
1

Stat 521A
Lecture 9



2

Outline

• Exact inference in clique trees (10.2, 10.3)

• Approximate inference – overview
• Loopy belief propagation (11.3)

• Other entropy approximations (11.3.7)
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Message passing on a clique tree

• To compute p(Xi), find a clique that contains Xi, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)



5

Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting



6

Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x\Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm from HMMs
to find a MAP configuration of a general graph as 
follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from any GM as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 
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Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Def 10.2.11. The measure defined by a calibrated 
tree is defined as

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

βT (x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Calibrated clique tree

• Thm 10.2.12. For a calibrated clique tree,
p(x) ∝ βT(x) iff βi(Ci) ∝ p(Ci)

• Pf (sketch). 

p(A,B,C) =
p(A,B)p(B,C)

p(C)
= p(A,B)p(C|B) = p(A|B)p(B,C)
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation. (But only when fully calibrated 
do clq pots = marginals.)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Summary of exact inference

• Build clique tree
– eliminate nodes in some order
– collect maximal cliques
– Build a weighted graph where

Wij = |Ci intersect Cj|
– Find max weight spanning tree

• Initialize clique potentials with model potentials and 
evidence

• Do message passing on the tree
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Approximate inference
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Inference as optimization (11.1)

• Goal: find

• Thm 11.1.2

where F is the energy functional, and –F is the 
Helmholtz free energy

• Since D(Q||P) >=0, ln Z >= F(P,Q). We will 
maximize a lower bound on the log likelihood wrt Q.

min
Q
D(Q||P ) = D(Q||

1

Z
P̃ ) =

∑

x

Q(x) logQ(X)−Q(x) ln P̃ (x) + lnZ

= lnZ − F (P̃ , Q)

F (P̃ , Q) = HQ(x) +
∑

c

Exc∼Q lnφ(xc)

min
Q
D(Q||P )
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Factored energy functional

• Consider a Q based on a cluster graph

• Def 11.2.1. The factored energy functional is given 
by the following, where we approximate the entropy 
of Q

• Thm 11.2.2. If Q is a set of calibrated beliefs for a 
tree, and Q has the form
then 

Q = {βi : i ∈ V} ∪ {µi,j : (i, j) ∈ E}

F̃ (P̃ , Q) =
∑

i

ECi∼βi lnψi +
∑

i

Hβi(Ci)−
∑

<ij>

Hµi,j (Si,j)

Q(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

F̃ (P̃ , Q) = F (P̃ , Q)
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Exact inference as optimization

• Define the local consistency polytope as (p381)
the set of distributions

which satisfy

• Thm 11.1.1 If T is an I-map of P, and Q is a 
calibrated clique tree, then 

has a unique global optimum, in which Q=P

µi,j(Si,j) =
∑

Ci\Si,j

βi(Ci)

∑

ci

βi(ci) = 1

βi(ci) ≥ 0

Q = {βi : i ∈ V} ∪ {µi,j : (i, j) ∈ E}

max
Q∈Local F̃ (P̃ , Q)
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Constrained optimization
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Msgs = Lagrange multipliers
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Msgs = Lagrange multipliers

• Thm 11.2.3. A set of beliefs Q is a stationary point 
of CTreeOptimize iff there exist a set  of messages 
such that
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Cluster graphs

• If the cluster graph is a cluster tree with RIP, then 
the factored energy is equal to the energy, and 
enforcing local consistency is equivalent to 
enforcing global consistency.

• However, the cliques may be too big.
• Let us consider general CGs which only have to 

satisfy the RIP constraint.

• Hence all edges associated with some node X form 
a tree and all clusters agree on the marginal for 
each X. However, they may not agree on higher 
order marginals.
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Examples
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Belief prop on a cluster graph

• We can run the BP algorithm on a CG even if it is 
not a tree. This is called loopy BP.

• This can fail to converge and give the wrong 
answers due to double counting of evidence.
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Turbocodes

• Channel coding is a way of encoding msgs that 
makes them resistant to noise, and hence easier to 
decode.

• Let us send a k-bit msg u(1:k) using n bits, x(1:n) 
eg x = 3 copies of u. We receive y(1:n) and 
estimate u. The rate of the code is k/n.

• Shannon’s thm characterizes the best rate one can 
achieve for a given error rate and noise level. 

• Turbodecoding is a method to approximately 
estimate u from y which achieves near-optimal rate. 
It is equivalent to loopy BP in a particular DGM.
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Turbocodes

K=4,n=7 parity check K=4,n=8 turbocode
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Convergence (11.3.4)

• For discrete networks, one can show that LBP will 
converge if the connections are not too 
deterministic.

• Eg for Ising model, sufficient condition is

• Similar conditions exist for Gaussian networks.
• Special case analysis has been derived for 

turbocodes.
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Encouraging convergence

• One can use damped updates

• Asychronous updates work better than sychronous.
• Tree reparameterization (TRP) selects a set of 

trees, each of which spans a large number of 
clusters, and whose union covers all the edges. It 
then selects a tree at rnd and calibrates it, treating 
all other messages as local evidence.

• Priority-queue based msg scheduling also works 
very well.
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Example: 11x11 Ising
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Accuracy

• In general, it is hard to characterize the accuracy of 
approximate solutions. Often the most probable 
state is locally correct but is over confident.

• For Gaussian networks, Weiss et al showed that, if 
the method converges, the means are exact, but 
the variances are too small.
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Bethe cluster graphs

• Suppose we create one cluster for each original 
factor, and one cluster for each node.

• Then for a pairwise MRF, propagating Ci – Cij – Cj
is equivalent to sending msgs from node i to node j 
via edge ij.

• In general, BP on the Bethe CG = BP on the factor 
graph.
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BP on factor graphs

µfi→xj (xj) =
∑

ci\xj

f(ci)
∏

k∈nb(fi)\xj

µxk→fi(xk)

µxi→fj (xi) =
∏

k∈nb(xi)\fj

µfk→xi(xi)

Bishop p406
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Bethe approximation to entropy 

• Thm 11.3.10. If Q is a calibrated set of beliefs for a 
Bethe approximation CG then the factored energy 
is given by

where d_i = #factors that contain Xi.
• If Xi appears in di factors, by RIP, it appears in (di-

1) sepsets. Hence we count the entropy of each Xi 
once in total.

F̃ (P̃ , Q)
def
=

∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

s

Hµs(Ss)

=
∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

i

(di − 1)Hβi(Xi)
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Weighted approximation to entropy

• Consider a cluster graph, each of whose clusters 
(regions) has a counting number µr. Define the 
weighted approximate entropy as

• For a Bethe-structured CG, we set

• If we set µr=1, we recover the Bethe approximation.
• Let us consider more general weightings.

H
µ
Q(X) =

∑

r

µrHβr (Cr)

µi = 1−
∑

r∈nbi

µr
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Convex approximation to entropy

• Def 11.3.13. We say that µr are convex counting 
numbers if there exist non-negative numbers νr, νi, 
νr,i st

• Then

• Thm 11.3.14. The above eqn is concave for any set 
of beliefs Q which satisfy marginal consistency 
constraints.
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Convex BP
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TRW

• Tree reweighting algorithm (TRW) uses the 
following convex counting numbers, given a 
distribution over trees T st each edge in the 
pairwise network is present in at least 1 tree
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Convex or not?

• When standard BP converges, the Bethe 
approximation to the entropy is often more accurate 
than the convex approximation.

• However, it is desirable to have a convex inference 
engine in the inner loop of learning.

• If you train with a convex approximation, there are 
some arguments you should use the same convex 
approx at test time for decoding.
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Regions graphs (11.3.7.3)

• One can use more general CGs than the Bethe 
construction, which lets you model higher order 
interactions which are intermediate between the 
original factors and singletons.

• Resulting algorithm is complex.


