ) if the posterior satistifes p(θ|D) ∈ F, i.e., has 

the same functional form as the prior.
• Thm. All dist in expfam have conj prior.

• Most distrib with conj prior are in exp fam.
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Maximum entropy principle

• Defn. The entropy of a pmf is

• The differential entropy of a pdf can be –ve

• The relative entropy, or KL divergence, from p to q 
is given by

• KL is always >= 0, even for pdf’s. 

H(p)
def
= −

∑

x

p(x) log p(x), H(p) ≥ 0

h(p)
def
= −

∫

S

p(x) log p(x)dx

KL(p, q)
def
=

∑

x

p(x) log
p(x)

q(x)



19

Maxent principle

• Suppose we want to pick the most uncertain 
distribution (principle of least commitment) subject 
to the constraints that

• Optimize the Lagrangian
J(p) = −

∑

x

p(x) log p(x) + λ0(1−
∑

x

p(x)) +
∑

k

λk(Fk −
∑

x

p(x)fk(x))

∂J

∂p(x)
= −1− log p(x)− λ0 −

∑

k

λkfk(x) = 0

p(x) =
1

Z
exp(−

∑

k

λkfk(x))

Z = e1+λ0

1 =
∑

x

p(x) =
1

Z

∑

x

exp(−
∑

k

λkfk(x))

Z = Z(λ) =
∑

x

exp(−
∑

k

λkfk(x))

∑

x

fk(x)p(x) = Fk



20

Gaussian maximizes entropy

• MVN is in expfam. p(x) =
1

Z
exp(− 1

2
xTKx) =

1

Z
exp(

∑

k

λkfk(x))

fij(x) = xixj , λij =
1

2
Kij

Theorem0.1. Let g(x) beanydensitysatisfying
∫
g(x)xixj = Σij . Let φ = N (0,Σ).

Then h(g) ≤ h(φ).

Proof. (From (?, p234).) Wehave

0 ≤ KL(g||φ) (1)

=

∫
g(x) log

g(x)

φ(x)
dx (2)

= −h(g)−
∫

g(x) logφ(x)dx (3)

= −h(g)−
∫

φ(x) logφ(x)dx (** ) (4)

= −h(g) + h(φ) (5)

where the line marked (** ) follows since g and φ yield the same moments for the
quadratic form log φ(x).
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Some GMs are expfam models

• We showed earlier that many +ve UGM can be 
represented as an expfam

• Most CPDs can be represented as expfam
• Eg table p(X|U). T(X,U)=[I(X=x), I(U=u)],

t(\theta) = [\log p(x|u)].
• Eg lingauss.

• Product of expfam is expfam.

p(x) =
1

Z
exp(

∑

i

θTi fi(x))

p(x|u) =
1√
2πσ

exp

(
− 1

2σ2
(x− (w0 + w1u1 + · · ·+ wkuk))

2

)

T(x,u) = [1, x, u1, . . . , uk, xu1, . . . , xuk, u
2
1, u1u2, . . . , u

2
k]
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DGMs are curved expfam

• In general, the fact that CPDs sum to 1 locally 
means that they are not linear expfam

• See p248 of K&F 

• Geiger’01 shows that DGMs are curved expfam
models (curved means the params are not linearly 
indep, so \theta is smaller than t(\theta)).

• Geiger’01 also shows that GMs with hidden 
variables are stratified exponential families (SEFs) -
a finite union of CEFs of various dimensions 
satisfying some regularity conditions.

Stratified exponential families: Graphical models and model selection
Dan Geiger, David Heckerman, Henry King, and Christopher Meek
Source: Ann. Statist. Volume 29, Number 2 (2001), 505-529.
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Entropy of an expfam model

• Thm 8.4.1. If X ~ ExpFam(theta), then

• Ex 8.4.2. Gaussian.

H(Pθ(x)) = logZ(θ)− E[T(x)T t(θ)]

p(x) =
1√
2πσ

exp(− 1

2σ2
x2 +

µ

σ2
x− 1

2σ2
µ2)

T(x) = [x, x2]

t(µ, σ2) = [
µ

σ2
,− 1

2σ2
]

Z(µ, σ2) =
√
2πσ exp(

µ2

2σ2
)

H = 1

2
ln(2πσ2) +

µ2

2σ2
− µ

σ2
E[x] +

1

2σ2
E[x2]

= 1

2
ln(2πσ2) +

µ2

2σ2
− 2µ2

2σ2
+

1

2σ2
(µ2 + σ2)

= 1

2
ln(2πσ2) + 1

2
= 1

2
ln(2πσ2) + 1

2
ln e = 1

2
ln(2πσ2e)
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Entropy of a GM

• Thm 8.4.3. If P(X) = 1/Z ∏c φc(X) is a UGM, then

• Thm 8.4.5. If P(X) is a DGM, then

• Pf.  

• Thm 8.4.6. If P(X) is a DGM, then

H(Pθ(x)) = logZ(θ) +
∑

c

E[− lnφc(xc)]

H(P (X)) =
∑

i

H(P (Xi|Xπi))

H(P (X)) = E[− log p(X)] = E[−
∑

i

log p(Xi|Xπi)]

=
∑

i

E[− log p(Xi|Xπi)] =
∑

i

H(P (Xi|Xπi))

=
∑

i

∑

xπi

p(xπi)H(P (Xi|xπi))

∑

i

min
xπi

H(P (Xi|xπi)) ≤ H(P (X)) ≤
∑

i

max
xπi

H(P (Xi|xπi))
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Projections

• Def 8.5.1. Let P b a distribution and Q a convex set 
of distributions.

• The I-projection (information) is

• The M-projection (moment) is

QI = arg min
Q∈Q

D(Q||P )

QM = arg min
Q∈Q

D(P ||Q)

Zero forcing: P=0 => Q=0

Q=0 => P=0 High variance

Mode seeking
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M-projection is moment matching

• Thm 8.5.5. Let P be any distrib over X, and let Q be 
expfam. If there is a set of params θ st EQ(θ)[τ(X)] = 
EP[τ(X)], then the M-projection of P onto Q is Qθ.

• Ex. Let Q = fully factorized distribution. Then Q^M 
is given by product of marginals.

• Ex. Let P = mix Gaussians, Q = single Gaussian.

QM (x) = p(X1) . . . p(Xd)

p(x) =
∑

k

πkN (x|µk,Σk)

QM (x) = N (x|µQ,ΣQ)
µQ =

∑

k

πkµk

ΣQ =
∑

k

πk(Σk + (µk − µQ)(µk − µQ)T )
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I-projection

• I-projection requires computing expectations of 
log(P) – which often factorizes - wrt Q, and the 
entropy of Q.

• We can choose Q to be “simple”, so that it is easy 
to compute these expectations and entropy terms.

• This is the basis of variational inference.

• By contrast, M-projections require expectations wrt
P. Usually this can only be done locally, as in 
expectation propagation.

QI = arg min
Q∈Q

D(Q||P ) = argmin
∑

x

Q(x) log
Q(x)

P (x)
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Querying a distribution (“inference”)

• Suppose we have a joint p(X1,…,Xd). Partition the 
variables into E (evidence), Q (query), and H 
(hidden/ nuisance). We might pose the following 
queries

• Conditional probability (posterior):

• MAP estimate (H=∅)  (posterior mode)

• Marginal MAP estimate (mode of marginal post):

p(XQ|xE) ∝
∑

xH

p(XQ,xE ,xH)

x∗Q = argmaxxQ
p(xQ|xE) = argmax

xQ

∑

xH

p(xQ,xE ,xH)

x∗Q = argmaxxQ
p(xQ|xE) = argmax

xQ
p(xQ,xE)
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MAP vs marginal MAP

• Max max ≠ max sum
• Ex 2.1.12. Joint is

• One can show that max sum is strictly 
computationally harder than sum, which is in turn 
harder than max

a∗ = argmax
a

∑

b

p(a, b) = 1

b∗ = argmax
b

∑

a

p(a, b) = 1

(a, b)∗ = argmax
a,b

p(a, b) = (0, 1)
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Speech recognition

• Eg speech recognition. Let Q=words, H = 
pronunciation (phonemes sequence), E = signal.

• We often make the following approximation, which 
lets us use the Viterbi algorithm

• Eg. Consider W1=“a back”, vs W2=“aback”. There 
might be 10 alternative state sequences for W1, 
each with prob 0.03, but just one sequence for W2, 
with prob 0.2. Viterbi would choose W2, but W1 is 
actually more likely. 

w∗ = argmax
w

∑

h

p(w,h|e) ≈ argmax
w

max
h

p(w,h|e)
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Bayesian statistics

• Bayesian statistics amounts to defining a single 
joint distribution for both “variables” – latent and 
observed - and “parameters” (often fixed in 
number), and then querying the parameters.

p(θ|X,Y) ∝ p(θ)
∏

i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi
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Probability of evidence

• To compute conditional queries, we need to 
evaluate p(xE)

• This may be a high dimensional integral

• p(xE) can be used to decide how likely xE is to have 
come from this model (classification and model 
selection)

p(XQ|xE) =

∑
xH p(XQ,xE ,xH)

p(xE)

p(xE) =
∑

xQ

∑

xH

p(xQ,xE ,xH)

p(θ|X,Y) =
p(θ)

∏
i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi

p(X,Y)

p(X,Y) =

∫
p(θ)

[
∏

i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi

]

dθ
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Sampling

• Often the posterior is too big to even store explicitly.
• Marginals and MAP estimates are one summary, but may 

be unrepresentative.
• Samples may provide a better summary.
• eg Attractive Ising model has 2 modes, all 0 and all 1. The 

marginals are [0.5, 0.5].
• We want to be able to sample from p(xQ|xE)
• Sometimes we can do this even if we cannot evaluate p(xE) 

– this is the key idea behind MCMC
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Monte Carlo integration

• Sometimes we want to E[f(xQ)|xE], where f() 
depends on global properties of Q, so we cannot 
use marginal distributions.

• However, if we sample from p(XQ|xE), we can use

E[f(XQ)|xE ] =
∫

f(xQ)p(xQ|xE)dxQ ≈
1

N

n∑

i=1

f(xiQ)
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Inference in discrete state spaces

• We will mostly focus on the case where Q and H 
are discrete rv’s (E can be cts or discrete).

• Thus everything amounts to computing a large 
number of sums as quickly as possible.

• We will also consider the case where Q, H and E 
are all jointly Gaussian, where exact answers can 
also be obtained.

• For general distributions (eg for applications in 
Bayesian statistics), exact inference is usually not 
possible (except 1 layer of parameters with 
conjugate priors and no latent variables).
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Complexity of inference

• Consider computing p(X_Q), p(X_Q|x_E), or p(x_E) 
for a discrete state space.

• Later we will show that if P is representable by a 
GM, then we can compute these quantities 
efficiently, if the graph has special properties.

• However, in general, the problem is 
computationally expensive.
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Complexity of exact inference

• Thm 9.1.1. Given a DGM, deciding if p(X=x)>0 is 
NP-complete.

• Pf. Easy to see is in NP (linear time to check if 
p(x)>0.) Can show is NP-hard by showing how to 
reduce 3-SAT to  a poly-sized DGM.

X = (Q1 ∨ ¬Q2 ∨Q3) ∧ (Q2 ∨Q5 ∨Q3) · · ·

P(X=1) = #satisfying assignments/ 2^n 
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Complexity of exact inference

• Defn. NP is the class of problems of the form “are 
there any solutions x such that f(x) is true”. #P is 
the class of problems “Count the number of 
solutions x st f(x) is true”.

• Thm 9.1.2. Given a DGM, computing p(X=x) is #P-
complete.
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Complexity of approximate inference

• Def 9.1.3. A estimate ρ has absolute error ε if

• Def 9.1.4. An estimate ρ has relative error ε if

• Thm 9.1.5. Given a DGM, finding a number ρ which as 
relative error ε for p(X=x) is NP-hard. 

• Thm 9.1.6. Given a DGM, finding a number ρ that has 
absolute error ε for p(X|e) is NP-hard for any 0 ≤ ε ≤ 0.5.

|p(xQ|xe)− ρ| ≤ ǫ

ρ

1 + ǫ
≤ p(xQ|xe) ≤ ρ(1 + ǫ)
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Outline

• Variable elimination (9.2-9.3)

• Complexity of VE (9.4)
• Conditioning (9.5)

• From VE to clique trees (10.1) 
• Message passing on clique trees (10.2-10.3)

• Creating clique trees (10.4)
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Inference

• Consider the following distribution

P (C,D, I,G, S, L, J,H)

= P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L,S)P (H|G,J

P (C,D, I,G, S, L, J,H)

= ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)

ψL(L,G)ψJ(J,L, S)ψH(H,G, J)
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Brute  force enumeration

• Compute marginal probability someone has a job

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H)
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Variable elimination 1

• Push sums inside products (distributive law)

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)

ψL(L,G)ψJ (J, L, S)ψH(H,G, J)

=
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)
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VE 2: work right to left

P (J) =
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)τ2(G, I)

︸ ︷︷ ︸
τ3(G,S)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)

︸ ︷︷ ︸
τ4(G,J)

τ3(G,S)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)τ4(G, J)τ3(G,S)

︸ ︷︷ ︸
τ5(J,L,S)

=
∑

L

∑

S

ψJ (J,L, S)τ5(J, L, S)

︸ ︷︷ ︸
τ6(J,L)

=
∑

L

τ6(J, L)

︸ ︷︷ ︸
τ7(J)

Variable elimination
Bucket elimination
Peeling
Non-serial dynamic programming
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Pseudocode
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Dealing with evidence

• Conditional prob is ratio of uncond prob

• Soft/ virtual evidence: φi(Xi) = p(yi|Xi)

• Hard evidence: φi(Xi) = I(Xi=xi
*)

P (J |I = 1, H = 0) =
P (J, I = 1, H = 0)

P (I = 1, H = 0)

P (J, I = 1, H = 0) =
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)φH(H)
∑

I

ψS(S, I)ψI(I)φI(I)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

P (J, I = 1, H = 0) =
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)ψH(H = 0, G, J)ψS(S, I = 1)ψI(I = 1)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)
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Reduced graph

• If nodes are instantiated (fully observed), we can 
remove them and their edges and absorb their 
effect by updating all the other factors that 
reference them

• Eg if G is observed
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VE with hard evidence
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Complexity analysis of VE

• At step i, we multiply all factors involving xi into a 
large factor, then sum out xi to get τi.

• Let Ni be number of entries in factor ψi.
• The total number of factors is m+n, where m = 

original number of factors in model (m ≥ n), and 

n=num. vars.
• Each factor gets multiplied into something bigger 

once. Hence #mult is at most

• When we sum out a node from a factor, we touch 
each entry once, so #adds is at most

(n+m)Ni ≤ (n+m)Nmax = O(mNmax)

nNmax
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Complexity  analysis of VE

• If each variable has v values, and factor ψi involves 
ki variables, then Ni ≤ vk

• So complexity is exponential in the size of the 
largest factor.
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Different elimination ordering

P (J) =
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)
∑

I

ψI(I)ψS(S, I)
∑

G

ψG(G, I,D)ψL(L, )ψH(H,G, J)

︸ ︷︷ ︸
τ1(I,D,L,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)
∑

I

ψI(I)ψS(S, I)τ1(I,D,L, J,H)

︸ ︷︷ ︸
τ2(D,L,S,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)τ2(D,L, S, J,H)

︸ ︷︷ ︸
τ3(D,L,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

τ3(D,L, J,H)

︸ ︷︷ ︸
τ4(D,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

τ4(D,J,H)

︸ ︷︷ ︸
τ5(D,J)

=
∑

D

∑

C

ψD(D,C)τ5(D, J)

︸ ︷︷ ︸
τ6(D,J)

=
∑

D

τ6(D,J)

︸ ︷︷ ︸
τ7(J)
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Effect of ordering

• A bad ordering can create larger intermediate 
factors, and therefore is slower
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Graph theoretic analysis

• Every time we eliminate a node, we build a new 
factor which combines variables that may have 
previously been in separate factors. Let us add an 
edge (fill-in edge) between such nodes to create 
the induced graph.

τ3(G,S) =
∑

I

ψS(S, I)ψI(I)τ2(G, I)

When we eliminate I, we add a fill-in between G and S



17

Induced graph

• Def 9.4.3. Let I(G,<) represent the graph induced 
by applying VE with order < to graph G.

• Thm 9.4.4.Every factor generated by VE is a clique 
in I(G,<). Also, every maximal clique in I(G,<) 
corresponds to some intermediate factor.

{C,D}, {D, I,G}, {G,L, S, J}, {G, J,H}, {G, I, S}
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Treewidth

• Def 9.4.5. The width of an induced graph is the 
number of nodes in the largest clique minus 1. The 
minimal induced width of a graph, aka the 
treewidth, is defined as

• The treewidth of a tree is 1, since the max clique 
(edge) in the original graph has size 2, and  the 
optimal elimination order (eliminate all the leaves, 
then the root) adds no fill-in edges.

WG = min
≺
max
i
|τi| − 1

1, 2, 3 :
∑

x3

∑

x2

φ(x3, x2)
∑

x1

φ(x3, x1)

3, 2, 1 :
∑

x1

∑

x2

∑

x3

φ(x3, x1)φ(x3, x2)
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Finding an elim order

• Thm 9.4.6. Finding the optimal elimination order 
(which minimizes induced width) is NP-hard.

• Typical approach: greedy search, where at each 
step, we eliminate the node that minimizes some 
cost function

• Min-fill heuristic: the cost of a node is the number of 
fill-in edges that would be added.

• Min-weight heuristic: the cost of a node is the 
number of states in the factor that would be created 
(product of cardinalities).
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Empirical comparison of heuristics

Min-fill is often close to best known ordering (computed with simAnneal)
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Chordal graphs

• Def 2.2.15. Let X1 – X2 - … Xk – X1 be a loop in a 
graph. A chord is an edge connecting Xi and Xj for 
two nonconsecutive nodes. An undirected graph is 
chordal (triangulated) if every loop of length k >= 4 
has a chord.

• Thm 9.4.7. Every induced graph is chordal.

• Thm 9.4.8. Any chordal graph admits a perfect 
elimination order which does not introduce any fill-
in edges.
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Finding perfect elim order

• The max cardinality search algorithm will find a 
perfect elimination ordering for a chordal graph.

For non-chordal graphs, the MCS ordering often results in large induced width
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Conditioning

• We can condition on a variable to break the graph 
into smaller pieces, run VE on each piece, and then 
add up the results. We also need the probability of 
each conditioning case.

P̃ (Y) =
∑

u

P̃ (Y,u)

Evidence G=g Condition on S

Z =
∑

u

Z(u)
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Conditioning + VE
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Cutset conditioning

• If we instantiate a set of nodes such that the 
resulting network is a tree, we can apply a simple 
message passing algorithm on the tree (see later).

• This is called cutset conditioning.

• Thm 9.5.2. Conditioning + VE is never more 
efficient than VE.

Left: condition on Ak. Repeatedly
re-eliminate A1… Ak-1 instead
of reusing computation (as in DP/VE).

Right: condition on Ak, k odd. 
Exponential in k. But induced width is only 2.

Space-time tradeoff.
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VE on chain = forwards algorithm

p(x1, x2, x3|y1, y2, y3) ∝ φ1(x1)ψ(x1, x2)φ2(x2)ψ(x2, x3)φ3(x3)

φ1(x1) = π1(x1)p(y1|x1)

φt(xt) = p(yt|xt), t > 1

ψ(xt−1, xt) = p(xt|xt−1)

p(x3|y1:3) ∝ φ3(x3)
∑

x2

φ2(x2)ψ(x2, x3)
∑

x1

φ1(x1)ψ(x1, x2)

α1(x1) ∝ φ1(x1)

α2(x2) ∝ φ2(x2)
∑

x1

α1(x1)ψ(x1, x2)

α3(x3) ∝ φ3(x3)
∑

x2

α2(x2)ψ(x2, x3)
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What’s wrong with VE?

• Consider a chain X1 – X2 - .. – XT, where the local 
evidence has been absorbed into the node factors.

• If we use VE to compute p(XT|y(1:T)), it is 
equivalent to the forwards algorithm for HMMs, and 
takes O(T K2) time, where K = #states.

• Suppose we also want to compute p(X(T-1)|y(1:T)). 
We could rerun the algorithm for an additional O(T 
K2) time. 

• We now discuss how to reuse most of the 
computation we have already done in eliminating 
X(1:T-2). We can then compute all marginals in
O(2 K2 T) time (FB algorithm).
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Cluster graphs

• Def 10.1.1. A cluster graph for a set of factors on X 
is an undirected graph, each of whose nodes I is 
associated with a set Ci ⊆ X. Each factor is 

contained in precisely one cluster. Each edge 
between a pair of clusters Ci, Cj is associated with 
a sepset (separating set) Sij. Sij = Ci∩Cj
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Cluster graph from VE

• We can create a cluster graph to represent the process of 
VE. Before we marginalize out xi, we create factor ψi (its 
bucket potential); make this a cluster. When we marginalize 
out xi, we create factor τi which is stored in bucket j; think of 
this as a message from i to j. Draw an edge Ci – Cj.
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Properties of VE cluster graph

• The VE cluster graph is a tree, since each message gets 
sent to a single bucket (so each cluster connects to at most 
one other cluster)

• Def 10.1.3. Let T be a cluster tree. T has the running 
intersection property if , whenever X in Ci and X in Cj, 
then X is also in every cluster on the unique path from Ci to 
Cj. 

• Thm 10.1.5. The VE CG has RIP.
• Pf (sketch). A variable appears in every factor from the 

moment it is introduced to when it is summed out.
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Messages

• Thm 10.1.6. The scope of the msg τi from Ci to Cj is Si,j.

• Def. For any sepset Sij, let W<ij be the variables in the scope 
of the clusters on the Ci side, and W<ji be the vars on the Cj
side.

• Thm 10.1.8. T satisfies RIP iff for every Sij,W<ij ⊥ W<ji | Sij.

• Hence msg from Ci to Cj is sufficient statistic for all info to 
left of Ci – Cj.

• RIP ensures local communication => global consistency.
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Clique trees

• Def 10.1.7. A cluster tree that satisfies RIP is called 
a clique tree or join tree or junction tree.

• Thm 4.5.15. A graph has a Jtree (where the 
clusters are the maxcliques) iff it is chordal.

• Thm 10.4.1. We can always remove non maximal 
cliques from a Jtree without violating RIP.
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Message passing on a clique tree

• To compute p(X_i), find a clique that contains X_i, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Message passing on a clique tree

• .
P (J) =

∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

Multiply terms in bucket (local & incoming),
sum out those that are not in sepset,
send to nbr upstream
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)
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Message passing to a different root

• If we send messages to a different root, many of 
them will be the same

• Hence if we send messages to all the cliques, we 
can reuse the messages- dynamic programming!
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Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting
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Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm to find a 
MAP configuration as follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 
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Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Thm. After collect/distribute, all cliques are 
calibrated.

• Thm 10.2.12. A calibrated tree defines a joint 
distribution as follows

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

p(A,B,C) =
p(A,B)p(B,C)

p(C)
= p(A,B)p(C|B) = p(A|B)p(B,C)eg
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation.

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)



46

Out of clique queries

• We can compute the distribution on any set of 
variables inside a clique. But suppose we want the 
joint on variables in different cliques. We can run 
VE on the calibrated subtree

• eg
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Out of clique inference
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Creating a Jtree

Murphy PhD thesis (2002) p140
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Max cliques from a chordal graph

• Triangulate the graph according to some ordering.

• At each step, keep track of the clique that is 
created; if it is a subset of any previously created 
clique, discard it (since non maximal).
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Cliques to Jtree

• Build a weighted graph where
Wij = |Ci intersect Cj|

• Find max weight spanning tree. This is a jtree.
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Stat 521A
Lecture 8
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Outline

• Forwards backwards on chains

• FB on trees
• FB on clique chains

• FB on clique trees
• Message passing on clique trees (10.2-10.3)

• Creating clique trees (10.4)
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Forwards algorithm
1. predict: compute the the one-step-ahead predictive density p(St|x1:t−1) as

follows:

p(St = j|x1:t−1) =
∑

i

p(St = j, St−1 = i|x1:t−1) (1)

=
∑

i

p(St = j|St−1 = i)p(St−1 = i|x1:t−1) (2)

In the second step we used the fact that St ⊥ X1:t−1|St−1.

2. update: compute p(St|xt,x1:t−1) using Bayes rule, where we use p(St|x1:t−1)
as the prior:

p(St = j|x1:t) =
1

ct
p(xt|St = j)p(St = j|x1:t−1) (3)

where we used the fact that Xt ⊥ X1:t−1|St. The normalizing constant ct is
given by

ct = p(xt|x1:t−1) =
∑

j

p(xt|St = j)p(St = j|x1:t−1) (4)

The basecase is

p(S1 = j|x1) ∝ p(S1 = j)p(x1|S1 = j) = πjp(x1|S1 = j) (5)



4

Matrix vector form

αt(j) = p(St = j|x1:t) (1)

bt(j) = p(xt|St = j) (2)

A(i, j) = p(St = j|St−1 = i) (3)

Hence the recursion step is

αt(j) ∝ bt(j)
∑

i

Aijαt−1(i) (4)

This can be rewritten in matrix-vector notation as

αt ∝ diag(bt)A
Tαt−1 (5)

It issomewhat clearer if weuseMatlab-stylenotation, anduse .∗ to denoteelementwise
multiplication by a vector:

αt ∝ bt. ∗ (A
Tαt−1) (6)

The log-likelihood of the data sequence can be computed from the normalizing con-
stants as follows:

log p(x1:T ) =

T∑

t=1

log p(xt|x1:t−1) =
T∑

c=1

log ct (7)
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Matlab

Listing 1: Listing of hmmFilter
f unct i on [alpha, loglik] = hmmFilter(initDist, transmat, obslik)
% i ni t Di s t ( i ) = Pr ( Q( 1) = i )
% t r ansmat ( i , j ) = Pr ( Q( t ) = j | Q( t - 1) =i )
% obsl i k( i , t ) = Pr ( Y( t ) | Q( t ) =i )
[K T] = size(obslik);
alpha = zeros(K,T);
[alpha(:,1), scale(1)] = normalize(initDist(:) . * obslik(:,1));
for t=2:T

[alpha(:,t), scale(t)] = normalize((transmat' * alpha(:,t-1)) . * obslik(:,t));
end
loglik = sum(log(scale+eps));

Listing 2: Listing of makeLocalEvidence
f unct i on localEvidence = makeLocalEvidence(model,obs)
% l ocal Ev i dence( i , t ) = p( Y( t ) | Z( t ) =i )
localEvidence = zeros(model.nstates,size(obs,2));
for i = 1:model.nstates

localEvidence(i,:) = exp(logprob(model.emissionDist{i },obs'));
end
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Offline estimation: goals
• Singleslicemarginals:

γt(j)
def
= p(St = j|x1:T ,θ) (1)

for all 1 ≤ t ≤ T . This can be computed via the forwards backwards algo-
rithm, as wediscuss in Section ??.

• Two-slicemarginals

ξt−1,t(i, j)
def
= p(St−1 = i, St = j|x1:T , θ) (2)

These are needed for parameter estimation, as described in Section ??. These
quantitiesareeasy to computeusing forwards-backwards, aswedescribein Sec-
tion ??.

• The posterior mode, or most probable path:

s
∗
1:T = argmax

s1:T
p(s1:T |x1:T ,θ) (3)

This can be computed by the Viterbi algorithm, aswe describe in Section ??.

• Samples from the posterior

s1:T ∼ p(s1:T |x1:T ,θ) (4)

This can be computed by the forwards ����ltering, backwards sampling algo-
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Filtering vs smoothing vs Viterbi
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Fixed lag smoothing
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FB

p(St|x1:T ) ∝
∑

s1:t−1

∑

st+1:T

p(s1:t−1,x1:t−1, St,xt, st+1:T ,xt+1:T ) (1)

=
∑

s1:t−1

∑

st+1:T

p(s1:t−1,x1:t−1)p(St|st−1)p(xt|St)p(st+1:T ,xt+1:T |St)(2)

=
∑

st−1

p(st−1,x1:t−1)p(St|st−1)p(xt|St)p(xt+1:T |St) (3)

∝
∑

st−1

p(st−1|x1:t−1)p(St|st−1)p(xt|St)p(xt+1:T |St) (4)
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Matrix vector form

Let us de�ne the following notation

αt(j)
def
= p(St = j|x1:t) (1)

βt(j)
def
= p(xt+1:T |St = j) (2)

γt(j)
def
= p(St = j|x1:T ) (3)

Then wecan rewrite theaboveequation as

γt(j) ∝
∑

i

αt−1(i)Aijbt(j)βt(j) (4)

Furthermore, let us de�ne theone-step ahead predictivedensity

at(j)
def
= p(St = j|x1:t−1) =

∑

i

αt−1(i)Aij (5)

Then wecan rewrite theaboveequation as

γt(j) ∝ at(j)bt(j)βt(j) (6)
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Backwards algorithm

βt−1(i) = p(xt+1:T |St−1 = i) (1)

=
∑

j

p(St = j,xt,xt+1:T |St−1 = i) (2)

=
∑

j

p(St = j|St−1 = i)p(xt|St = j, St−1 = i)p(xt+1:T |St = j, St−1 = i)(3)

=
∑

j

p(St = j|St−1 = i)p(xt|St = j)p(xt+1:T |St = j) (4)

=
∑

j

Aijbt(j)βt(j) (5)

whereEquation ?? is justi�ed sinceXt ⊥ Xt+1:T |St and Equation ?? is justi�ed since
Xt ⊥ St−1|St andXt+1:T ⊥ St−1|St. We can write the resulting equation in matrix-
vector form as

βt−1 = A(bt. ∗ βt) (6)

The basecase is

βT (i) = p(xT+1:T |ST = i) = p(∅|ST = i) = 1 (7)



12

Matlab

Listing 1: Listing of hmmBackwards
f unct i on [beta] = hmmBackwards(transmat, obslik)
% bet a( i , t ) pr opt o p( y( t +1: T) | Q( t =i ) )
[K T] = size(obslik);
beta = zeros(K,T);
beta(:,T) = ones(K,1);
for t=T-1:-1:1

beta(:,t) = normalize(transmat * (beta(:,t+1) . * obslik(:,t+1)));
end
\end{codeCap

\begin{codeCap}{Listing of \codename{hmmFwdBack}}
f unct i on [gamma, alpha, beta, loglik] = hmmFwdBack(initDist, trans mat, obslik)
% gamma( i , t ) = p( Q( t ) =i | y( 1: T) )
[alpha, loglik] = hmmFilter(initDist, transmat, obslik);
beta = hmmBackwards(transmat, obslik);
gamma = normalize(alpha . * beta, 1); % make each col umn sum t o 1
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Avoiding underflow

αt(j) = p(St = j|x1:T ) =
1

ct
bt(j)

∑

i

Aijαt−1(i) (1)

ct =
∑

j

bt(j)
∑

i

Aijαt−1(i) (2)

β̂t−1(i) =
1

dt−1

∑

j

Aijbt(j)β̂t(j) (3)

dt−1 =
∑

i

Aijbt(j)β̂t(j) (4)

p(St = j,x1:t) = p(St = j|x1:t)p(x1:t) = αt(j)(
t∏

τ=1

cτ ) (5)

p(xt+1:T |St = j) = β̂t(j)(
T∏

τ=t

dτ ) (6)
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Avoiding underflow

γt(j) = p(St = j|x1:T ) (1)

=
p(xt+1:T |St = j)p(St = j, x1:t)

p(x1:T )
(2)

=
(
∏T

τ=t dτ )β̂t(j)(
∏t

τ=1 cτ )αt(j)∑
j′(
∏T

τ=t dτ )β̂t(j
′)(
∏t

τ=1 cτ )αt(j
′)

(3)

=
βt(j)αt(j)

∑
j′ β̂t(j

′)αt(j′)
(4)
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Two-slice marginals

Nij =
T−1∑

t=1

E[I(St = i, St+1 = j)|x1:T ] =
T−1∑

t=1

p(St = i, St+1 = j|x1:T ) (1)

ξt−1,t(i, j)
def
= p(St−1 = i, St = j|x1:T )

∝ p(St−1 = i|x1:t−2)p(xt−1|St−1 = i)p(St = j|St−1 = i)p(xt|St = j)p(xt+1:T |St = j)

= at−1(i)bt−1(i)Aijbt(j)βt(j)

ξt−1,t ∝ A. ∗ (αt−1 ∗ (bt. ∗ βt)
T ) (2)
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Time and space complexity

• O(T K b) time, b = branching factor

• In discretization of cts space,
O(T K log K) or O(T K) – Felzenswalb & 
Huttenlocher

• O(T K) space, O(T K^2) time
• O(K log T) space, O(T log T K^2) time (island 

algorithm)
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Viterbi

MAPpath
s∗1:T = argmax

s1:T
p(s1:T |x1:T ) (1)

Max marginals

s∗t = argmax
i
p(St = i|x1:T ) = argmax

i

∑

s−t

p(St = i, s−t|x1:T ) (2)

δt(i)
def
= max

s1,...,st−1
p(s1:t−1, st = i,x1:t|θ)

δt+1(j) = max
i
δt(i)Aijbt+1(j)

ψt+1(j) = argmax
i
δt(i)Aijbt+1(j)

δ1(j) = πjb1(j)

Traceback

S∗T = argmax
i
δT (i)

S∗t = ψt+1(s
∗
t+1)
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Viterbi example

δ1(1) = 0.5

δ2(1) = δ1(1)A11b2(1) = 0.5 · 0.3 · 0.3 = 0.045

δ2(2) = δ1(1)A12b2(2) = 0.5 · 0.7 · 0.2 = 0.07
Top N list
Discrim. reranking
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Fwd filtering, back sampling

s∗1:T ∼ p(s1:T |x1:T ,θ) (1)

s∗t ∼ p(St|s
∗
t+1:T ,x1:T ) (2)

∝ p(St|s
∗
t+1,x1:t) (3)

p(St = i|St+1 = j, x1:t) = p(St = i|St+1 = j, x1:t, xt+1) (4)

=
p(St = i, St+1 = j|x1:t+1)

p(St+1 = j|x1:t+1)
(5)

=
p(xt|St = j)p(St = j|St−1 = i)p(St−1 = i|x1:t−1)

p(St+1 = j|x1:t+1)
(6)

=
Aijαt(i)bt+1(j)

αt+1(j)
(7)

Listing 1: Listing of hmmSamplePost
f unct i on [samples] = hmmSamplePost(initDist, transmat, obslik, ns amples)
% sampl es( t , s) = val ue of S( t ) i n sampl e s
[K T] = size(obslik);
alpha = hmmFilter(initDist, transmat, obslik);
samples = zeros(T, nsamples);
dist = normalize(alpha(:,T));
samples(T,:) = sample(dist, nsamples);
for t=T-1:-1:1

tmp = obslik(:,t+1) ./ (alpha(:,t+1)+eps); % b_{ t +1} ( j ) / al pha_{ t +1} ( j )
xi_filtered = transmat . * (alpha(:,t) * tmp');
for n=1:nsamples

dist = xi_filtered(:,samples(t+1,n));
samples(t,n) = sample(dist);

end
end
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Message passing on a clique tree

• To compute p(X_i), find a clique that contains X_i, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Message passing on a clique tree

• .
P (J) =

∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

Multiply terms in bucket (local & incoming),
sum out those that are not in sepset,
send to nbr upstream
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)
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Message passing to a different root

• If we send messages to a different root, many of 
them will be the same

• Hence if we send messages to all the cliques, we 
can reuse the messages- dynamic programming!
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Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting
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Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm to find a 
MAP configuration as follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 



29

Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Thm. After collect/distribute, all cliques are 
calibrated.

• Thm 10.2.12. A calibrated tree defines a joint 
distribution as follows

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

p(A,B,C) =
p(A,B)p(B,C)

p(C)
= p(A,B)p(C|B) = p(A|B)p(B,C)eg
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation.

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Out of clique queries

• We can compute the distribution on any set of 
variables inside a clique. But suppose we want the 
joint on variables in different cliques. We can run 
VE on the calibrated subtree

• eg
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Out of clique inference
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Creating a Jtree

Murphy PhD thesis (2002) p140
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Max cliques from a chordal graph

• Triangulate the graph according to some ordering.

• At each step, keep track of the clique that is 
created; if it is a subset of any previously created 
clique, discard it (since non maximal).
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Cliques to Jtree

• Build a weighted graph where
Wij = |Ci intersect Cj|

• Find max weight spanning tree. This is a jtree.
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Outline

• Exact inference in clique trees (10.2, 10.3)

• Approximate inference – overview
• Loopy belief propagation (11.3)
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Message passing on a clique tree

• To compute p(Xi), find a clique that contains Xi, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)



5

Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting
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Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x\Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm from HMMs
to find a MAP configuration of a general graph as 
follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from any GM as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 
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Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Def 10.2.11. The measure defined by a calibrated 
tree is defined as

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

βT (x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Calibrated clique tree

• Thm 10.2.12. For a calibrated clique tree,
p(x) ∝ βT(x) iff βi(Ci) ∝ p(Ci)

• Pf (sketch). Assume A-B-C. Then

p(A,B,C) =
p(A,B)p(B,C)

p(B)
= p(A,B)p(C|B) = p(A|B)p(B,C)
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation. (But only when fully calibrated 
do clq pots = marginals.)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Summary of exact inference

• Build clique tree
– eliminate nodes in some order
– collect maximal cliques
– Build a weighted graph where

Wij = |Ci intersect Cj|
– Find max weight spanning tree

• Initialize clique potentials with model potentials and 
evidence

• Do message passing on the tree
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Approximate inference
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Inference as optimization (11.1)

• Goal: find

• Thm 11.1.2

where F is the energy functional, and –F is the 
Helmholtz free energy

• Since D(Q||P) >=0, ln Z >= F(P,Q). We will 
maximize a lower bound on the log likelihood wrt Q.

min
Q
D(Q||P ) = D(Q||

1

Z
P̃ ) =

∑

x

Q(x) logQ(X)−Q(x) ln P̃ (x) + lnZ

= lnZ − F (P̃ , Q)

F (P̃ , Q) = HQ(x) +
∑

c

Exc∼Q lnφ(xc)

min
Q
D(Q||P )
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Factored energy functional

• Consider a Q based on a cluster graph

• Def 11.2.1. The factored energy functional is given 
by the following, where we approximate the entropy 
of Q

• Thm 11.2.2. If Q is a set of calibrated beliefs for a 
tree, and Q has the form
then 

Q = {βi : i ∈ V} ∪ {µi,j : (i, j) ∈ E}

F̃ (P̃ , Q) =
∑

i

ECi∼βi lnψi +
∑

i

Hβi(Ci)−
∑

<ij>

Hµi,j (Si,j)

Q(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

F̃ (P̃ , Q) = F (P̃ , Q)
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Exact inference as optimization

• Define the local consistency polytope as (p381)
the set of distributions

which satisfy

• Thm 11.1.1 If Q is a calibrated clique tree, which is 
an I-map for P, then 

has a unique global optimum, in which Q=P

µi,j(Si,j) =
∑

Ci\Si,j

βi(Ci)

∑

ci

βi(ci) = 1

βi(ci) ≥ 0

Q = {βi : i ∈ V} ∪ {µi,j : (i, j) ∈ E}

max
Q∈Local F̃ (P̃ , Q)
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Constrained optimization
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Msgs = Lagrange multipliers
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Msgs = Lagrange multipliers

• Thm 11.2.3. A set of beliefs Q is a stationary point 
of CTreeOptimize iff there exist a set  of messages 
such that
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Cluster graphs

• If the cluster graph is a cluster tree with RIP, then 
the factored energy is equal to the energy, and 
enforcing local consistency is equivalent to 
enforcing global consistency.

• However, the cliques may be too big.
• Let us consider general CGs which only have to 

satisfy the RIP constraint.

• Hence all edges associated with some node X form 
a tree and all clusters agree on the marginal for 
each X. However, they may not agree on higher 
order marginals.
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Examples
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Belief prop on a cluster graph

• We can run the BP algorithm on a CG even if it is 
not a tree. This is called loopy BP.

• This can fail to converge and give the wrong 
answers due to double counting of evidence.
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Turbocodes

• Channel coding is a way of encoding msgs that 
makes them resistant to noise, and hence easier to 
decode.

• Let us send a k-bit msg u(1:k) using n bits, x(1:n) 
eg x = 3 copies of u. We receive y(1:n) and 
estimate u. The rate of the code is k/n.

• Shannon’s thm characterizes the best rate one can 
achieve for a given error rate and noise level. 

• Turbodecoding is a method to approximately 
estimate u from y which achieves near-optimal rate. 
It is equivalent to loopy BP in a particular DGM.
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Turbocodes

K=4,n=7 parity check K=4,n=8 turbocode
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Convergence (11.3.4)

• For discrete networks, one can show that a 
sufficient (but not necessary) condition for LBP to 
converge is if the connections are not “too 
deterministic”.

• Eg for Ising model, sufficient condition is

• Similar conditions exist for Gaussian networks.
• Special case analysis has been derived for 

turbocodes.
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Encouraging convergence

• One can use damped updates

• Asychronous updates work better than sychronous.
• Tree reparameterization (TRP) selects a set of 

trees, each of which spans a large number of 
clusters, and whose union covers all the edges. It 
then selects a tree at rnd and calibrates it, treating 
all other messages as local evidence.

• Priority-queue based msg scheduling also works 
very well.
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Example: 11x11 Ising
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Accuracy

• In general, it is hard to characterize the accuracy of 
approximate solutions. Often the most probable 
state is locally correct but is over confident.

• For Gaussian networks, Weiss et al showed that, if 
the method converges, the means are exact, but 
the variances are too small.
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Bethe cluster graphs

• Suppose we create one cluster for each original 
factor, and one cluster for each node.

• Then for a pairwise MRF, propagating Ci – Cij – Cj
is equivalent to sending msgs from node i to node j 
via edge ij.

• In general, BP on the Bethe CG = BP on the factor 
graph.
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BP on factor graphs

µfi→xj (xj) =
∑

ci\xj

f(ci)
∏

k∈nb(fi)\xj

µxk→fi(xk)

µxi→fj (xi) =
∏

k∈nb(xi)\fj

µfk→xi(xi)

Bishop p406



1

Stat 521A
Lecture 10



2

Outline

• Belief propagation: entropy approximations (11.3.7)

• Expectation propagation (11.4)
• Mean field (11.5.1)

• Variational EM/ Bayes (Bishop 10.1-10.2)
• Structured variational (11.5.2)
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Bethe cluster graphs

• Suppose we create one cluster for each original 
factor, and one cluster for each node.

• Then for a pairwise MRF, propagating Ci – Cij – Cj
is equivalent to sending msgs from node i to node j 
via edge ij.

• In general, BP on the Bethe CG = BP on the factor 
graph.



4

BP on factor graphs

µfi→xj (xj) =
∑

ci\xj

f(ci)
∏

k∈nb(fi)\xj

µxk→fi(xk)

µxi→fj (xi) =
∏

k∈nb(xi)\fj

µfk→xi(xi)

Bishop p406
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Bethe approximation to entropy 

• Thm 11.3.10. If Q is a calibrated set of beliefs for a 
Bethe approximation CG then the factored energy 
is given by

where d_i = #factors that contain Xi.
• If Xi appears in di factors, by RIP, it appears in (di-

1) sepsets. Hence we count the entropy of each Xi 
once in total.

F̃ (P̃ , Q)
def
=

∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

s

Hµs(Ss)

=
∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

i

(di − 1)Hβi(Xi)
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Weighted approximation to entropy

• Consider a cluster graph, each of whose clusters 
(regions) has a counting number µr. Define the 
weighted approximate entropy as

• For a Bethe-structured CG, we set

• If we set µr=1, we recover the Bethe approximation.
• Let us consider more general weightings.

H
µ
Q(X) =

∑

r

µrHβr (Cr)

µi = 1−
∑

r∈nbi

µr
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Convex approximation to entropy

• Def 11.3.13. We say that µr are convex counting 
numbers if there exist non-negative numbers νr, νi, 
νr,i st

• Then

• Thm 11.3.14. The above eqn is concave for any set 
of beliefs Q which satisfy marginal consistency 
constraints.
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Convex BP
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TRW

• Tree reweighting algorithm (TRW) uses the 
following convex counting numbers, given a 
distribution over trees T st each edge in the 
pairwise network is present in at least 1 tree
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Convex or not?

• When standard BP converges, the Bethe 
approximation to the entropy is often more accurate 
than the convex approximation.

• However, it is desirable to have a convex inference 
engine in the inner loop of learning.

• If you train with a convex approximation, there are 
some arguments you should use the same convex 
approx at test time for decoding.
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Region graphs (11.3.7.3)

• One can use more general CGs than the Bethe 
construction, which lets you model higher order 
interactions which are intermediate between the 
original factors and singletons.

• Resulting algorithm is complex.
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Approximate messages

• Suppose we use a cluster tree (or graph), but 
approximate the messages eg. to prevent them 
becoming “too fat”

• If the clusters have internal structure, we can 
efficiently combine factored incoming messages 
with factored clusters to get factored outgoing 
messages

• We can also use this to combine non conjugate 
distributions: eg we approximate a non-conjugate 
likelihood by a simple form (eg MVN) and combine 
with a simple cluster potential (eg MVN) to get a 
simple posterior for the next step
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Assumed density filtering (ADF)

• Consider sequential Bayesian updating in which we 
assume the prior p(θt-1|y1:t-1) lives in some tractable 
family Q (eg MVN).

• At each step, we do 1 step of Bayesian updating to 
get the posterior p(θt|y1:t) and then do an M-
projection to get the best approximation within Q 
(=moment matching for linear exp fam) 

Eg yt|\thetat = logistic(yt xt
T θt), θt=θt-1

Eg. yt|thetat = Gauss, thetat | thetat-1 = mix Gauss
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ADF cont’d

• We combine msg from past (prior) with local 
evidence (likelihood), project, then compute new 
msg

bt−1,t ∝ φt−1,tµt−1

b̃t−1,t = proj(bt−1,t, Q)

µt =
∑

t

b̃t−1,t
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Expectation propagation

• For batch problems, ADF is suboptimal, and 
depends on order of data.

• EP idea: add backwards pass

• Since msgs no longer exact, need to iterate

b∗t,t+1 =
b̃t,t+1

µt+1
µ∗t+1

b̃∗t,t+1 = proj(b∗t,t+1, Q)

µ∗t =
∑

t+1

b̃∗t,t+1
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Division = subtraction of natural params

• Assume all beliefs and msgs are linear exponential 
families. Then

• This can result in negative values for the natural 
params (eg Gaussians with –ve variance).

• But undirected GMs with tabular potentials are in 
the linear exp family and can always be used to 
represent valid beliefs/msgs
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Projection

• How compute natural parameters of a msg?
• Compute the expected statistics of the separator, 

according to the current approximate beliefs

• Computing the expectation can be made tractable if 
βi has factored structure.

• In general, the M projection can be hard.
• But if we have discrete variables, and Q is fully 

factorized, it amounts to computing a  product of 
marginals.
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Variational analysis

• We optimize the same (approximate) objective as 
before (factored free energy), but relax the local 
consistency conditions so we only match statistics 
(eg marginals) instead of full distributions
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EP msg passing

• Thm 11.4.5. Let Q be a set of beliefs st µij is in the 
exp family Qij. Let M-project-distri,j marginalize onto 
Si,j and then project onto Qij. Then Q is a stationary 
point of EP-optimize iff there exist auxiliary beliefs δ
such that
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Example

Cluster graph Fully factored Q_{ij} 
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Structured messages

• The Q distribution (onto which we project) can be 
any structure that makes computing marginals
efficient, eg a chain or clique tree.
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Summary so far

• Let us summarize the BP and EP methods, and 
then introduce a new class of variational methods
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BP on Cluster graphs

• In CGBP, we made 2 approximations
• 1. Optimize a bound on D(Q||P)

• 2. Use pseudo marginals βI, µij and thus 
approximated the entropy H(Q) and hence used the 
approximate bound

• We then optimize the approximate bound subject to 
local consistency constraints over some cluster 
graph

F̃ (P̃ ,Q)
def
=
∑

i

ECi∼βi lnψi +
∑

i

Hβi(Ci) −
∑

<ij>

Hµi,j (Si,j)

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)
Thm 11.1.2
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CGBP objective

If the cluster graph is a cluster tree, this is exact
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EP

• In EP, we make the same 2 approximations as in 
CGBP, but we also relax the local consistency 
constraint so that now cliques only have to agree 
on their expected sufficient statistics, not on their 
distributions 

Even if the CG is a tree, this is no longer exact (in general)



28

Variational methods

• The problems with BP and EP are
– They do not monotonically increase a lower bound on

ln Z
– They may not converge (except convex BP)

• Let us now require Q to be a coherent probability 
distribution (of tractable form). Hence we can now 
compute the exact entropy and optimize the exact 
objective

• This always increases the lower bound and will 
always converge

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)
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Mean field approximation

• Let us assume the approximate posterior is fully 
factorized

• Then the objective (negative free energy) is

• Eg 4x4 grid O(ne K2) for energy, O(ne K) for H

F (P̃ , Q)
def
= HQ(x) +

∑

c

EXc∼Q lnφc(Xc)

=
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)

Q(x) =
∏

i

Qi(xi)
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Convexity

• Objective is concave in each arg (entropy is concave in 
each Q_i, expected energy is linear in Q_i)

• The set of completely factorized distributions is not convex

• Hence we are optimizing the objective over a non-convex 
space, and will be subject to local maxima

• Let us derive equations that characterize the fixed points. 
These could correspond to saddle points or local minima, 
but such points are unstable and unlikely to be the result of 
our iterative update scheme.

Q3(x) = λ
∏

i

Q1(xi) + (1− λ)
∏

i

Q2i (xi)
Not factorized

F (P̃ , Q) =
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)
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Notation

• Define

〈f(xh)〉
def
=

∑

xh

[
∏

i∈h

Qi(xi)

]

f(xh)

〈f(xh)〉j,k
def
=

∑

xh\xj




∏

i∈h,i �=j

Qi(xi)



 f(xh|xj = k)

〈f(xh)〉 =
∑

k

Qj(xj = k)〈f(xh)〉j,k

ln p(xv) ≥
∑

c

〈lnφc(xc)〉+
∑

i

H(Qi)

=
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’s
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Mean field equations

ln p(xv) ≥
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

def
= L(Qj)

Sj,k
def
=

∑

c:j∈c

〈lnφc(xc)〉j,k

L(Qj) =
∑

k

Qj(k)(Sj,k − lnQj(k)) + C

L(Qj , λ)
def
= L(Qj) + λ(

∑

k′

Qj(k
′)− 1)

∂

∂Qj(k)
L(Qj , λ) = Sj,k − lnQj(k) − 1 + λ = 0

Qj(k) = exp(Sj,k) exp(λ− 1)

=
1

Zj
exp(

∑

c

〈lnφc(xc)〉j,k)
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Example: grid



34
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EM

• Suppose we want to find a MAP estimate

• If we have latent variables Z we can use EM

• E step: compute expected complete data log joint

• M step: set

max
θ
log p(θ) +

∑

n

log p(xn|θ)

f(θ, θold) = log p(θ) +
N∑

n=1

∑

z

p(z|xn, θold) log p(z, xn|θ)

θnew = argmax f(θ, θold)
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Variational EM

• Consider the negative free energy

• Earlier we showed this is a lower bound on the log-
likelihood

• Where the bound is tight if
• E step: find Qn(z) that maximize

• M step: find \theta that maximize

F (x,Q, θ) =
∑

z

Q(z) log p(x, z|θ) +H(Q)

Q∗(z) = p(z|x, θ)

F (x,Q, θ) = lnZ(x, θ)−D(Q||p(z|x, θ))

log p(x|θ) = lnZ = max
Q
F (x,Q, θ) = F (x,Q∗, θ) ≥ F (x,Q, θ)

log p(θ) +
∑

n

F (xn, Qn, θ)

F (xn, Qn, θold)



37

Variational EM

• An exact E step is equivalent to setting

• The corresponding M step maximizes 

• Since H(Qn) is independent of θ, this reduces to the 
standard EM algorithm.

• Generalized EM merely increases (not maximizes) 
θ in the M step.

• Similarly we can simply improve Qn in the E step

∑

n

F (xn, Qn, θ) =
∑

n

[
∑

z

p(z|xn, θold) log p(z, xn|θ)] +H(Qn)

= f(θ, θold) +
∑

n

H(Qn)

Qn(z) = p(z|xn, θold)

Neal and Hinton, “A new view of the EM algorithm”, 1998



38

Variational Bayes

• We can replace the point estimate of θ with a 
distribution and try to minimize

• The distinction between E and M vanishes: we are 
just doing sequential updates of Q(Zn) and Q(θ)

• This gives us the benefits of  being Bayesian for the 
same computational speed as EM

D(Q(z1:N , θ|x1:N )||p(z1:N , θ|x1:N ))
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VB for univariate Gaussian

Gamma

Gaussian

Bishop p471
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VB for univariate Gaussian

Green = exact posterior (NormalGamma), blue = factorized approximation

At convergence
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VB for mixtures of Gaussians

Multinomial (soft responsibilities), as in EM,
except we used expected parameters rather than plug-in

Model
Inference
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Automatic model selection

• Recall π ~ Dir(α). If α << 1, we prefers skewed π
and hence sparse z. 

• MAP estimate from regular EM is

• Posterior mean estimate from VB is

π̂k =

∑
n rnk + αk − 1∑
k(rnk + αk − 1)

=
Nk + α− 1

N +Kα−K

π̂k =

∑
n rnk + αk∑
k(rnk + αk)

=
Nk + α

N +Kα
→

α

N +Kα
→0
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Selecting K with one run of VB
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Variational message passing

• Consider a DAG model

• The mean field equations are

• The only terms that depend on x_j are in x_j’s
Markov blanket

• If all CPDs have conjugate-exponential form, the 
VB updates can be converted into a msg passing 
algorithm

• VIBES software (John Winn)



45
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Structured variational approx

• Rather than assuming Q is fully factorized, we can 
use any structure for which computing the 
expectations of ln φc and the entropy is tractable

φ = model, ψ = approx



1

Stat 521A
Lecture 11



2

Outline

• Forward sampling (12.1)

• Importance sampling (12.2)
• MCMC (12.3)

• Collapsed particles (12.4)
• Deterministic search (12.5)
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Monte Carlo integration

• The goal is to approximate E[f(X)] for some function 
f eg f(X) = I(Xi=k), so E[f(X)] = p(Xi=k)

• Usually we take expectations wrt p(X|e), where e is 
the evidence

• If we can draw samples X ~ p(X|e), we can 
evaluate the expectation thus:
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Error analysis
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Forward sampling

• To sample from the prior p(x) of a DGM is easy: 
just sample each node in topological order, 
conditional on its parents

• To sample from the prior of a UGM is much harder

• Usually we want to sample from the posterior p(x|e)
• We can use forwards sampling and throw away all 

samples that are inconsistent with e; this is called 
rejection sampling (“logic sampling” in the context 
of discrete DGMs) and is very inefficient



6
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Unnormalized importance sampling

• Often sampling from P is hard

• Suppose we sample from a proposal distribution Q 
instead. All we require is that P(x)>0 => Q(x)>0

Unbiased estimator
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Variance

• Variance of estimator given by

• Let f(X)=1. Then variance is variance of P(X)/Q(X)

• Variance will be large if Q(x) << P(x) f(x)
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Normalized importance sampling

• Often we only know P’(x) = α P(x) with unknown α
• Define

• Then
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Bias

• Biased estimator

• Eg M=1. x[1] ~ Q has wrong mean

• But bias -> 0 as 1/M since numerator and 
denominator are both unbiased
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Variance

• Variance ->0 as 1/M

• Variance of optimal estimator is
• Ratio is

• Effective sample size 
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Likelihood weighting

• Let us apply importance sampling to a DGM where 
the proposal is as follows: do forwards in the 
mutilated DGM where observed nodes are clamped 
to Z=z

• Prop 12.2.5. Weights are
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Using LW weights

• Recall that E[w(X)] = α = p(Z=z)
• Ratio likelihood weighting: run LW twice for each y

• Normalized likelihood weighting: run LW once, and 
use samples to evaluate any query

= p(y,z)/ p(z)
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Efficiency

• Although LW does not “throw away” samples that 
are inconsistent with e, it down weights them

• If the evidence is at the leaves, the samples are 
drawn from the prior and may be assigned low 
weight

• Backward importance sampling (evidence 
reversal): if X->Y=y, sample from Q(X) ∝ p(Y=y|X)

• Importance sampling does not scale well to high 
dimensions, because hard to make Q match P
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MCMC

• Markov Chain Monte Carlo constructs a Markov 
chain whose stationary distribution is equal to the 
posterior p(x|e).

• Metropolis Hastings: only need proposal Q(x’|x) 
and ability to evaluate π(x) = p(x,e) ∝ p(x|e)

• Gibbs: only need ability to sample full conditionals 
p(xi|x(-i),e)
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Metropolis Hastings algorithm

• We propose q(x’|x) and evaluate α=π(x’)/π(x)

• If α >= 1, we accept, otherwise we accept wp r
• Always accept uphill move, occasionally accept 

downhill move
• If proposal is asymmetric, need Hastings correction
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MH pseudocode
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Why MH works

• MH generates a MC with this transition matrix
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Proof cont’d
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Proposal distributions
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Proposal distributions
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Methods for choosing proposals

• Initialize chain at a local mode (found with an 
optimizer)

• Gaussian random walk, with covariance = Hessian

• Mixture of base kernels, corresponding to different 
heuristic algorithms

• Adaptive MCMC: modify Gaussian covariance 
online 
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Gibbs sampling

• Sample each node given all others, from its full 
conditional

• This is MH with the following proposal

• Acceptance rate is 100%
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Gibbs for bivariate Gaussian
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Gibbs for Ising
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BUGS

• Bayesian Updating using Gibbs Sampling
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Single vs block updates

• Gibbs does single site updating which can move 
slowly, or even get stuck (eg XOR)

• Blocked Gibbs sampling samples multiple variables 
at once
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Accuracy 

• Even though the samples are correlated, we have a 
CLT-type result

• Autocorrelation function

(µ− µ̂)→N (0, σ2)
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Mixing time

• Mixing time is time to reach stationary distribution

Samples drawn before convergence (during burnin
phase) should be discarded
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Conductance

• Mixing time depends on eigengap, γ=λ1-λ2

• Hard to compute
• Can develop bounds based on the conductance 

(which is low if there are narrow bottlenecks in the 
state space)
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Convergence

• 2 issues
– Speeding up convergence
– Determining if convergence has happened

• Speedups: various tricks, see later
• Determining: various heuristics
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Traceplots and ACF
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EPSR

• Start 3 chains from different states, run them for a 
while, check if variance within a chain is 
comparable to variance between chains

• Can be formalized using the Rhat statistic 
(estimated potential scale reduction).

• If Rhat ~ 1.0 for a specific f(X), then it suggest that 
the chain has converged.

• Can compute Rhat for multiple features f(X).
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Simulated annealing

• Global optimization method

• Raise surface to a temperature to smooth it out/ kill 
off the non-peaks 
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Simulated annealing

• π(x) = exp(-E(x)), E(x)=energy (+ve or –ve)

• Cooling schedule
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Samples from SA
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Parallel tempering

• Run multiple chains at different temperatures

• Let them swap samples
• Lowest chain at temp=1 is used to return samples 

to user; other chains encourage global moves
• Good for multi-model posteriors
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Evolutionary Monte Carlo

• Combine ideas from genetic algorithms with MCMC

• Population is the new state space; propose moves 
that swap pieces of particles.
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GMs and MCMC

• MCMC can benefit from GMs
– To define Markov blanket for Gibbs

– To efficiently evaluate π(x’)/π(x) for MH

• GMs need MCMC for
– State estimation (Inference)
– Parameter estimation (Learnign)
– Model selection (structure learning)
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Collapsed samplers

• A collapsed sampler means analytically integrating 
out some variables and sampling the rest

• Aka Rao-Blackwellization

• Later we will see an interesting example when we 
consider RB for particle filtering

• Today, a simpler example, which will form the basis 
of a homework exercise
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Hierarchical Bayesian modeling

• Model related cancer incidence rates

p(x,n, θ, a, b) =

n∏

i=1

p(xi|ni, θi)p(θi|a, b)p(a, b) (1)

=
n∏

i=1

Bin(xi|ni, θi)Beta(θi|a, b)p(a, b) (2)
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Inference

• Gibbs sampling p(a,b,θi|D) - homework
• MH p(a,b|D) – sample a,b, integrate out theta

• Empirical Bayes (a*,b*)=arg max p(a,b|D), then 
E[thetai|a*,b*]
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MH for Missouri cancer problem

• We use mean m=a/(a+b) and K=a+b

• Beta prior on m, noninformative prior on K

• Transform to unconstrained params

• MH with diagonal Gaussian proposal



46
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Inference in discrete state spaces

• For a cts state space, π(x) is a pdf, so we represent 
high probability values by repeating them many 
times

• For a discrete state space (eg model search, or 
after integrating out cts), the posterior is a pmf, so 
we can evaluate p(x|e) up to a normalization 
constant. There is no need to repeat a discrete 
state to represent its probability.

• Hence it is better to rapidly visit as many states as 
possible, and never revisit a state

• Hence use stochastic/ deterministic, local/ global 
search not MCMC
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Deterministic search

• There are many (exact or approx) methods from 
the AI/ OR communities to find the top K values of 
a discrete distribution

• We approximate P(Z=z) by counting how many 
instantiations are compatible with Z=z, weighted by 
their probability

• More precisely, we have bounds on p(Z=z)
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Bounds on conditional probabilities

• We have
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Outline

• MAP estimation (13.1)

• Exact methods (13.2-13.3)
• Approx method based on clq graph (13.4)

• Linear programming relaxation (13.5)
• Graph cuts (13.6)

• Search (13.7)
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Querying a distribution (“inference”)

• Suppose we have a joint p(X1,…,Xd). Partition the 
variables into E (evidence), Q (query), and H 
(hidden/ nuisance). We might pose the following 
queries

• Conditional probability (posterior):

• MAP estimate (H=∅)  (posterior mode)

• Marginal MAP estimate (mode of marginal post):

p(XQ|xE) ∝
∑

xH

p(XQ,xE ,xH)

x
∗

Q = argmax
xQ

p(xQ|xE) = argmax
xQ

∑

xH

p(xQ,xE ,xH)

x
∗

Q = argmax
xQ

p(xQ|xE) = argmax
xQ

p(xQ,xE)
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MAP vs marginal MAP

• Max max ≠ max sum
• Ex 2.1.12. Joint is

• Sequence of most probable states <> most 
probable sequence of states.

a∗ = argmax
a

∑

b

p(a, b) = 1

b∗ = argmax
b

∑

a

p(a, b) = 1

(a, b)∗ = argmax
a,b

p(a, b) = (0, 1)
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MMAP harder than MAP

• Thm 13.1.1. MAP for BNs is NP-hard.

• Thm 13.1.3. MMAP for BNs is complete for NPPP.
• Thm 13.1.4. MMAP for tree structured GMs is NP-

hard.
• Pf. Must sum out X before max out Y.
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VarElim for MAP

• Since max distributes over products, we can trivially 
modify the VE algorithm to compute the *scalar* 
max_x p(x).

• To find the assignment which achieves this MAP 
probability, we must do a traceback, analogous to 
the Viterbi traceback algorithm

• For the MMAP case, we can use the same 
algorithm, but with a constrained elim order (sum 
before max), which can make the problem harder
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Clq Trees for MAP

• VE is inherently sequential: it is hard to imagine 
how to make a parallel/ distributed version of the 
traceback operator

• However, we can easily compute the max-
marginals in parallel, replacing sum-product 
messages with max-product

• But how do we decode the corresponding 
assignment? Easy if each MM is unambiguous.

MaxMarg(xi) = max
x−i

p̃(x−i, xi)

∃uniquex∗i = argmax
xi

MaxMarg(xi)
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Problems of ambiguity

• Ex 13.3.7

• If we pick x1
*=1 and  x2

*=2, we don’t get (x1,x2)*

• Must break ties consistently – requires global 
traceback.



10



11

Max-product in loopy cluster graphs

• We can change the sum-product algorithm to max 
product and run it on clique graphs that are not 
trees. The result is a set of pseudo max marginals
which are max-calibrated
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Decoding pseudo max marginals

• Def 13.3.9. Let βc be the max marginals in a clique 
tree/graph. An assignment x^* is locally optimal if 

• We can label each local assignment as equal to the 
local optimum (1) or not (0). We then need to solve 
a constraint satisfaction problem (CSP). 

• Ex 13.4.2. Consider these “beliefs”:

x
∗(c) ∈ argmax

xc
βc(xc)

Max-calibrated but not locally optimal; no solution exists
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Quality of approximate solution

• Suppose the solution is locally optimal, so CSP can 
find a satisfying assignment. This is an exact MAP 
iff the clique graph is a tree with RIP.

• Suppose it is a general loopy graph. We can show 
(thm 13.4.6) that the solution is a “strong” local 
optimum, meaning that any change wrt to a large 
set of legal moves will decrease the probability.

• The legal moves including flipping states of any 
embedded subtree or single loops.
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Max product TRW

• Suppose we replace “vanilla” max-product with a 
counting number version

• Tree reweighting algorithm (TRW) uses the 
following convex counting numbers, given a 
distribution over trees T st each edge in the 
pairwise network is present in at least 1 tree

• Thm 13.4.8. If this algorithm finds a locally optimal 
solution, it is also globally optimal. (For sum-
product, TRW is just convergent.)
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Image completion
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MAP as integer program

• Let q(xr
j)=1 if clique r is in state j.

• Let ηr
j = log φr(j).

• MAP problem:

• Integer constraint: 

• Mutual exclusion constraint:

• Consistency constraint:
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LP relaxation

• Let q(xr
j) ≥ 0 instead of {0,1}.

Convex BP is solving the dual of this LP.
If the solution is integer, and there are are no ties,
then fixed points of this are exact MAP estimates.

MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies 
Yair Weiss, Chen Yanover, Talya Meltzer, UAI 2007
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BP beats CPLEX

• Convex max-product is 100-1000 times faster than 
CPLEX at finding the exact solution to certain MAP 
problems in computer vision and protein folding.

Linear Programming Relaxations and Belief Propagation - an Empirical Study 
Chen Yanover, Talya Meltzer, Yair Weiss, JMLR 2006
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Submodularity

• Let L = {0,1,…,K} be an ordered set.

• Let g: LxL -> R be a function.
• We say g is submodular iff

• Submodularity ~ convexity for discrete opt.
• Eg L = {0,1}, g is submodular iff

∀x, y ∈ L g(x ∨ y) + g(x ∧ y) ≤ g(x) + g(y)

(x ∨ y)i = min(xi, yi), (x ∧ y)i = max(xi, yi)

g(0, 0) + g(1, 1) ≤ g(0, 1) + g(1, 0)

[(0, 1) ∨ (1, 0)] = [min(0, 1),min(1, 0)] = [0, 0],

[(0, 1) ∧ (1, 0)] = [max(0, 1),max(1, 0)] = [1, 1]
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Submodular potentials

• Defn 13.6.2. A pairwise energy term on binary 
nodes is submodular if

• Example: Ising model with attractive potential

• For any binary MRF with submodular potentials, we 
can find the exact MAP in polynomial time

ǫ(1, 1) + ǫ(0, 0) ≤ ǫ(1, 0) + ǫ(0, 1)
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Graph cuts for Ising model

• Create a source and sink node, s, t.

• Add edge Xi->t with weight εi[0].
• Add edge Xi->s with weight εi[1]

• Add X_i – X_j with λij.
• Find minimal cut. All nodes on t-side of cut are in 

state 1.
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Segmentation using binary MRF

),
2

))((
exp(

2

5.0
)

2

))((
exp(

2

5.0
)1);((

),
2

))((
exp(

2

1
)0);((

2
2,

2
2,

2,
2

1,

2
1,

1,

2

2

f

f

ff

f

f

i

b

b

b

i

σ

µiI

σπσ

µiI

σπ
piIP

σ

µiI

σπ
piIP

−
−+

−
−==

−−==

Slide by Nilanjan Ray, from Google search



25

Metric MRFs

• A metric MRF is one with K states and pairwise
potentials of the form

where \mu is a metric:

•
Hence for any v we have submodularity:

ǫi,j(vk, vl) = µ(vk, vl) ≥ 0
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Functions of label differences

• V(p,q) is 2nd order potential of the difference in the 
labels of pixels p and q

– These functions penalize big difference in label values between neighboring data

• Image restoration: want to maintain similar intensities with neighbors

Convex interactions
(minimize is P)

Robust or “discontinuity-
preserving” interactions
(minimize is NP-complete)

[veksler-phdthesis-99]
(exact)

[ishikawa-pami-03]
(exact)

[veksler-cvpr-07]
(approximate)

[boykov-pami-01]
(approximate)

(“everywhere smooth”) (“piecewise constant”)

(“piecewise smooth”,
“truncated convex”)

(“convex”)

Source: Daniel Munoz
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GC for non-binary submodular

• For non-binary models, MAP estimation is NP-hard.

• But if the potential is submodular for any pair of 
states (eg metric MRF) then we can use a greedy 
algorithm in which we make large moves

• Alpha expansion: consider setting each node to its 
current state or to state α (2-optimal).

• Alpha-beta swap: consider swapping any two 
states; energy function only need be semi-metric 
(triangle inequality not required).

Expansion Swap
(Boykov’01)
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Stereo reconstruction
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Total variation norm

Global Optimization for First Order Markov
Random Fields with Submodular Priors
Jerome Darbon,
Discrete Applied Mathematics, 2009

TV (u) =

∫
|∇u|du

gpq(up, uq) = β|up − uq|

Graph cuts on the level sets
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Additional info

Good tutorial at ECCV’08: “MAP Estimation in Computer Vision”
Kumar, Kolhi, Zisserman, Torr
http://www.robots.ox.ac.uk/~pawan/eccv08_tutorial/index.html

“A Linear Programming Approach to Max-sum Problem: A Review”,
Tomas Werner, PAMI 2007
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Search (A.4)

• Systematic tree search – partial assignments
– Branch and bound: prune off trajectory if lower bound of 

extension higher than current best
– Particle filtering: stochastically grow partial solutions

• Local search – complete assignments
– Hill climbing, Tabu search, Beam search, simulated 

annealing
– See Holger Hoos’s class in CS

• Search methods for Marginal MAP
– Search over max, compute sum using VE (cf Rao-

Blackwellize). Use unconstrained elim order to get upper 
bound.
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Greedy hill climbing 

Instead of looking amongst all neighbors O, we can pick the
first improving one (first-ascent or best first search).
Converges to local maximum or plateau.
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Tabu search

• Once we get to a plateau, allow selection of ‘neutral’ move to a state that 
hasn’t been visited before .

• Requires lots of memory. Instead, prevent picking a move that would 
undo a recently applied operator.
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Outline

• Cts and discrete variables (14.1)

• Gaussian networks (14.2)
• Conditional Gaussian networks (14.3)

• Non-linear Gaussian networks (14.4)
• Sampling (14.5)
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Hybrid networks

• A “hybrid” GM contains discrete and cts variables

• Except in the case that everything is all discrete or 
all Gaussian, exact inference is rarely possible

• The reason is that the basic operations of 
multiplication, marginalization and conditioning are 
not closed except for tables and MVNs
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Gaussian networks

• We can always convert a Gaussian DGM or UGM 
to an MVN and do exact inference in O(d2) space 
and O(d3) time

• However, d can be large (eg 1000x1000 image)

• We seek methods that exploit the graph structure, 
that will take O(d w2) space and O(d w3) time, 
where w is the tree width

• In cases where w is too large, we can use loopy 
belief propagation, which takes O(1) space and 
O(d) time
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Canonical potentials

• When performing VarElim or ClqTree propagation, 
we have to represent factors \phi(x). These may not 
be Gaussians, but can always be represented as 
exponentials of quadratics
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Operations on canonical potentials

• Multiplication

• Division

* 

=
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Operations on canonical potentials

Marginalization (requires KYY be pd)

Conditioning  (Y=y)
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Kalman filter- smoother

• If you apply the FB algorithm with these new 
operators, you get the same results as the RTS 
smoother
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Gaussian LBP

• If the treewidth is too large, we can pass messages 
on the original (pairwise) graph

• We just apply the regular BP rules with the new 
operators. Once can show this is equivalent to the 
following:
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Gaussian LBP

• Thm 14.2.4. If LBP converges, then the means are 
exact, but the variances are too small 
(overconfident)

• Thm. A sufficient condition for convergence is that 
the potentials are pairwise normalizable

• Any attractive model (all +ve correlations) is 
pairwise normalizable

• The method for computing the means is similar to 
solving a set of linear equations



11

Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

is called pairwise normalizable if

• Thm 7.3.4. If the MRF is pairwise normalizable, 
then it defines a valid Gaussian.

• Sufficient but not necessary eg.

ǫi(xi) = di
0
+ di

1
x1 + d

i
2
x2i

ǫij(xi, xj) = ai,j
00
+ ai,j

01
xi + a

ij
10
xj + a

ij
11
xixj + a

ij
02
x2i + a

ij
20
x2j

di
2
> 0,∀i

(
aij
02

aij
11
/2

aij
11
/2 aij

20

)
and is psd for all i,j




1 0.6 0.6
0.6 1 0.6
0.6 0.6 1




May be able to reparameterize the node/
edge potentials to ensure pairwise normalized.
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Conditional linear Gaussian networks

• Suppose all discrete nodes only have discrete 
parents, and all cts nodes either have discrete 
parents, cts parents, or no parents. 

• Further, assume all cts CPDs have the form

• This is called a CLG network. It is equivalent to a 
mixture of MVNs, where the distribution over 
discrete indicators has structure, as does each 
covariance matrix.

• We create a canonical factor for each discrete 
setting of the variables in a clique.

p(X = x|C = c, D = k) = N (x|wT
k c, σ

2

k)
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Inference in CLG networks

• Thm 14.3.1. Inference in CLG networks is NP-hard, 
even if they are polytrees.

• Pf (sketch). Consider the network below. When we 
sum out D1, p(X1) is a mixture of 2 Gaussians. In 
general, p(Xi) is a mixture of 2i Gaussians.
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Weak marginalization

• To prevent the blowup in the number of mixture 
components, we can project back to the class of 
single mixtures at each step, as in EP

• Prop 14.3.6. argmin_q KL(p|q) where q is a 
Gaussian has parameters (

• Prop 14.3.7. argmin_q KL(p,q) where p is a mixture 
of Gaussians is a single Gaussian with params

M projection 
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Weak marginalization
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Canonical vs moment form

• Weak marginalization is defined in terms of 
moment form

• To convert a canonical factor to moment form, we 
require that it represent a valid joint density

• This typically requires we pass messages from 
parents to children. 

• Once we have initialized all factors, they can be 
converted to moment form.

• However, division in the backwards pass may 
cause some variances to become negative! (see Ex  
14.3.13)

• EP is hairy!
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Strong marginalization

• By using a constrained elimination order, in which 
we integrate out before summing out, we can 
ensure that the upwards pass never needs to 
perform weak marginalization.

• Furthermore, one can show that the downwards 
pass results in exact results for the discrete 
variables and exact 1st and 2nd moments for the cts
variables (Lauritzen’s “strong jtree” algorithm)

• However, the constrained elim order usually results 
in large discrete cliques, making this often 
impractical.
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Non linear dependencies

• In a linear Gaussian network, the mean is a linear 
function of its parents.

• Now assume Xi = f(Ui, Zi), where Zi ~ N(0,I)

• Examples
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Taylor series approx

• We can linearize f and then fit a Gaussian (basis of 
the EKF algorithm)

Can be bad if f not linear near mu
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M projection using quadrature

• Best Gaussian approx has these moments

• Gaussian quadrature computes this integral for any 
W(z)>0 (here, Gaussian) 
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Unscented transform

• Pass mean and +- std in each dim through 
transform, and then fit Gaussian to transformed 
points
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Nonlinear GMs

• We approximate nonlinear factors by approximating 
them by Gaussians

• The above methods require a joint Gaussian factor, 
not a canonical factor – we have to pass messages 
in topological order, and introduce variables one at 
a time to use the above tricks

• Linearization is done relative to current \mu. In EP, 
we iterate, and re-approximate each factor in the 
context of its incoming messages, which provides a 
better approx. to the posterior.

• Pretty hairy.
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Discrete children, cts parents

• C -> D arcs are useful eg thermostat turns on/off 
depending on temperature

• We can approximate Gaussian * logistic by a 
Gaussian (variational approx)

• We can combine these Gaussian factors with the 
other factors as usual.  
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Sampling

• Sampling is the easiest way to handle cts and 
mixed variables

• “Collapsed particles” (Rao-Blackwellisation): 
sample the discretes, integrate out cts analytically. 
Each particle has a value for D and a Gaussian 
over C. Good for PF or MCMC.
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Non-parametric BP

• We can combine sampling and msg passing.

• We approximate factors/ msgs by samples.
• Factors are lower dimensional than full joints.

• Eg hand-pose tracking
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Adaptive discretization

• We can discretize all the cts variables, then use a 
method for discrete vars.

• To increase accuracy, we expand the grid 
resolution for variables whose posterior entropy is 
high.

• Can use such approximations as proposal 
distributions for MH.
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Outline

• Inference goals (15.1)

• Exact inference in DBNs (15.2)
• Factored belief sates (15.3.2)

• Particle filtering (15.3.3)
• Switching LDS (15.4.2)
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Inference goals
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Exact filtering in HMMs

• We can apply the predict-update equations to any 
dynamical model
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Entanglement

In the unrolled network, all the persistent nodes become correlated.
Hence the belief state does not admit any factorization.
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Frontier algorithm

• We need cliques that can store the interface 
variables
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Factored frontier algorithm

• Represent incoming belief state as a product of 
marginals

• Perform calibration in the 2-slice jtree
• Compute posterior marginals (M projection onto 

factored distribution)
• Can also use conditionally factored belief states

• This is like EP without the backwards pass, aka 
ADF
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Importance sampling 

Propose 

Weight

Should be
Weighted (blue)

p(x0:t|y1:t) ≈
1

N

N∑

i=1

w̃
(i)
t I(x0:t = x

(i)
0:t) (1)

w̃
(i)
t

def
=

w
(i)
t∑N

j=1 w
(j)
t

(2)

w
(i)
t

def
=

p(x
(i)
0:t|y1:t)

π(x
(i)
0:t)

(3)
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Sequential Importance Sampling 

Propose 

Weight

Should be
Weighted (blue)

Markov proposal

Propose from dynamical prior π(x
(i)
t |x

(i)
0:t−1,y1:t) = p(x

(i)
t |x

(i)
t−1)

w̃
(i)
t ∝ w̃

(i)
t−1p(yt|x

(i)
t )

π(x0:t|y1:t) = π(x0)

t∏

k=1

π(xk|x0:k−1,y1:t)

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)
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Problem with SIS

Unlikely evidence “kills off” most particles
(Particle impoverishment) resulting in high variance estimate

Should be
Weighted (blue)
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SIR/ PF/ SOF/ SMC

Propose

Weight

Resample

Should
be in diff
locns
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PF

1. Sequential importance sampling step

• For i = 1, . . . , N , sample
(
x̂
(i)
t

)
∼ q(xt|x

(i)
t−1,y1:t)

and set (
x̂
(i)
1:t

)
�
(
x̂
(i)
t ,x

(i)
1:t−1

)

• For i = 1, . . . , N , evaluate the importance weights up to a normalis-
ing constant:

w
(i)
t =

p
(
yt|x

(i)
t

)
p
(
x̂
(i)
t

∣∣∣ x̂(i)t−1
)

q
(
x̂t|x̂

(i)
t−1,y1:t

)

• For i = 1, . . . , N , normalise the importance weights:

w̃
(i)
t = w

(i)
t

[ N∑

j=1

w
(j)
t

]−1

2. Selection step

• Resample the discrete weighted measure {(x̂(i)1:t, w̃
(i)
t )}

N
i=1 to get an un-

weighted measure{(x(i)1:t,
1
N
)}Ni=1
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Particle Filtering ExampleParticle Filtering ExampleExample from Nando de Freitas



15

Particle Filtering ExampleParticle Filtering Example
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Particle Filtering ExampleParticle Filtering Example
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PF for DBNs

LW-2TBN

PF
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Condensation algorithm

Isard & Blake (ICCV98)
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Monte Carlo Localization

Fox, Burgard, Dellaert, Thrun, AAAI’99 
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Optimal proposal distribution

• Optimal proposal is the posterior

• Incremental weights are one-step-ahead predictive 
density

• Can approximate this using EKF, UKF, etc.

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

p(x
(i)
t |yt,x

(i)
t−1)

= w̃
(i)
t−1p(yt|x

(i)
t−1)

p(yt|x
(i)
t−1) =

∫
p(yt|xt)p(xt|x

(i)
t−1)dxt

π(xt|x0:t−1,y1:t) = p(xt|yt,xt−1)
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Boosted particle filter

• Run a classifier, trained using boosting, to detect people, 
and use this as a proposal

• Okuma, Taleghani, de Freitas, Little, Lowe, ECCV04
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RBPF

• Rao-Blackwellisation: integrate out X, sample R

• Distributional particles
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RBPF high level
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RBPF updates
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RBPF for Switching LDS
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RBPF for SLAM

• Simultaneous Localization and Mapping

• Occupancy grid version (Murphy, NIPS’00)
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FastSLAM

• Kalman filter version: replace covmat of size 
(2K+2)2 with P*K*22 covmats, P=#particles, 
K=#num landmarks

Montemerlo, Thrun, Koller, Wegbreit,  AAAI’02
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Switching LDS

GBP1

GBP2

IMM
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EP approximations
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Outline

• Overview of learning (ch 16)

• MLE for DGMs (17.2)
• Bayesian parameter estimation for DGMs (17.4)

• Parameter tying (17.5)
• Hierarchical Bayes (17.5.4)

• PAC analysis (17.6)
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Overview of learning

• Learn parameters or structure

• Observe all variables, or have missing values, or 
have known hidden variables, or have unknown 
hidden variables

• Hidden variables can simplify the model (fewer 
params)
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Overview of learning
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Rest of ch 16

• Overfitting

• Cross validation
• Empirical risk minimization

• PAC bounds (see later)
• Generative vs discriminative

• Bias/variance tradeoff
• Prediction vs density estimation vs knowledge 

discovery
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MLE for DGMs

• Assume DAG is known and variables are fully 
observed

• The likelihood factorizes into a product of local 
likelihoods, so we can optimize each CPD 
independently

p(D|θ) =
N∏

n=1

p(xn|θ)

=

N∏

n=1

D∏

i=1

p(xin|xπi,n,θi)

=
D∏

i=1

[
N∏

n=1

p(xin|xπi,n,θi)]

=

D∏

i=1

p(Di|θi)
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Tabular CPDs

θijk
def
= p(Xi = k|Xπi = j)

N∏

n=1

p(xin|xπi,n, θi) =

N∏

n=1

ri∏

j=1

qi∏

k=1

θ
I(xi,n=k,xπi,n=j)

ijk

=
∏

j

∏

k

θ
Nijk

ijk

Nijk
def
=

N∑

n=1

I(xi,n = k,xπi,n = j)

θ̂ijk =
Nijk∑ri

j′=1Nij′k
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MLE for linear Gaussian CPDs

• Use usual linear regression equations

p(xi|xπi ,θi) = N (xi|w
T
i xπi , σ

2
i )



10

Bayesian parameter estimation

• Global parameter independence

• Implies factorized posterior

• For multinomials, let us assume local param indep

• Geiger & Heckerman showed
this implies theta_{ij} must
have a Dirichlet prior

p(θ) =
D∏

i=1

p(θi)

p(θ|D) ∝
∏

i

p(θi)p(Di|θi)

p(θ) =

n∏

i=1

ri∏

j=1

p(θij)
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Tabular CPDs

• We have

p(θ|D) ∝
D∏

i=1

ri∏

j=1

Dir(θij |αij +Nij)
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Example

• ICU alarm network, 37 nodes, 504 params

• Compute theta-hat using MLE or posterior mean. 
Then compute KL(p(X|theta*), p(X|theta-hat)) as a 
function of sample size.
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Posterior predictive density

• We can predict future variables by integrating out 
the params

• In the case of Dirichlet-multinomial model, this is 
equivalent to plugging in the posterior mean

p(X̃|D) =

∫
p(X̃|θ)p(θ|D)dθ

p(X̃ = k|D) =

∫
θkp(θ|D)dθ

=

∫
θkp(θk|D)dθ

= θk =
αk +Nk∑
k′ αk′ +Nk′
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MAP estimation

• Since in general computing the posterior is difficult, 
a compromise is to compute a MAP estimate

• However, the result is not invariant to 
parameterization – change of variables formula 
changes the prior density (Box 17.D)

• Reparameterizing the likelihood does not change 
the MLE, since the lik is not a density function

• Reparameterizing the posterior does not change 
anything, since we integrate over params
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Parameter tying

• We just pool the sufficient statistics from the nodes 
that share the same params

p(θ|D) = Dir(αk +
∑

n

I(X1n = j) +
∑

n

I(X2n = j)
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Prediction with tied params

• A subtlety arises when computing the posterior 
predictive density with tied params

• When we observe Xtilde1, we learn something 
about theta that helps us predict Xtilde2. So we 
cannot just multiply the postpred for each node 
separately, but need to use the formula for a batch 
of data
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Hierarchical priors

• Encourage params to be similar across 
conditioning contexts (rows) within 1 CPD

• Encourage params to be similar across response 
for each conditionign context 
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Text classification

• Let T(d) = t be topic of document d, ~Mun(θ)

• Product of Bernoullis, A(w,d) in {0,1} ~ Ber(βw,t),
w =1:K

• Product of multinoullis, W(p,d) in {1,…,K} ~ Mun(βt), 
p=1:len(d)

• Latent Dirichlet Allocation: θ(d) = distribution over 
topics, ~Dir(α), T(p,d) = t, W(p,d) ~ Mun(βt)
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PAC analysis

• Probably approximately correct

• Let P*M be distribution over datasets of size M 
drawn from P*

• PML(D) be distribution over X given by model M 
learned using algo L on data D

• We want to prove that

• Frequentist analysis of estimator; bounds on 
deviation from ‘truth’
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Excess risk

• Minimizing KL(P*,P) may be hard if P* is not in the 
model class of P

• Define best achievable param in class as

• Define excess risk as 
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DGM param learning: PAC bounds
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Outline

• Overview of structure learning

• Constraint based approach (18.2)
• Scoring functions (18.3)
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Overview of structure learning

• Goals: density estimation and knowledge discovery

• Can only learn graph up to Markov equivalence
• 2 main approaches: 

• Find PDAG which is an I-map of the empirical 
distribution, using conditional independence test 
(eg \chi^2) at the 5% level in lieu of oracle

• Find MAP DAG by defining a scoring and search 
through DAG space

• Can also do Bayes model averaging over DAGs to 
get posterior of features of interest eg predictive 
density, edge/path  marginals, etc
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Assumptions behind constraint based

• Each node has a fan-in of at most d
• We have a CI oracle X ⊥ Y | Z that gives correct 

results for conditioning sets up to size 2d+2

• P* is faithful to G*
• Def 3.3.4. A distribution P is faithful to G if, 

whenever X ⊥ Y | Z in I(P), we have dsep_G(X;Y|Z) 

i.e., there are no “non-graphical” independencies 
buried in the parameters
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Deriving graphs from distributions

• Sec 3.4, from Lecture 2
• So far, we have discussed how to derive 

distributions from graphs.
• But how do we get the DAG?
• Assume we have access to the true distribution P, 

and can answer questions of the form

• For finite data samples, we can approximate this 
oracle with a CI test – the frequentist approach to 
graph structure learning (see ch 18)

• What DAG can be used to represent P?

P |=X ⊥ Y |Z
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Minimal I-map

• The complete DAG is an I-map for any distribution 
(since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the 
removal of even a single edge from K renders it not 
an I-map.

• To derive a minimal I-map, we pick an arbitrary 
node ordering, and then find some minimal subset 
U  to be Xi’s parents, where

• (K2 algorithm replace this CI test with a Bayesian 
scoring metric: sec 18.4.2).

Xi ⊥ {X1, . . . , Xi−1} \ U |U
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Constructing I-map given ordering



8

Effect of node ordering

• “Bad” node orderings can result in dense, 
unintuitive graphs.

• Eg L,S,G,I,D. Add L. Add S: must add L as parent, 
since               .  Add G: must add L,S as parents.P � |=L ⊥ S
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Dealing with node ordering

• Search over orders

• Work with PDAGs
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Perfect maps

• Minimal I-maps can have superfluous edges.

• Def 3.4.2. Graph K is a perfect map for a set of 
independencies I if I(K)=I. K is a perfect map for P if 
I(K)=I(P).

• Not all distributions can be perfectly represented by 
a DAG.

• Eg let Z = xor(X,Y) and use some independent prior 
on X, Y. Minimal I-map is X -> Z <- Y. However, X 
⊥ Z in I(P), but not in I(G).

• Eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}, A dep | B,C, 

etc
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Finding perfect maps

• If P has a perfect map, we can find it in polynomial 
time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence, 
so we return the PDAG that represents the 
corresponding equivalence class.

• The method  has 3 steps (see sec 3.4.3)
– Identify undirected skeleton
– Identify immoralities
– Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer 
causal models from observational data, but this 
claim is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995
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Identifying the undirected skeleton

• Initially connect all node pairs
• Remove an edge if we find a U st Xi ⊥ Xj | U

• Hence we can restrict our search for witnesses U to 
the sets 
and
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Identifying the undirected skeleton
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Complexity
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Identifying immoralities
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Compute PDAG

• Skeleton plus immoralities defines equiv class

• But we might want to orient as many edges as 
possible, not just those in immoralities
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Overall PC algorithm

n=#nodes, d=fanin, complexity = O(n^{d+2})
One error in a CI test can propagate through whole structure – not robust
Can choose thresholds to control the FDR
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Recent developments

Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic 
graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636. 
[Proves uniform consistency in the Gaussian case]

Kalisch, M. and Bühlmann, P. (2008). Robustification of the PC-algorithm for 
directed acyclic graphs. Journal of Computational and Graphical Statistics 17, 773-
789.  
[Uses robust estimate of covariance matrix]

Maathuis, M.H., Kalisch, M. and Bühlmann, P. (2008). Estimating high-dimensional 
intervention effects from observational data. To appear in the Annals of Statistics. 
[Causal DAGs]

Bühlmann, P., Kalisch, M. and Maathuis, M.H. (2009). Variable selection for high-
dimensional models: partially faithful distributions and the PC-simple algorithm. 
[Lasso-type methods]
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Score functions

• We can treat model selection as an optimization 
problem: arg max score(G,D)

• ML score:

• Obviously this will prefer the fully connected graph
• But if we limit the fan-in (eg restrict attention to 

simple trees), this can be useful
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ML score and Mutual information

• Consider G0: X, Y and G1: X->Y
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Bayesian score

Defined as log marginal likelihood plus log prior
Log p(G) is constant whereas log p(D|G) grows linearly with nsamples
Log p(D|G) offers automatic complexity control – Bayesian Occam’s razor
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Expected log pred lik vs avg log marg lik
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Computation of marginal likelihood

• For a Dirichlet-multinomial we have

• For a DAG X->Y we have

• For CPTs with dirichlet priors:BDe score
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Asymptotic approximations to Bayesian score

• We have

MDL = BIC

Thm 18.3.6. BIC, MDL and Bayesian score are consistent (so score(G)=score(G*)
iff G is I-equivlent to G*)
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Structure priors

• P(G) only matters in small sample setting

• Penalized number of edges

• Penalize deviation from fixed prior structure
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Decomposable score

• When we make local changes to a graph, we want 
to evaluate the score change in constant time

• BIC score is decomposable

• Thm 18.3.10.  parameter modularity => BDe score 
is decomposable

• Defn: Structural modularity if p(G) decomposes
• Thm 18.3.10. param & struct modularity => 

Bayesian score decomposable



28

Score equivalence

• Def 18.3.11. Score() is score equiv if 
score(G)=score(G’) if G, G’ are I-equiv

• Thm 18.3.12. Likelihood and BIC scores are score 
equiv.

• BDe score is only score equivalent if we set the 
Dirichlet hyper-parameters as follows

• Eg if P’ is a uniform prior network, then
θijk

def
= p(Xi = k|Xπi = j)

θijk ∼ Dir(αijk)

αijk = α
1

qiri

αιϕκ=1 (K2 prior) is not score equiv

thetaY ~ Dir(1,1)
thetaY|X=1 ~ Dir(1,1)
thetaY|X=0 ~ Dir(1,1)
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Decomposable score

• When we make local changes to a graph, we want 
to evaluate the score change in constant time

• BIC score is decomposable
• We say a prior satisfies structural modularity if

• Thm 18.3.10. Structural & parameter modularity => 
Bayesian score is decomposable
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Outline

• Algorithms for finding MAP structure (18.4)

• MCMC over DAG structure (18.5)
• Dynamic programming + MH

• Stochastic search
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Computationally intractable

• There are                 DAGs on d nodes

1.2e157.8e111.1e93,781,50329,281543253#G(d)

98765432d

O(d!2(
d

2))
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Trees

• Can learn optimal tree using MST algo in O(n2 log n 
+ n2 M) time, n=#num nodes, M=#cases

Score equivalence =>

Undirected max weight spanning tree 
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TAN classifiers

• Tree-augmented naïve Bayes

• Can learn tree structure for each class conditional 
density
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Mixtures of trees

• We can fit mixtures of trees using EM: just run MST 
algorithm in M step

• Analogous to mixture of diagonal Gaussians
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DAG with known order

• Can find optimal set of parents for each node 
independently

• If at most d parents, last node Xn must select from

• If CPDs are GLMs, can use lasso to find parents

• If order unknown, can search over orders.
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Dependency networks

• A depnet is a set of full conditionals p(Xi|X(-i)) 
learned independently. 

• There may not be any joint which is consistent with 
these conditionals.

• However, one can define a (non-unique) joint by 
using an ordered Gibbs sampler.

• If the conditionals are learned from (lots of) data, 
they are likely to be consistent.

• By performing variable selection at each node 
independently, we get a sparse graph.

• Provides a fast way to visualize dependencies.
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Collaborative filtering

• One succesful application of depnets is CF.
• Xi=1 if item i has been bought, Xi=0 otherwise
• Assume S=set of bought items, Sbar = not bought 

items, i = target item. Compute p(Xi|S=1,Sbar=0).
• In a depnet, this is a simple lookup – all other 

nodes are observed.
• In a DGM, this is also fairly simple – product of 

CPDs in the Markov blanket.
• Both techniques have similar predictive accuracy, 

but depnet is much faster to learn.
• Ships in Microsoft’s ecommerce package. 
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DAG with unknown order

• Thm 18.4.3 It is NP-hard to find the optimal DAG 
with d >= 2 parents.

• Standard approach: heuristic local search (eg hill 
climbing), using add/ delete/ reverse edge (n2

neighbors to each DAG).
• Diameter of space is O(n2): to get from G1 to G2, 

delete all edges of G1 then add all edges of G2.

• If too many neighbors, use first best instead of 
evaluating all of them.

• Often there will be large plateaus of I-equivalent 
DAGs. Can use tabu search to escape these.

• Multiple restarts or data perturbation.
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Data perturbation

• Can be used to escape local minima for many ML 
algorithms, where score = sum_i score(D_i)

• Idea: use weights w_i, and perturb them at random 
(or more cleverly – rather like boosting)



12

Efficient scoring of proposed new graph
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Efficient update of cached scores

• After accepting  change, only have to update 
scores of affected families - O(n) operators
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Sufficient statistics

• Need to walk over M rows for all the columns in a 
given family

• If we need to update n operators, this is O(nM) time

• Can use AD-trees for discrete data, or KD-trees for 
cts data, to do this more efficiently (possibly subject 
to approximation error)
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Heaps

• Need to search over O(n^2) operators to find best 
at each step

• Can use a heap to find the best in O(1) time if we 
do O(n log n) time to update it when scores change
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Learning params vs structure

• ICU Alarm network
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Dynamic programming (DP)

• Can analytically marginalize over d! orderings and all 
possible subsets in O(d 2d) time/ space
using DP and fast Mobius transform

• Since order of parents does not matter, eg p(X1|X2,X3) == 
p(X1|X3,X2), we can share work

• Can find exact global MAP DAG 

()

(1) (2) (3)

(1,2) (1,3) (2,1) (2,3) (3,1) (3,2)

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

O(d!  d 2d)
{}

{2} {3}{1}

{1,3} {2,3}{1,2}

{1,2,3}

O(d·2d)

Ordered permutation tree Unordered permutation lattice

Koivisto & Sood, JMLR, 2004
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Equivalence classes

• Can search through PDAG space - smaller than 
DAG space, and fewer (if any) plateau

• To evaluate score of a PDAG, convert to a DAG 
then use score for DAG

• To find neighbors: convert PDAG to DAG, add or 
delete edge; this changes skeleton hence moves to 
a new PDAG

• Greedy Equivalence Search: start with empty 
PDAG, add best edge until local max, then delete 
best edge till local max. If M->infty, this will 
provably find optimal PDAG given any consistent 
scoring fn.

• Performing local updates to score of a PDAG is 
harder.
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Bayes model averaging

• When the sample size is small, the posterior p(G|D) 
gives support to multiple (non equivalent) models

• We should perform BMA when performing 
prediction

• And when computing E[f(G)|D], where f(G) is some 
feature, eg f(G)=there is an edge X->Y in G, 
average path length in G
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MC3

• Markov Chain Monte Carlo Model Composition

• Use MH in space of DAGs, with proposal = uniform 
over neighbors (add/delete/reverse edge)

• Does not mix well in more than ~10 dimensions. 
Also, posterior gets more peaky as sample size 
increases (can use parallel tempering).
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MH on Alarm

N=1000

N=500

Init empty Init local search

Edge marginals
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MH in order space

• Given a known order, we can integrate over all 
possible graphs by summing over all parents sets

• Hence use MH to sample over orders, using 
traveling-salesman like moves

Target distribution
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Posterior features

• Given samples from p(<|D) we compute

• Parent features

• Edge features

• General features: sample G given <, then use
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RB MH on Alarm



26
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Dynamic programming

• Koivisto & Sood showed how to compute all edge 
marginals p(Gij=1|D) exactly in O(n 2^n) time

• Requires special (“modular”) prior p(G) which can 
be unnatural (see later)
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Comparison of approaches

5 sec (d=10) to 5 mins (d=20)

∑

ij

|P̂ (Gij = 1|D)− P (Gij = 1|D)|
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Error floor due to wrong p(G)

Error due to wrong p(G)
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p(G) needed by DP and MH+order

• Joint (“modular”) prior on G and  ≺

• Induced prior on p(G)

p(G,≺) =
1

Z

d∏

i=1

ρi(Gi)qi(≺i)I(G,≺ is valid)

unordered set of parents ordering of predecessors

p(G) =
∑

≺

p(G,≺)
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Graphs consistent with more orderings are 
more probable

• Effect will not get erased even with infinite data, since
both models are likelihood equivalent
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unordered set of parents ordering of predecessors, qi ∝ 1

p(G) =
∑

≺

1

Z

d∏

i=1

ρi(Gi)qi(≺i)I(G,≺ is valid)

Problems with induced p(G)

ρi(Gi) = 1 ρi(Gi) =

(
d− 1

|Gi|

)−1

• Prior is highly non-uniform
• Effect will not get erased even with infinite data
•Cannot encode arbitrary prior knowledge in p(G)
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Solutions to p(G) problem

• Importance sampling -- Ellis & Wong ’06 
– Use MH+order as proposal 
– #P-hard to compute exact IS weights

w(G) =
p∗(G)

p(G)
=

1
Z

∏
i ρ
∗

i (Gi)∑
≺

1
Z

∏d

i=1 ρi(Gi)qi(≺i)I(G,≺ is valid)

=
1∑

≺
I(consistent(≺, G))
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Solutions to p(G) problem

• Importance sampling -- Ellis & Wong ’06 

• Metropolis Hastings -- this paper
– Use DP marginals as proposal for MH
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MH with DP+local proposal

• Compute pij=p(Gij=1|D) offline using DP  

• wp β, we use a standard local move
• wp 1-β, sample a new graph ~ pij

• If β=0 (global) independence sampler
• If β=1 (local) standard proposal
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Why MH?

• DP alone has 3 problems
1. Modular prior p(G)
2. Cannot compute prob. of “long range” features (e.g., 

path from i to j), only edge features.
3. Very slow to compute predictive density

p(x|D) = ∑G p(x|G) p(G|D)
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MH allows any p(G)

• Propose using q(G’|G)

• Accept wp α

α = min

(
1,
p(D|G′)p(G′)

p(D|G)p(G)

q(G|G′)

q(G′|G)

)



38

Modular vs uniform p(G)

5 node “cancer” network Markov equivalence class

Modular prior
biases posterior 
even as |D| →∞

MH fixes bias
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T-cell signaling network

“Causal Protein-Signaling Networks derived from Multiparameter Single-Cell Data”,
Sachs, Perez, Pe’er, Lauffenberger, Nolan, Science 2005

Protein phosphorylation (d=11, N=5400) Ground truth DAG

Exact P(Gij=1|D)ROC
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Informative p(G)

“Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data
with Multiple Sources of Prior Knowledge”, Werhli & Husmeier, 2007

Ground truth DAG

P(Gij=1|D)ROC

Protein phosphorylation (d=11, N=5400)
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Sampling G allows any features

• DP can only compute posterior of features that are 
functions of a local family topology

• By sampling DAGs, we can compute E[f(G)] for arbitrary 
features f

A B

C

A

C

Specific parents ∃ Edge A->C

A in Markov blanket of C

A B

C

A

C

A

C

A

B

C

Possible Not possible

A

B
C

∃ Causal path A->B, mediated by C

∃ Directed path A -> B
A

B

C

D

A

B

C

D

E

F
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Posterior features

• We sampled N=10k data from d=20 node graph 
with random CPTs

• Compute p(edge i->j|D) and p(path i->j|D)

“child” network
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AUC for p(feature=1|D)

Area under the ROC curve after 200 seconds of wall clock time*

β=0.1β=1 β=0 β=0.1β=1 β=0

All algorithms were implemented in Matlab/C and run on a standard desktop
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Sampling G allows fast prediction

• DP can compute the marginal likelihood of data p(D)
• Hence can compute the predictive likelihood of a test point x:

• Since DP integrates out G, we have to keep D,
and re-run algorithm for each x, which is very slow

• Our approach: keep a sample of Gs∼ p(G|D) and compute 
posterior mean parameters      for each Gs

p(x|D) = p(x,D)
p(D)

p(x|D) =
∑

G

∫

θ

p(x|G, θ)p(θ|G,D)p(G|D) ≈
1

M

M∑

s=1

p(x|Gs, θ
s
)

θ
s
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US census data (d=15,N=49k)

1. Exact BMA (but takes 350h!)
2. MH-DP hybrid β=0.1
3. Plug-in MAP-optimal DAG, MH-DP global β=0, MH-order
4. MH-local β=1
5. Gibbs
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Why MH+DP?

– MH + DP mixes faster than MH + other
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Edge marginal error vs time

∑
ij |p(Gij = 1|D)− p̂t(Gij = 1|D)|

d=5 cancer network
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Traceplots of log p(G,D)

US census (d=14, N=49k)
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Repeatability

MH+DP (hybrid) MH-localMH-order

US census (d=15, N=49k)

We plot edge marginals after two runs from different random starting points
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Stochastic search

• MCMC approximates p(M=m|D) by counting how 
many samples are equal to m.

• Since we can compute p(m,D) exactly, we don’t 
need to visit m more than once. We can 
approximate

• It is better to rapidly move through model space, 
covering as much posterior mass as possible.

• Shotgun stochastic search (SSS), mode oriented 
stochastic search (MOSS)

p(m|D) ≈
p(m,D)∑

m′inS p(m
′,D)
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Occam’s window

• Goal: compute level set of the posterior 

• M^* is unknown, so approximate this by

• Can find this by beam search, throwing out models 
that are worse than α time the current best 
(Raftery, Dobra)

C(α) = {m : p(m|D) ≥ αp(m∗|D)}

Ĉ(α) = {m : p(m|D) ≥ αp(m̂∗|D)}

m̂∗ = argmax
m∈S

p(m|D)
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Outline

• Basic issues (19.1)

• Gradient ascent for DGMs (19.2.1)
• EM for DGMs (19.2.2)

• Variational EM (19.2.4)
• MCMC for param inf in DGMs (19.3.2)

• Variational Bayes (19.3.3)
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MCAR

• Let Xi be the true value of variable I, and Oi in {0,1} 
be whether it is observed or not. Yi(Oi) = Xi or ?.

• Defn 19.1.6. Missing completely at random (MCAR) 
means X \perp O.

• Given MCAR, we can safely ignore the missing 
variables (for which Ox=1), since they tell us 
nothing about theta

p(θ, ψ|Y1, Y2) = p(θ|X1)p(ψ|O1, O2)
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Missing at random

• Defn 19.1.8. Let H be hidden vars, V be visible 
vars, and O be observation status. Missing at 
random means O \perp H | V.

• Intuitively, although O may depend on some of the 
variables Xv, since we observe Xv, we do not learn 
anything new about Xh. 
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Benefits of MAR

• Thm 19.1.9. Given MAR, and a factored prior, 
p(θ,ψ|D) = p(θ|Xv) p(ψ|Xv,O)

• Pf.
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Counter examples to MAR

• Collaborative filtering: people are more likely to rate 
movies they strongly like or dislike.

• Medicine: if a patient does not have a check mark 
in the “had X-ray” field, they probably don’t have 
any bone problems. However, if we explicitly write 
the “primary complaint” as the cause of which tests 
are performed, MAR is restored (since we observe 
why O(Xray)=0). 

• Henceforth we will assume MAR.
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Multimodality

• For fully observed DGMs, likelihood is convex 
(assuming each CPD is convex), and hence has a 
single global maximum.

• When we have missing data, the likelihood is a 
mixture of up to K^n modes, corresponding to every 
possible completion pattern
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Identifiability

• Sometimes we cannot uniquely identify the 
parameters, even given infinite data

• Eg The experimenter either tosses coin 1 or coin 2, 
but we don’t know which. The model is

• We have eg. p(D|θH=0.5, θ1=0.5, θ2=0.5) = 
p(D|θH=0.5, θ1=0.8, θ2=0.2). The problem is 
underconstrained. 
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Identifiability

• Defn 19.1.13. A parameter θ is identifiable if there 
is no θ’ ≠ θ st p(X|θ)=p(X|θ’). A model is identifiable 
if all θ are identifiable.

• A mixture model cannot be identifiable since we 
can always arbitrarily permute the hidden labels, 
and the corresponding parameters.

• Hence we  should not ask things like “what is the 
prob. Xi belongs to cluster k” but rather “what is the 
prob Xi and Xi belong to the same cluster”. 
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Gradient descent for DGMs

• We can find a local maximum using gradient based 
methods.

• Consider tabular CPDs.

• Thm 19.2.1. 

• Pf. 

∂

∂θijk
p(e) =

p(xi = k,xπi = j, e)

θijk

∂

∂θijk

∏

i′

θi′,xi′ ,xi′ =
∏

i′ �=i

θi′,xi′ ,xi′ I(xi = j, xi = k)

=
p(e)

θijk
I(xi = j, xi = k)
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Gradient descent for DGMs

• Pf contd

• Thm 19.2.2.

• Chain rule for non-tabular CPDs.
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Gradient algorithms

• Gradient requires inference to compute family 
marginals.

• Need to enforce positivity and sum-to-one 
constraints (for discrete) eg reparameterize to 
unconstrained form

• Need to enforce positive definite – optimize wrt the 
cholesky factors.

• Have to specify step-size and search direction (use 
black-box algorithm).

• EM is much easier…
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EM for DGMs

• Key intuition: if we knew the values of H, we could 
compute the MLEs/MAP estimates for θ easily. So 
we infer H|θ and then estimate θ|H. For the latter, 
we just need the expected sufficient statistics. For 
tabular CPDs, this is just a table of expcted counts

• E step

• M step

•
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Pseudocode
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ECDLL

• Define expected complete data log likelihood, wrt Q 
distribution over H|D

• For tabular CPDs, we have
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ECDLL for exp fam

• The key to making EM simple for expfam models is  
that the log-likelihood is linear in the sufficient 
statistics
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Choosing Q (for E step)

• Define

• Thm 19.2.5.

• From (2), ECDLL is lower bound on LL.

• From (1), if Q=p(H|D,\theta), then bound is tight.
• EM alternates between optimizing Q and optimizing 

\theta. Can do partial updates.
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Convergence

• Thm 19.2.6. If we do exact EM (so Q=p(H|D,theta)), 
then the LL never decreases
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Convergence cont’d
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Rate of convergence

• Initially fast, then very slow; can switch over to 
conjugate gradient near optimum

• EM has linear convergence rate
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Local maxima

• Maxima can differ a lot in quality.

• Can do multiple restart, killing off some runs early if 
they look bad (as in beam search).
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Assessing convergence

• Can check whether parameters stop changing or 
LL stops changing. Can be quite different.

• Recall 

• If p(x,u|o[m]) small, gradient is small, else O(M)
• Hence effects of param on LL can be small or 

large.
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Accelerating convergence

• Hard assignment EM (eg Kmeans).  E step is 
searching over discrete assignments; this tends to 
converge faster (but to a worse solution).

• Hybrid EM/CG

• Over relaxation: step size > 1.
• Stochastic EM: since Q(H) = prod_m Q(hm|om), we 

can do inference on only a subset of the datacases
(mini-batch) and then do an M step

• (Monte Carlo EM: sampling in the E step)



25

Example: fitting planes to 3d point clouds



26

Variational EM

• Restrict Q distribution in E step to a tractable 
family, rather than p(H|D,theta)

• Eg do mean-field in the E step, then regular M step
• Maximizes a lower bound on the LL
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MCMC

• Can compute p(θ,H|D) using standard algorithms

• Parameter collapsed particles: sample θ, compute 
p(H|D) analytically

• Data completion collapsed particles: sample H, 
compute p(θ|H,D) analytically
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Marginalizing out H

• Bayesian Mixture model

Have to use MH
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Marginalizing out \theta

Collapsed Gibbs sampling
Cf DP mixtures
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Variational Bayes

• Min KL(Q|P) where we assume

• Thm 19.3.6. If we have global param independence 
and Q(θ,H)=Q(θ) Q(H) then

• Hence we can optimize each Q(h[m]) separately –
just like inference per case in the E step – and then 
optimize each Q(\theta_i) separately – just like 
optimizing each family in the M step

• E step: we do inference with expected params
• M step: we fit a distribution
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VB for MixBernoulli

Beta      Beta Bernoulli

thetaH

H thetaXi
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VB update for H[m]
Regular E step

VB version
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Variational methods

• From Lecture 10:

• Minimize

• This always increases the lower bound and will 
always converge

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)



36

Mean field approximation

• Let us assume the approximate posterior is fully 
factorized

• Then the objective (negative free energy) is

• Eg 4x4 grid O(ne K2) for energy, O(ne K) for H

F (P̃ , Q)
def
= HQ(x) +

∑

c

EXc∼Q lnφc(Xc)

=
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)

Q(x) =
∏

i

Qi(xi)
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Convexity

• Objective is concave in each arg (entropy is concave in 
each Q_i, expected energy is linear in Q_i)

• The set of completely factorized distributions is not convex

• Hence we are optimizing the objective over a non-convex 
space, and will be subject to local maxima

• Let us derive equations that characterize the fixed points. 
These could correspond to saddle points or local minima, 
but such points are unstable and unlikely to be the result of 
our iterative update scheme.

Q3(x) = λ
∏

i

Q1(xi) + (1− λ)
∏

i

Q2i (xi)
Not factorized

F (P̃ , Q) =
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)
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Notation

• Define

〈f(xh)〉
def
=

∑

xh

[
∏

i∈h

Qi(xi)

]

f(xh)

〈f(xh)〉j,k
def
=

∑

xh\xj




∏

i∈h,i �=j

Qi(xi)



 f(xh|xj = k)

〈f(xh)〉 =
∑

k

Qj(xj = k)〈f(xh)〉j,k

ln p(xv) ≥
∑

c

〈lnφc(xc)〉+
∑

i

H(Qi)

=
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’s
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Mean field equations

ln p(xv) ≥
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

def
= L(Qj)

Sj,k
def
=

∑

c:j∈c

〈lnφc(xc)〉j,k

L(Qj) =
∑

k

Qj(k)(Sj,k − lnQj(k)) + C

L(Qj , λ)
def
= L(Qj) + λ(

∑

k′

Qj(k
′)− 1)

∂

∂Qj(k)
L(Qj , λ) = Sj,k − lnQj(k) − 1 + λ = 0

Qj(k) = exp(Sj,k) exp(λ− 1)

=
1

Zj
exp(

∑

c

〈lnφc(xc)〉j,k)
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Example: grid



41
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EM

• Suppose we want to find a MAP estimate

• If we have latent variables Z we can use EM

• E step: compute expected complete data log joint

• M step: set

max
θ
log p(θ) +

∑

n

log p(xn|θ)

f(θ, θold) = log p(θ) +
N∑

n=1

∑

z

p(z|xn, θold) log p(z, xn|θ)

θnew = argmax f(θ, θold)
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Variational EM

• Consider the negative free energy

• Earlier we showed this is a lower bound on the log-
likelihood

• Where the bound is tight if
• E step: find Qn(z) that maximize

• M step: find \theta that maximize

F (x,Q, θ) =
∑

z

Q(z) log p(x, z|θ) +H(Q)

Q∗(z) = p(z|x, θ)

F (x,Q, θ) = lnZ(x, θ)−D(Q||p(z|x, θ))

log p(x|θ) = lnZ = max
Q
F (x,Q, θ) = F (x,Q∗, θ) ≥ F (x,Q, θ)

log p(θ) +
∑

n

F (xn, Qn, θ)

F (xn, Qn, θold)
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Variational EM

• An exact E step is equivalent to setting

• The corresponding M step maximizes 

• Since H(Qn) is independent of θ, this reduces to the 
standard EM algorithm.

• Generalized EM merely increases (not maximizes) 
θ in the M step.

• Similarly we can simply improve Qn in the E step

∑

n

F (xn, Qn, θ) =
∑

n

[
∑

z

p(z|xn, θold) log p(z, xn|θ)] +H(Qn)

= f(θ, θold) +
∑

n

H(Qn)

Qn(z) = p(z|xn, θold)

Neal and Hinton, “A new view of the EM algorithm”, 1998
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Variational Bayes

• We can replace the point estimate of θ with a 
distribution and try to minimize

• The distinction between E and M vanishes: we are 
just doing sequential updates of Q(Zn) and Q(θ)

• This gives us the benefits of  being Bayesian for the 
same computational speed as EM

D(Q(z1:N , θ|x1:N )||p(z1:N , θ|x1:N ))
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VB for univariate Gaussian

Gamma

Gaussian

Bishop p471
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VB for univariate Gaussian

Green = exact posterior (NormalGamma), blue = factorized approximation

At convergence
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VB for mixtures of Gaussians

Multinomial (soft responsibilities), as in EM,
except we used expected parameters rather than plug-in

Model
Inference
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Automatic model selection

• Recall π ~ Dir(α). If α << 1, we prefers skewed π
and hence sparse z. 

• MAP estimate from regular EM is

• Posterior mean estimate from VB is

π̂k =

∑
n rnk + αk − 1∑
k(rnk + αk − 1)

=
Nk + α− 1

N +Kα−K

π̂k =

∑
n rnk + αk∑
k(rnk + αk)

=
Nk + α

N +Kα
→

α

N +Kα
→0
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Selecting K with one run of VB
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Variational message passing

• Consider a DAG model

• The mean field equations are

• The only terms that depend on x_j are in x_j’s
Markov blanket

• If all CPDs have conjugate-exponential form, the 
VB updates can be converted into a msg passing 
algorithm

• VIBES software (John Winn)
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Structured variational approx

• Rather than assuming Q is fully factorized, we can 
use any structure for which computing the 
expectations of ln φc and the entropy is tractable

φ = model, ψ = approx
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Outline

• Scoring functions for DAGs with hidden vars
(19.4.1)

• Structure search (19.4.2)

• Structural EM (19.4.3)
• Inventing hidden variables in DGMs (19.5)



3

Bayesian score

• Need a way to measure model quality; orthogonal 
to issue of how we search through space of models

• Bayesian score hard to compute since posterior is 
an exponential number of modes

• Approximations: asymptotic, variational, MCMC

p(D|G) =

∫ ∏

m

p(o[m]|θ, G)p(θ|G)dθ

p(o[m]|θ, G) =
∑

h

p(o[m],h|θ, G)
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Chib’s candidate method

• Approximate p(D|G) using output of a standard 
MCMC run.  For any θ (eg MAP) compute

• Requires that p(θ|D,G) cover chosen θ.
• This requires that MCMC mix over all posterior 

modes, even if symmetrical. If not, it will 
underestimate p(D|G). See rejected letter to editor 
by Radford Neal.*

* http://www.cs.utoronto.ca/~radford/ftp/chib-letter.pdf



5

RJMCMC

• Instead of doing discrete search, and integrating 
out params at each point, let us jointly sample in 
graph and param space

• Since the size of the cts space is changing, we 
need to use a change of measure when we move 
between dimensionalities

• This results in reversible jump MCMC

• Getting it working is delicate…
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Laplace approximation



7

Laplace approximation cont’d

• Let g(w) = log p(D,w|G).

• Laplace approximation to p(D,G) is

C is negative Hessian: requires inference on xi, xj, ui, uj



8

BIC score

• BIC is the limit of Laplace as M->inf.
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Cheeseman-Stutz approximation

• CS approx to log p(D|G) is more accurate than BIC, 
yet faster than Laplace

• Matt Beal’s thesis proves CS is a lower bound 

• Example: we plot log p(D|K) vs K for a mixture of 
Bernoullis for different methods; ‘candidate’ is a 
‘gold standard’ MCMC method
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CS approx

• Idea 1: If D* is complete, p(D*|G) just relies on 
sufficient statistics, so use ESS instead 

• Unfortunately this does not work well, since it sums 
over 1 (imputed) dataset whereas p(D|G) sums 
over an exponential number

• Idea 2: add an approximate correction term

Approximate with BIC
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CS approx
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Variational lower bound

Beal, M.J. and Ghahramani, Z.
Variational Bayesian Learning of Directed Graphical Models with Hidden Variables
Bayesian Analysis 1(4), 2006. 

Binary hidden nodes, 5-ary obs nodes
136 distinct DAGs

VB provably tighter lower
Bound than CS
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Log p(D|G) vs dof(G)
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Structure search

• P(D|G) does not factorize across families, unlike 
the fully observed case

• Cannot find (easily) optimal tree or optimal DAG 
given ordering.

• For local search, evaluating score of neighbors is 
expensive – score does not decompose, so need to 
find MAP estimate for each graph just to compute 
its BIC score
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Illustration of non-decomposability

{1,2} and 3: weak corr
3 and 4: strong corr
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Structural EM

• Given current graph Gt and MAP params theta(t), 
compute ESS for all possible families (potentially in 
a lazy fashion – may need out-of-clq queries)

• Evaluate BIC score for G(t+1) using ESS|G(t)

• Thm: increasing expected BIC score increases true 
BIC score
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Sparse mixture model

Initialization: if start from no children, will never add any! So start from all
Children or random subset.
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Inventing hidden variables

• Can add hidden variables in ‘canonical’ places
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Structural signatures

• Can learn structure with no hidden vars, then look 
for ‘semi-cliques’. 

• Unfortunately original model discourages nodes 
with high fan-in.

Can also look for signatures in the data  - eg FCI* algorithm
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Cardinality of hidden nodes

• Need to choose number of states.

• Can use an “infinite” number using Dirichlet
processes.

• Let us first consider DP mixture models.
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Marginalizing out θ

Collapsed Gibbs sampling
Cf DP mixtures

O(M K) per iter



24

DP mixture model (p865)

• Identity of clusters does not matter. Let σ={I1,...,IL} 
be a partition, Ic=cases in cluster c. For case m’, 
either join existing cluster or create new one O(ML) 
per iter

• Now let K->inf.

• More likely to join a cluster if it is already crowded.

• Chinese Restaurant process.
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Outline

• MAP param estimation for UGMs (20.1-20.4)
• Learning using approximate inference (20.5)

• Alternative objectives (20.6)
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Likelihood fn for UGMs

• Log-linear model

Concave
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LogZ: first deriv
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logZ: second deriv
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Finding the MLE

At optimum, model moments = empirical moments

Just do gradient based optimization, eg stochastic gradient descent.
Expensive to compute Hessian explicitly, so use Quasi-Newton.

Must perform inference once per gradient
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CRFs

• Conditional density models

Must perform inference M times per gradient



8

MRFs with hidden variables

• Must perform inference M times per gradient

clamped unclamped
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CRFs with hidden variables

• Training is similar to MRFs with hidden variables, 
except expectations condition on x_n, so need to 
be redone for each case
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Summary

∇ =
∑

i

EHf(Hi, xi)−MEH,X [f(H,X)]

∇ =
∑

i

f(xi)−MEX [f(X)]

∇ =
∑

i

f(xi, yi)−
∑

i

EY [f(xi, Y )]

∇ =
∑

i

EHf(xi, yi, H)−
∑

i

EH,Y [f(xi, Y,H)]
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ML and MaxEnt

• MLE in the expfam is equivalent to MaxEnt subject 
to moment constraints
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Proof
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MAP estimation

• Convex prior + convex likelihood makes objective 
strictly convex (unique soln)

• Also helps prevent overfitting

• L2 and L1
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Learning with approximate inference

• Recall that the gradient requires model expectation 
over the features

• We can use approximate inference to approximate 
the expectation,  but approximate gradients can 
cause learning to diverge 
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Pseudo moment matching

• At the optimum, the pseudo marginals must satisfy

• Suppose we use tabular features. Then

• Hence we don’t need to run inference. There are 
multiple potentials that can generate these beliefs. 
We can uniquely recover one set using (for any 
ordering i<j)
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Unified inference and learning

• Pseudo moment matching only works for 
unconditional, tabular potentials with no tying and 
no regularizer

• To combine BP with param optimization, we can 
optimize 

The model parameters theta are the Lagrange multiplers for E[f]
And the messages are the Lagrange multipliers for the local consistency
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Example
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Double loop algorithm

• Inner loop optimizes δij by iterating the fixed point 
eqns

• Outer loop optimizes θ eg using gradient descent
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Approximating Z

• Loglik

• We can approximate the sum in different ways
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Pseudolikeliood

• Define
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Gradient of PL

Convex
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Consistency of PL

• Thm 20.6.2 (Besag). If data is generated from our 
model with params θ*, then as M->inf, argmax
PL(θ) -> θ*.

• Pf. The empirical approaches P(θ*). Hence

• And

• Hence gradient of PL is zero at θ*.
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Problem with PL

• Ex 20.6.3 (cf Hinton’s greek vase)

Assume X1, X2 are strongly correlated (eg mirror images),
And X1,Y and X2,Y are less strongly correlated.
PL will learn that X1 can be predicted from X2, and will ignore Y.
At test time, if we observe Y and want to predict X1, we are hosed.
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Sample based learning

• Recall loglik is 

Sample K x’s given θ
Compute ln Z(θ)
Update θ
Repeat
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Contrastive divergence

• Might need to sample many x’s to accurately 
approximate Z, but this is slow

• So define a set D- of randomly perturbed neighbors 
of D, and use

• Often xi- is generated by applying 1 step of Gibbs 
sampling to xi
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CD for RBMs

• RBMs have 1 layer of hidden variables, so we need 
an additional expectation

h
+

n ∼ p(h|xn, θ)

h
−

n ∼ p(h|x
−

n , θ)

Reconstruction/
Fantasy data

Interpretation of data

Interpretation of your
fantasies

Stop learning when your dreams match reality

∇i = Ex∼DEhfi(x,h)− Ex∼D−E
h
fi(x,h)

≈
1

N

∑

n

E
hn
fi(xn,hn)−Ehnfi(x

−

n ,hn)

≈
1

N

∑

n

fi(xn,h
+

n )− fi(x
−

n ,h
−

n )

x
−

n ∼ p(x|h
+

n ,θ)
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MAP approximation (perceptron training)

• Let us approximate Z (sum over all X) by the MAP 
estimate. Objective becomes

• For a single data term

• Hence gradient is
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Problem with MAP approximation

• The objective is always negative or 0 since

• We can always achieve the maximum of 0 by 
setting \theta=0

• “collapsing” problem
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Max-margin training

• For conditional density models, we can change the 
objective to the following, which prevents collapsing

To prevent margin blowing up we bound \theta

QP: quad obj+linear constraints
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Slack variables

• We want to minimize ||w||^2 st

• But we may not be able to achieve this gap, so we 
introduce slack variables (results in a Hidden 
Markov Support Vector Machine)

Thanks to Mark Schmidt
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Margin rescaling

• Intuitively if Yi’ is similar to Yi, we don’t mind if their 
probabilities are similar, but if they are very 
different, we want the gap to grow

• This gives max-margin markov network (M3N) aka 
structural SVM

Thanks to Mark Schmidt
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Unconstrained form

• We can eliminate the slack vars to get

• Requires 2nd best decoding. But since ∆(Yi,Yi)=0 
we can write

• This can use generic MAP decoders that just 
change the local evidence potentials on Y’.

• For associative markov nets, globally optimal.

Thanks to Mark Schmidt
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Cutting plane optimization

• Many possible optimization methods
• Simple approach for QP is cutting planes:
• Maximize quad objective with empty set of 

constraints – this is an upper bound.
• Add a violated constraint (*)
• Repeat until no violations.
• Thm: only need to add a poly num constraints.
• To find if constraints are violated: define

• If P(y[m],x[m]) < p(ymap,x[m]) +1, add this violation. 
Else all constraints for m’th case are ok



1

Stat 521A
Lecture 26



2

Structure learning in UGMs

• Dependency networks

• Gaussian UGMs
• Discrete UGMs
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Dependency networks

• A simple way to learn a graph is to regress each 
node on all others, p(x_i | x_{-i})

• If the full conditionals are sparse, this gives rise to a 
sparse graph

• Heckerman et al used classification trees to do 
variable selection

• Meinshausen & Buhlman proved that if you use 
lasso, the method is a consistent estimator of graph 
structure

• Wainwright et al extended the proof to L1 penalized 
logistic regression
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Problem with depnets

• Although one can recover the structure, the params
of the full conditionals need not correspond to any 
consistent joint

• To estimate params given the graph can be 
computationally hard (esp for discrete variables)

• Only give a point estimate of the structure*

* Parent fusion project
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Bayesian inference for GGMs

• If we use decomposable graphical models, we can 
use the hyper inverse wishart as a conjugate prior, 
and hence compute p(D|G) analytically

• Problem reduces to discrete search

• Can use MCMC, MOSS, etc
• For non-decomposable models, have to 

approximate p(D|G) eg by BIC. Have to compute 
MLE for every neighboring graph! *

• See work by Adrian Dobra.

* Derive analog of structural EM to speed this up – nips project, anyone?
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Graphical lasso

• We can estimate parameters and structure for 
GGMs simultaneously by optimizing

• Convex
• Can solve in O(#iter d4) time by solving a sequence 

of lasso subproblems
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Example
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MLE params for GGM

• Consider first the problem of estimating Ω given 
known zeros (absent edges)

• Setting gradient to zero gives

• Consider this partition
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Cont’d

• We have

• Dropping the zeros

• Can recover Ω from weights using
• To find w_22, use block inversion lemma 
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code
• W = S; % W = inv(precMat)
• precMat = zeros(p,p);
• beta = zeros(p-1,1);
• iter = 1;
• converged = false;
• normW = norm(W);
• while ~converged
• for i = 1:p
• % partition W & S for i
• noti = [1:i-1 i+1:p];
• W11 = W(noti,noti);
• w12 = W(noti,i);
• s22 = S(i,i);
• s12 = S(noti,i);
•
• % find G's non-zero index in W11
• idx = find(G(noti,i));  % non-zeros in G11
• beta(:) = 0;
• beta(idx) = W11(idx,idx) \ s12(idx);
•
• % update W
• w12 = W11 * beta;
• W(noti,i) = w12 ;
• W(i,noti) = w12';
•
• % update precMat (technically only needed on last iteration)
• p22 = max([0  1/(s22 - w12'*beta)]);  % must be non-neg
• p12 = -beta * p22;
• precMat(noti,i) = p12 ;
• precMat(i,noti) = p12';
• precMat(i,i) = p22;
• end
• converged =  convergenceTest(norm(W), normW) || (iter > maxIter);
• normW = norm(W);
• iter = iter + 1;
• end

ggmFitHtf in pmtk (by Baback Moghaddam)
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Example



13

Graphical lasso

λjj ≥ 0, λ
max
jk = |Σ̂jk|
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Subgradients
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Graphical lasso
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Shooting (coord desc for lasso)
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Shooting cont’d
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Soft thresholding
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Lasso vs ridge vs subset selection

For orthonormal features, we have explicit solns
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Graphical lasso with shooting
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Discrete UGMs

• Computing Z and hence the likelihood is intractable 
unless the graph is decomposable

• Hence Bayesian methods “never” used

• Even search and score is inefficient
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Ising models

• Analogous to GGM for binary data

X1 X2 X3 X4

Markov property

Besag, Hammersley & Clifford, Geman & Geman

W =






W11 W12 0 0
W21 W22 W23 0
0 W32 W33 W34

0 0 W43 W44






N (x|K) =
1

Z(K)
exp(− 1

2

∑

j,k

Kj,kxjxk), xj ∈ R

wjk ≥ 0 attractive (ferro magnet)

wjk ≤ 0 repuslive (anti ferro magnetic)

wjk mixed sign frustrated system

Xj ⊥ X−j |XNj

p(x|W) =
1

Z(W)
exp(

∑

j,k

Wjkxjxk), xj ∈ {−1,+1}
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Glasso for Ising models (Banerjee)

Convex relaxation of matrix permanent to matrix determinant
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Senate voting data
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20 newsgroups
do

cu
m

en
ts

words

word-document co-occurrence matrix for 20 newsgroups

10 20 30 40 50 60 70 80 90 100

2000

4000

6000

8000

10000

12000

14000

16000

n=16,000,   d=100

Courtesy Mark Schmidt
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Markov random fields
• Markov random fields for yj ∈ {1,…,K}

• No longer a 1:1 mapping between G and W

p(y|W) =
1

Z(W)
exp(

∑

j,k

wT
jkf jk(yj , yk)) ∝ exp(θ

TF(y))

yj yk f jk(yj , yk)
1 1 (1, 0, 0, 0, 0, 0, 0, 0, 0)
1 2 (0, 1, 0, 0, 0, 0, 0, 0, 0)
1 3 (0, 0, 1, 0, 0, 0, 0, 0, 0)
2 1 (0, 0, 0, 1, 0, 0, 0, 0, 0)
· · ·
3 3 (0, 0, 0, 0, 0, 0, 0, 0, 1)

Parameter vector on each edge
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Conditional random fields

• CRFs are a conditional density model

• No longer a 1:1 mapping between G and W

p(y|x,W,V) =
1

Z(W,V,x)
exp(

∑

j,k

wT
j,kf jk(yj , yk,x) +

∑

j

vTj gj(yj ,x))
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Heart wall abnormality data

• d=16, n=345, yj ∈ {0,1} representing normal or 

abnormal segment, xj in R100 representing features 
derived from image processing

Siemens Medical

“Structure Learning in Random Fields for Heart Motion Abnormality Detection”
Mark Schmidt, Kevin Murphy, Glenn Fung, Romer Rosales.
CVPR 2008.
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Group L1 regularization

• Solution: penalize groups of parameters, one group 
per edge

J(w,v) = − log
∑

i

p(yi|xi,w,v) + λ2||v||
2
2 + λ1

∑

g

||wg||p

||w||2 =

√∑

k

w2k

||w||∞ = max
k
|wk|
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Group lasso

• Sometimes we want to select groups of parameters 
together (e.g., when encoding categorical inputs)

ŵ = argminRSS(w) + λR(w)

R(w) =
∑

g

||wg||2 =
∑

g

√∑

j∈g

w2gj

R(w) =
∑

g

||wg||∞ =
∑

g

max
j∈g

|wgj |

Still convex, but
much harder to
optimize…
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Group L1 for graphs

• Penalize groups of parameters, one group per 
edge

• Issues
– How deal with intractable log-likelihood? Use PL 

(Schmidt) or LBP (Lee & Koller)
– How handle non-smooth penalty functions? (Projected 

gradient or projected quasi newton)

J(w,v) = − log
∑

i

p(yi|xi,w,v) + λ2||v||
2
2 + λ1

∑

g

||wg||p

||w||2 =

√∑

k

w2k

||w||∞ = max
k
|wk|
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Pseudo likelihood

• PL is locally normalized
L(W) =

n∏

i=1

p(xi|W) =

n∏

i=1

1

Z(W)
exp(

∑

j

∑

k

xijWjkxik)

PL(W) =

n∏

i=1

d∏

j=1

p(xij |xi,ni ,wj,:)

=
∏

j

∏

i

1

Z(wj ,xi,Nj
)
exp(xij

∑

k

Wjkxik)

Z(wj ,xNj
) =

∑

xj∈{−1,+1}

exp(xj
∑

k∈Nj

Wjkxk)

Besag
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Constrained formulation

• Convert penalized negative log pseudo likelihood

• into constrained form

f(w,v) = − log
∑

i

PL(yi|xi,v,w) + λ2||v||
2
2

min
w,v

= f(w,v) + λ1
∑

g

||wg||p

L(α,w,v) = f(w,v) + λ1
∑

g

αg

min
α,w,v

= L(α,w,v) st ∀g.αg ≥ ||wg||p
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Desiderata for an optimizer

• Must handle      groups (d = 16 in our application, 
so 120 groups)

• Must handle 100s features per group

• Cannot use second-order information (Hessian too 
expensive to compute or store) – so interior point is 
out

• Must converge quickly 

(
d

2

)
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Projected gradient method

• At each step, we perform an efficient projection 
onto the convex constraint set

Project each group separately.
Takes O(N) time for p=2,
O(N log N) time for p=∞,

Where N = #params per group.

van der Berg, Schmidt, Friedlander, Murphy; Duchi et al.

xk = (α,w)k

xk+1 = tΠSp(xk − βgk)

gk = ∇f(x)xk
ΠS (x) = arg min

x∗∈S
||x− x∗||2

Sp = {x : ∀g.αg ≥ ||wg||p}
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Spectral step size

• Gradient descent can be slow

• Barzilai and Borwein proposed the following 
stepsize, which in some cases enjoys super-linear 
convergence rates

t chosen using non-monotone
Armijo line search

xk+1 = tΠ(xk − βkgk)

gk = ∇f(x)|xk

βk+1 =
(xk − xk−1)T (xk − xk−1)

(xk − xk−1)T (gk − gk−1)
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Projected quasi Newton
• Use LBFGS in outer loop to create a constrained 

quadratic approximation to objective
• Use spectral projected gradient in inner loop to 

solve subproblem

“Optimizing Costly Functions with Simple Constraints:
A Limited-Memory Projected Quasi-Newton Algorithm”,
Mark Schmidt, Ewout van den Berg, Michael P. Friedlander, and Kevin Murphy,
AI/Stats 2009
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Experiments

• We compared classification accuracy on synthetic 
10-node CRF and real 16-node CRF.

• For each node, we compute the max of marginal 
using exact inference

• First learn (or fix) G, then learn w given G
– Empty, chain, full, true
– Best DAG (greedy search), best tree (Chow-Liu)
– max p(y|w) ||w||1, ||w||2, ||w|| ∞ 

• Jointly learn G and w 
– Max p(y|x,w,v) ||w||1, ||w||2, ||w|| ∞ 

ŷj = argmax p(yj |x,w, G)
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Results on synthetic data

• d=10, n=500 train, 1000 test

90% confidence interval derived from 10 random trials
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Results on heart data
90% confidence interval derived from 10-fold cross validation
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Incremental feature addition

• Lee, Ganapathi & Koller compute gradient and 
expectations using LBP instead of PL

• They greedily add features according to their 
expected gain (change in penalized loglik)

• Initially the graph is sparse so LBP is accurate, but 
degrades over time
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Della Pietra

Can use Gibbs sampling + IS corrections
Della Pietra, Della Pietra, Lafferty, PAMI 
1997
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Maxent models of faces

Use importance sampling to reweight the Gibbs samples when evaluating
feature gain 
C. Liu and S.C. Zhu and H.Y. Shum, ICCV 2001


