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« Exact inference in clique trees (10.2, 10.3)
e Approximate inference — overview

* Loopy belief propagation (11.3)

e Other entropy approximations (11.3.7)



Message passing on a clique tree

* To compute p(X), find a clique that contains X,
make It the root, and send messages to it from all
other nodes.

e A cligue cannot send a node to its parent until it Is
ready, ie. Has received msgs from all its children.

e Hence we send from leaves to root.
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Downwards pass (distribute from root)

« At the end of the upwards pass, the root has seen
all the evidence.

e We send back down from root to leaves.
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« Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

Bi(Ci) = Y P(x)

e If we get new evidence on Xi, we can multiply it in
to any clique containing I, and then distribute
messages outwards from that cligue to restore

consistency.



MAP configuration

 We can generalize the Viterbi algorithm from HMMs
to find a MAP configuration of a general graph as
follows.

 On the upwards pass, replace sum with max.

e At the root, find the most probable joint setting and
send this as evidence to the root’s children.

e Each child finds its most probable setting and
sends this to its children.

* The jtree property ensures that when the state of a
variable iIs fixed in one clique, that variable
assumes the same state in all other cliques.



 We can generalize forwards-filtering backwards-
sampling to draw exact samples from any GM as
follows.

* Do a collect pass to the root as usual.

« Sample xR from the root marginal, and then enter it
as evidence In all the children.

e Each child then samples itself from its updated
local distribution and sends this to its children.



Calibrated cligue tree

 Def 102.8. A cligue tree is calibrated Iif, for all pairs
of neighboring cliques, we have

> GiC)= Y Bi(Cy) = pi(Siy)

Ci\Si,j Cj\Si,;

 Eg. A-B-C clg tree AB — [B] — BC. We require

S B = 3 Buelt,
. Def 10.2.11. The measure defined by a calibrated
tree Is defined as

1; 6:(C

i)
pr(z) = I1- ij> Mi i,5(Sij)




Calibrated cligue tree

« Thm 10.2.12. For a calibrated clique tree,
P(X) o< Br(x) Iff B;(C)) o< p(C))

e Pf (sketch).

A,B)p(B, ()

~
pl4, B,0) = p(C)

= p(A, B)p(C|B) = p(A|B)p(B, C)
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Clique tree invariant

e Suppose at every step, clique | sends a msg to

clique |, and stores it in [, ;:
Procedure Send-BU-Msg |
1, sending clique
] receiving clique
]
1 Tisj zc:—nﬁ'!..‘ i;.
2 marginalize the cligue over the sepset
3 3_'.‘ — _5'_1. : 11—::11
1 fli§ ~— Ti—j

o Initially ;=1 and {3 = 1. ass 10 § & HeENCe the
following holds. (o) = L BilC)
b B H<¢j> ,LLi,j(S’ij>

« Thm 10.3.4. This property holds after every belief
updating operation. (But only when fully calibrated

do clqg pots = marginals.) .



Summary of exact inference

 Build clique tree
— eliminate nodes in some order
— collect maximal cliques

— Build a weighted graph where
W; = |C; intersect C||
— Find max weight spanning tree

 |nitialize cligue potentials with model potentials and
evidence

Do message passing on the tree
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Approximate inference
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Inference as optimization (11.1)

e Goal: find minD(@[IP)

+ Thm 11.1.2
win DQIIP) = DQIIZP) = Y Q) log QX) — Q(x) n Plx) + InZ
= an—F(P,Q)m
F(P,Q) = Ho(x)+ ) Ea~qlno(z.)

where F Is the energy functional, and —F is the
Helmholtz free energy

e Since D(Q||P) >=0, In Z >= F(P,Q). We will
maximize a lower bound on the log likelihood wrt Q.
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Factored energy functional

 Consider a Q based on a cluster graph
Qz{ﬁiZiGV}U{Mi,j : (Z,]) Eg}

 Def 11.2.1. The factored energy functional is given
by the following, where we approximate the entropy

on
ZECNQ ln¢ +ZH§ Z

<13>

e Thm 11.2.2. If Q Is a set of calibrated beliefs for a

tree, and Q has the form () = 115
H<zg>'LL J(S )
then
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Exact inference as optimization

* Define the local consistency polytope as (p381)
the set of distributions
QZ{ﬂi:iGV}U{ILLi,j : (’L,]) Eg}
which satisfy
pii(Si) = Z Bi(Ci)

Ci\Si,j
Z Bi(ci) = 1

Bi(ci) > 0
e Thm1ll.1.1If Tisanl-mapof P,and Qis a
calibrated clique tree, then

Maz ;| ocal 15’(]5, Q)
has a unique global optimum, in which Q=P
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Constrained optimization
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Msgs = Lagrange multipliers

J = F[Ps.Q)
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Msgs = Lagrange multipliers

« Thm 11.2.3. A set of beliefs Q Is a stationary point
of CTreeOptimize Iff there exist a set of messages
such that

Dy O Z i 1__[ O
-8y, 5

keNb, —{4)

and moreover. we hove thaot

B oo Yy H Ojvi
jelNby

i = Oji 0.
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Cluster graphs

 If the cluster graph is a cluster tree with RIP, then
the factored energy Is equal to the energy, and
enforcing local consistency Is equivalent to
enforcing global consistency.

 However, the cligues may be too big.

e Let us consider general CGs which only have to
satisfy the RIP constraint.

 Hence all edges associated with some node X form
a tree and all clusters agree on the marginal for
each X. However, they may not agree on higher
order marginals.
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Examples
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Belief prop on a cluster graph

 We can run the BP algorithm ona CG even ifitis
not a tree. This Is called loopy BP.

* This can fall to converge and give the wrong
answers due to double counting of evidence.

Ly
h, = :
Pra’)
T
)
g




 Channel coding is a way of encoding msgs that
makes them resistant to noise, and hence easier to
decode.

e Let us send a k-bit msg u(1:k) using n bits, x(1:n)
eg x = 3 copies of u. We receive y(1:n) and
estimate u. The rate of the code is k/n.

e Shannon’s thm characterizes the best rate one can
achieve for a given error rate and noise level.

e Turbodecoding is a method to approximately
estimate u from y which achieves near-optimal rate.
It Is equivalent to loopy BP In a particular DGM.
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K=4,n=7 parity check K=4,n=8 turbocode
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Convergence (11.3.4)

For discrete networks, one can show that LBP will
converge If the connections are not too
deterministic.

Eg for Ising model, sufficient condition is

IMAX THAX Z tanh |eg ;| = 1.
i jENB,
k=Nbi—{i}]

Similar conditions exist for Gaussian networks.

Special case analysis has been derived for
turbocodes.
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Encouraging convergence

 One can use damped updates

Bij — Z || R (CZ HJH) +(1— Ayt
"4

Ci—8 5 k24 — 8y 5 kH#i
e Asychronous updates work better than sychronous.

* Tree reparameterization (TRP) selects a set of
trees, each of which spans a large number of
clusters, and whose union covers all the edges. It
then selects a tree at rnd and calibrates It, treating
all other messages as local evidence.

* Priority-queue based msg scheduling also works
very well.
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Example: 11x11 Ising
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Accuracy

e In general, it Is hard to characterize the accuracy of
approximate solutions. Often the most probable
state Is locally correct but Iis over confident.

e For Gaussian networks, Weiss et al showed that, if
the method converges, the means are exact, but
the variances are too small.
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Bethe cluster graphs

e Suppose we create one cluster for each original
factor, and one cluster for each node.

_\.’1'1,1HH\.A1,1 . AI,Z_:_‘_A 1,2._,—[.*"1,2 . A1,3._J'—__.A 13

i q N . ) = ) ) ) )
|:| ABE| lEB”:' | [;:n,n_r— .| 4:BE| |5DE Ay Ay A AzzJ Ay, Agy
| | | |
el (Ap HAy A AL, AL, A — A,
(6] [me] [we) (0] [1wE] [wF Tz'l Ses —lz’z . _|2j
:Az,1 ' Aa,lj Azz ' Aaz)l lﬂz,ar Aaa

_._A3,1_.H__!"'-3,1 cAszam AspTAse, AgaAsg

 Then for a pairwise MRF, propagating C; — C; — C;
IS equivalent to sending msgs from node i to nhode |
via edge 1Ij.

* In general, BP on the Bethe CG = BP on the factor
graph.
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BP on factor graphs

Bishop p406

Hfi—ra; xﬂ Z f CZ H ka%fi(xk)

ci\e; kenb(fi)\a;

Mz, — f; (:Bz) — H K fr—rz; (xz)
kenb(x;)\ f; 33



Bethe approximation to entropy

« Thm 11.3.10. If Q Is a calibrated set of beliefs for a
Bethe approximation CG then the factored energy
IS given by

F(P,Q) = D Es,mo+y Hy,(Co)— Y H.(S,)
@ 10 s
- Z Eg,In¢+ Z Hpg, (Cy) — Z(di —1)Hg, (X;)
() 10 i

where d_| = #factors that contain Xi.

 |If Xi appears in di factors, by RIP, it appears in (di-
1) sepsets. Hence we count the entropy of each Xi
once In total.
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Weighted approximation to entropy

e Consider a cluster graph, each of whose clusters
(regions) has a counting number p,. Define the
weighted approximate entropy as

HS(X) =Y urHp, (C)
e For a Bethe-structured CG, we set

,LLZ':]_— Z:ur

renb;

 If we set ,=1, we recover the Bethe approximation.
e Let us consider more general weightings.

35



Convex approximation to entropy

* Def 11.3.13. We say that U, are convex counting
numbers if there exist non-negative numbers v, v,
V,; St .

Hi

Vr + Zi : XeeCp Vrid Jor all r
Vi — Z?‘ : X, ely Vp i ﬁ'”' all i

* Then
Z;::.TH; +Z£!1H¥.¢,X ZMH;; )+ Z ves(Hg (Cr)—Hg, (X;) ZMH;_!_Y:

e 11_1:6

« Thm 11.3.14. The above egn is concave for any set
of beliefs Q which satisfy marginal consistency

constraints.
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Convex BP

Algorithm 11.2 Convergent message passing algorithm for Bethe-structured re-
gion graphs with convex counting numbers

Procedure Convex-BP-Msg |

-'._L'-',‘[f-‘,.] set of imtial potentials
Tisr{Cp) Current nodeto region messages
|
1 for i=1,....n
2 Compute incoming messages from neighboring regions to for v € WNhy
X; X
: Op—il X ) — Zr_‘:,___{‘ ("4'"11-'[{:1-'] Hjer.——{i} gj—'—?"iff‘r])m
l Compute beliefs for X; renormalizing to avord numerical
underflows o
5 BlXi] e o [, (Groi(Xa)Por/?
¥ Compute outgoing messages from X, to neighboring re for r € Nhy
giOns
. - - - Bl N
i Ty () +— (Ur[':-*v] l_[_;ieﬁbr—{i} 'S"j—ri'[-'rj) (Ig,___:!,-L'I.;]ﬁ)

7
B return JL':'-i—;vf{'ir:'JI’i.rENb. r\ r
A \RSp»r
Onr / (
v =1 Z Up: Vir = Up + Vi r. vgr N

reNby Xﬁ, '
P X 37



TRW

e Tree reweighting algorithm (TRW) uses the
following convex counting numbers, given a
distribution over trees T st each edge In the
pairwise network is present in at least 1 tree

pi == rsx, PT)
Hij = Z’I SN X)) !':”[T]'
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Convex or not?

 When standard BP converges, the Bethe
approximation to the entropy Is often more accurate
than the convex approximation.

e However, It IS desirable to have a convex inference
engine in the inner loop of learning.

 If you train with a convex approximation, there are
some arguments you should use the same convex
approx at test time for decoding.
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Regions graphs (11.3.7.3)

 One can use more general CGs than the Bethe
construction, which lets you model higher order
Interactions which are intermediate between the
original factors and singletons.

« Resulting algorithm is complex.

& A,B.C} [z: a*::_n| ['3:.q,c*n|

aBC | [ 5:ac | [ &CD |
Y
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