Stat 521A
 Lecture 8

Outline

- Forwards backwards on chains
- FB on trees
- FB on clique chains
- FB on clique trees
- Message passing on clique trees (10.2-10.3)
- Creating clique trees (10.4)

Forwards algorithm

1. predict: compute the the one-step-ahead predictive density $p\left(S_{t} \mid \mathbf{x}_{1: t-1}\right)$ as follows:

$$
\begin{align*}
p\left(S_{t}=j \mid \mathbf{x}_{1: t-1}\right) & =\sum_{i} p\left(S_{t}=j, S_{t-1}=i \mid \mathbf{x}_{1: t-1}\right) \tag{1}\\
& =\sum_{i} p\left(S_{t}=j \mid S_{t-1}=i\right) p\left(S_{t-1}=i \mid \mathbf{x}_{1: t-1}\right) \tag{2}
\end{align*}
$$

In the second step we used the fact that $S_{t} \perp X_{1: t-1} \mid S_{t-1}$.
2. update: compute $p\left(S_{t} \mid \mathbf{x}_{t}, \mathbf{x}_{1: t-1}\right)$ using Bayes rule, where we use $p\left(S_{t} \mid \mathbf{x}_{1: t-1}\right)$ as the prior:

$$
\begin{equation*}
p\left(S_{t}=j \mid \mathbf{x}_{1: t}\right)=\frac{1}{c_{t}} p\left(\mathbf{x}_{t} \mid S_{t}=j\right) p\left(S_{t}=j \mid \mathbf{x}_{1: t-1}\right) \tag{3}
\end{equation*}
$$

where we used the fact that $X_{t} \perp X_{1: t-1} \mid S_{t}$. The normalizing constant c_{t} is given by

$$
\begin{equation*}
c_{t}=p\left(\mathbf{x}_{t} \mid \mathbf{x}_{1: t-1}\right)=\sum_{j} p\left(\mathbf{x}_{t} \mid S_{t}=j\right) p\left(S_{t}=j \mid \mathbf{x}_{1: t-1}\right) \tag{4}
\end{equation*}
$$

The base case is

$$
\begin{equation*}
p\left(S_{1}=j \mid \mathbf{x}_{1}\right) \propto p\left(S_{1}=j\right) p\left(\mathbf{x}_{1} \mid S_{1}=j\right)=\pi_{j} p\left(\mathbf{x}_{1} \mid S_{1}=j\right) \tag{5}
\end{equation*}
$$

Matrix vector form

$$
\begin{align*}
\alpha_{t}(j) & =p\left(S_{t}=j \mid \mathbf{x}_{1: t}\right) \tag{1}\\
b_{t}(j) & =p\left(\mathbf{x}_{t} \mid S_{t}=j\right) \tag{2}\\
A(i, j) & =p\left(S_{t}=j \mid S_{t-1}=i\right) \tag{3}
\end{align*}
$$

Hence the recursion step is

$$
\begin{equation*}
\alpha_{t}(j) \propto b_{t}(j) \sum_{i} A_{i j} \alpha_{t-1}(i) \tag{4}
\end{equation*}
$$

This can be rewritten in matrix-vector notation as

$$
\begin{equation*}
\boldsymbol{\alpha}_{t} \propto \operatorname{diag}\left(\mathbf{b}_{t}\right) \mathbf{A}^{T} \boldsymbol{\alpha}_{t-1} \tag{5}
\end{equation*}
$$

It is somewhat clearer if we use Matlab-style notation, and use .* to denote elementwise multiplication by a vector:

$$
\begin{equation*}
\boldsymbol{\alpha}_{t} \propto \mathbf{b}_{t} * *\left(\mathbf{A}^{T} \boldsymbol{\alpha}_{t-1}\right) \tag{6}
\end{equation*}
$$

The log-likelihood of the data sequence can be computed from the normalizing constants as follows:

$$
\begin{equation*}
\log p\left(\mathbf{x}_{1: T}\right)=\sum_{t=1}^{T} \log p\left(\mathbf{x}_{t} \mid \mathbf{x}_{1: t-1}\right)=\sum_{c=1}^{T} \log c_{t} \tag{7}
\end{equation*}
$$

Matlab

Listing 1: Listing of hmmFilter

```
function [alpha, loglik] = hmmFilter(initDist, transmat, obslik)
% initDist(i) = Pr(Q 1) = i)
%transmat(i,j) = Pr(Qt) = j | Q(t-1)=i)
%obslik(i,t)=Pr(Y(t)| Q t)=i)
[K T] = size(obslik);
alpha = zeros(K,T);
[alpha(:,1), scale(1)] = normalize(initDist(:) .* obslik(:,1));
for t=2:T
    [alpha(:,t), scale(t)] = normalize((transmat' * alpha(:,t-1)) .* obslik(:,t));
end
loglik = sum(log(scale+eps));
```


Listing 2: Listing of makeLocalEvidence

```
function localEvidence = makeLocalEvidence(model,obs)
```

\% local Evi dence $(i, t)=p(Y(t) \mid Z(t)=i)$
localEvidence $=$ zeros (model.nstates,size (obs,2));
for i = 1:model.nstates
localEvidence(i,:) = exp(logprob(model.emissionDist\{i\},obs'));
end

Offline estimation: goals

- Single slice marginals:

$$
\begin{equation*}
\gamma_{t}(j) \stackrel{\text { def }}{=} p\left(S_{t}=j \mid \mathbf{x}_{1: T}, \boldsymbol{\theta}\right) \tag{1}
\end{equation*}
$$

for all $1 \leq t \leq T$. This can be computed via the forwards backwards algorithm, as we discuss in Section ??.

- Two-slice marginals

$$
\begin{equation*}
\xi_{t-1, t}(i, j) \stackrel{\text { def }}{=} p\left(S_{t-1}=i, S_{t}=j \mid \mathbf{x}_{1: T}, \boldsymbol{\theta}\right) \tag{2}
\end{equation*}
$$

These are needed for parameter estimation, as described in Section ??. These quantities are easy to compute using forwards-backwards, as we describe in Section ??.

- The posterior mode, or most probable path:

$$
\begin{equation*}
\mathbf{s}_{1: T}^{*}=\arg \max _{\mathbf{s}_{1: T}} p\left(\mathbf{s}_{1: T} \mid \mathbf{x}_{1: T}, \boldsymbol{\theta}\right) \tag{3}
\end{equation*}
$$

This can be computed by the Viterbi algorithm, as we describe in Section ??.

- Samples from the posterior

$$
\begin{equation*}
\mathbf{s}_{1: T} \sim p\left(\mathbf{s}_{1: T} \mid \mathbf{x}_{1: T}, \boldsymbol{\theta}\right) \tag{4}
\end{equation*}
$$

Filtering vs smoothing vs Viterbi

Fixed lag smoothing

nd of imererce for stiv-qace models. The shoded egion is the internal for

FB

$$
\begin{align*}
p\left(S_{t} \mid \mathbf{x}_{1: T}\right) & \propto \sum_{\mathbf{s}_{1: t-1}} \sum_{\mathbf{s}_{t+1: T}} p\left(\mathbf{s}_{1: t-1}, \mathbf{x}_{1: t-1}, S_{t}, \mathbf{x}_{t}, \mathbf{s}_{t+1: T}, \mathbf{x}_{t+1: T}\right) \tag{1}\\
& =\sum_{\mathbf{s}_{1: t-1}} \sum_{\mathbf{s}_{t+1: T}} p\left(\mathbf{s}_{1: t-1}, \mathbf{x}_{1: t-1}\right) p\left(S_{t} \mid s_{t-1}\right) p\left(\mathbf{x}_{t} \mid S_{t}\right) p\left(\mathbf{s}_{t+1: T}, \mathbf{x}_{t+1: T} \mid \text { \$2 }\right) \\
& =\sum_{s_{t-1}} p\left(s_{t-1}, \mathbf{x}_{1: t-1}\right) p\left(S_{t} \mid s_{t-1}\right) p\left(\mathbf{x}_{t} \mid S_{t}\right) p\left(\mathbf{x}_{t+1: T} \mid S_{t}\right) \tag{3}\\
& \propto \sum_{s_{t-1}} p\left(s_{t-1} \mid \mathbf{x}_{1: t-1}\right) p\left(S_{t} \mid s_{t-1}\right) p\left(\mathbf{x}_{t} \mid S_{t}\right) p\left(\mathbf{x}_{t+1: T} \mid S_{t}\right) \tag{4}
\end{align*}
$$

Matrix vector form

Let us de ${ }_{\text {}}$ ne the following notation

$$
\begin{align*}
\alpha_{t}(j) & \stackrel{\text { def }}{=} p\left(S_{t}=j \mid \mathbf{x}_{1: t}\right) \tag{1}\\
\beta_{t}(j) & \stackrel{\text { def }}{=} p\left(\mathbf{x}_{t+1: T} \mid S_{t}=j\right) \tag{2}\\
\gamma_{t}(j) & \stackrel{\text { def }}{=} p\left(S_{t}=j \mid \mathbf{x}_{1: T}\right) \tag{3}
\end{align*}
$$

Then we can rewrite the above equation as

$$
\begin{equation*}
\gamma_{t}(j) \propto \sum_{i} \alpha_{t-1}(i) A_{i j} b_{t}(j) \beta_{t}(j) \tag{4}
\end{equation*}
$$

Furthermore, let us de ne the one-step ahead predictive density

$$
\begin{equation*}
\mathrm{a}_{t}(j) \stackrel{\text { def }}{=} p\left(S_{t}=j \mid \mathbf{x}_{1: t-1}\right)=\sum_{i} \alpha_{t-1}(i) A_{i j} \tag{5}
\end{equation*}
$$

Then we can rewrite the above equation as

$$
\begin{equation*}
\gamma_{t}(j) \propto a_{t}(j) b_{t}(j) \beta_{t}(j) \tag{6}
\end{equation*}
$$

Backwards algorithm

$$
\begin{align*}
\beta_{t-1}(i) & =p\left(\mathbf{x}_{t+1: T} \mid S_{t-1}=i\right) \tag{1}\\
& =\sum_{j} p\left(S_{t}=j, \mathbf{x}_{t}, \mathbf{x}_{t+1: T} \mid S_{t-1}=i\right) \tag{2}\\
& =\sum_{j} p\left(S_{t}=j \mid S_{t-1}=i\right) p\left(\mathbf{x}_{t} \mid S_{t}=j, S_{t-1}=i\right) p\left(\mathbf{x}_{t+1: T} \mid S_{t}=j, S_{t-1}=\right. \tag{3}\\
& =\sum_{j} p\left(S_{t}=j \mid S_{t-1}=i\right) p\left(\mathbf{x}_{t} \mid S_{t}=j\right) p\left(\mathbf{x}_{t+1: T} \mid S_{t}=j\right) \tag{4}\\
& =\sum_{j} A_{i j} b_{t}(j) \beta_{t}(j) \tag{5}
\end{align*}
$$

where Equation ?? is justi ${ }_{7}$ ed since $X_{t} \perp X_{t+1: T} \mid S_{t}$ and Equation ?? is justi ${ }_{7}$ ed since $X_{t} \perp S_{t-1} \mid S_{t}$ and $X_{t+1: T} \perp S_{t-1} \mid S_{t}$. We can write the resulting equation in matrixvector form as

$$
\begin{equation*}
\boldsymbol{\beta}_{t-1}=\mathbf{A}\left(\mathbf{b}_{t} \cdot * \boldsymbol{\beta}_{t}\right) \tag{6}
\end{equation*}
$$

The base case is

$$
\begin{equation*}
\beta_{T}(i)=p\left(\mathbf{x}_{T+1: T} \mid S_{T}=i\right)=p\left(\emptyset \mid S_{T}=i\right)=1 \tag{7}
\end{equation*}
$$

Matlab

Listing 1: Listing of hmmBackwards

```
functi on [beta] = hmmBackwards(transmat, obslik)
% bet a(i,t) propto p(y(t+1:T) / Q(t=i))
[K T] = size(obslik);
beta = zeros(K,T);
beta(:,T) = ones(K,1);
for t=T-1:-1:1
    beta(:,t) = normalize(transmat * (beta(:,t+1) .* obslik(:,t+1)));
end
\ end{ codeCap
\begin{codeCap}{Listing of \codename{hmmFwdBack}}
functi on [gamma, alpha, beta, loglik] = hmmFwdBack(initDist, transmat, obslik)
% gamma(i,t) = p(Q(t)=i | y(1:T))
[alpha, loglik] = hmmFilter(initDist, transmat, obslik);
beta = hmmBackwards(transmat, obslik);
gamma = normalize(alpha .* beta, 1); % make each col um sum to 1
```


Avoiding underflow

$$
\begin{gather*}
\alpha_{t}(j)=p\left(S_{t}=j \mid \mathbf{x}_{1: T}\right)=\frac{1}{c_{t}} b_{t}(j) \sum_{i} A_{i j} \alpha_{t-1}(i) \tag{1}\\
c_{t}=\sum_{j} b_{t}(j) \sum_{i} A_{i j} \alpha_{t-1}(i) \tag{2}\\
\hat{\beta}_{t-1}(i)=\frac{1}{d_{t-1}} \sum_{j} A_{i j} b_{t}(j) \hat{\beta}_{t}(j) \tag{3}\\
d_{t-1}=\sum_{i} A_{i j} b_{t}(j) \hat{\beta}_{t}(j) \tag{4}\\
p\left(S_{t}=j, \mathbf{x}_{1: t}\right)=p\left(S_{t}=j \mid \mathbf{x}_{1: t}\right) p\left(\mathbf{x}_{1: t}\right)=\alpha_{t}(j)\left(\prod_{\tau=1}^{t} c_{\tau}\right) \tag{5}\\
p\left(\mathbf{x}_{t+1: T} \mid S_{t}=j\right)=\hat{\beta}_{t}(j)\left(\prod_{\tau=t}^{T} d_{\tau}\right) \tag{6}
\end{gather*}
$$

Avoiding underflow

$$
\begin{align*}
\gamma_{t}(j) & =p\left(S_{t}=j \mid x_{1: T}\right) \tag{1}\\
& =\frac{p\left(x_{t+1: T} \mid S_{t}=j\right) p\left(S_{t}=j, x_{1: t}\right)}{p\left(x_{1: T}\right)} \tag{2}\\
& =\frac{\left(\prod_{\tau=t}^{T} d_{\tau}\right) \hat{\beta}_{t}(j)\left(\prod_{\tau=1}^{t} c_{\tau}\right) \alpha_{t}(j)}{\sum_{j^{\prime}}\left(\prod_{\tau=t}^{T} d_{\tau}\right)_{\mathcal{\beta}}\left(j^{\prime}\right)\left(\prod_{\tau=1}^{t} c_{\tau}\right) \alpha_{t}\left(j^{\prime}\right)} \tag{3}\\
& =\frac{\beta_{t}(j) \alpha_{t}(j)}{\sum_{j^{\prime}} \hat{\beta}_{t}\left(j^{\prime}\right) \alpha_{t}\left(j^{\prime}\right)} \tag{4}
\end{align*}
$$

Two-slice marginals

$$
\begin{equation*}
N_{i j}=\sum_{t=1}^{T-1} E\left[I\left(S_{t}=i, S_{t+1}=j\right) \mid \mathbf{x}_{1: T}\right]=\sum_{t=1}^{T-1} p\left(S_{t}=i, S_{t+1}=j \mid \mathbf{x}_{1: T}\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\xi_{t-1, t}(i, j) & \stackrel{\text { def }}{=} p\left(S_{t-1}=i, S_{t}=j \mid x_{1: T}\right) \\
& \propto p\left(S_{t-1}=i \mid \mathbf{x}_{1: t-2}\right) p\left(\mathbf{x}_{t-1} \mid S_{t-1}=i\right) p\left(S_{t}=j \mid S_{t-1}=i\right) p\left(\mathbf{x}_{t} \mid S_{t}=j\right) p\left(\mathbf{x}_{t+1: T} \mid S_{t}=j\right) \\
& =a_{t-1}(i) b_{t-1}(i) A_{i j} b_{t}(j) \beta_{t}(j)
\end{aligned}
$$

$$
\begin{equation*}
\boldsymbol{\xi}_{t-1, t} \propto \mathbf{A} \cdot *\left(\boldsymbol{\alpha}_{t-1} *\left(\mathbf{b}_{t} \cdot * \boldsymbol{\beta}_{t}\right)^{T}\right) \tag{2}
\end{equation*}
$$

Time and space complexity

- $O(T \mathrm{~K} \mathrm{~b})$ time, $\mathrm{b}=$ branching factor
- In discretization of cts space, $\mathrm{O}(\mathrm{T} \mathrm{K} \log \mathrm{K})$ or $\mathrm{O}(\mathrm{T} \mathrm{K})$ - Felzenswalb \& Huttenlocher
- O(T K) space, O(T K^2) time
- $\mathrm{O}(\mathrm{K} \log \mathrm{T})$ space, $\mathrm{O}\left(\mathrm{T} \log \mathrm{T} \mathrm{K}^{\wedge} 2\right.$) time (island algorithm)

Viterbi

MAP path

$$
\begin{equation*}
s_{1: T}^{*}=\arg \max _{s_{1: T}} p\left(s_{1: T} \mid x_{1: T}\right) \tag{1}
\end{equation*}
$$

Max marginals

$$
\begin{align*}
s_{t}^{*}=\arg \max _{i} p\left(S_{t}\right. & \left.=i \mid \mathbf{x}_{1: T}\right)=\arg \max _{i} \sum_{\mathbf{s}_{-t}} p\left(S_{t}=i, \mathbf{s}_{-t} \mid \mathbf{x}_{1: T}\right) \tag{2}\\
\delta_{t}(i) & \stackrel{\text { def }}{=} \max _{s_{1}, \ldots, s_{t-1}} p\left(\mathbf{s}_{1: t-1}, s_{t}=i, \mathbf{x}_{1: t} \mid \boldsymbol{\theta}\right) \\
\delta_{t+1}(j) & =\max _{i} \delta_{t}(i) A_{i j} b_{t+1}(j) \\
\psi_{t+1}(j) & =\arg \max _{i} \delta_{t}(i) A_{i j} b_{t+1}(j) \\
\delta_{1}(j) & =\pi_{j} b_{1}(j)
\end{align*}
$$

Traceback

$$
\begin{aligned}
S_{T}^{*} & =\arg \max _{i} \delta_{T}(i) \\
S_{t}^{*} & =\psi_{t+1}\left(s_{t+1}^{*}\right)
\end{aligned}
$$

Viterbi example

$$
\delta_{1}(1)=0.5
$$

$\delta_{2}(1)=\delta_{1}(1) A_{11} b_{2}(1)=0.5 \cdot 0.3 \cdot 0.3=0.045$
$\delta_{2}(2)=\delta_{1}(1) A_{12} b_{2}(2)=0.5 \cdot 0.7 \cdot 0.2=0.07$
Top N list
Discrim. reranking

Fwd filtering, back sampling

$$
\begin{align*}
& s_{1: T}^{*} \sim p\left(\mathbf{s}_{1: T} \mid \mathbf{x}_{1: T}, \boldsymbol{\theta}\right) \tag{1}\\
s_{t}^{*} & \sim p\left(S_{t} \mid s_{t+1: T}^{*}, \mathbf{x}_{1: T}\right) \tag{2}\\
& \propto p\left(S_{t} \mid s_{t+1}^{*}, \mathbf{x}_{1: t}\right) \tag{3}\\
& =\frac{p\left(S_{t}=i, S_{t+1}=j \mid x_{1: t+1}\right)}{p\left(S_{t+1}=j \mid x_{1: t+1}\right)} \tag{4}\\
& =\frac{p\left(\mathbf{x}_{t} \mid S_{t}=j\right) p\left(S_{t}=j \mid S_{t-1}=i\right) p\left(S_{t-1}=i \mid \mathbf{x}_{1: t-p}\right)}{p\left(S_{t+1}=j \mid x_{1: t+1}\right)} \tag{5}\\
& =\frac{A_{i j} \alpha_{t}(i) b_{t+1}(j)}{\alpha_{t+1}(j)}
\end{align*}
$$

Listing 1: Listing of hmmSamplePost

```
functi on [samples] = hmmSamplePost(initDist, transmat, obslik, nsamples)
% samples(t,s) = value of S(t) i n samples
[K T] = size(obslik);
alpha = hmmFilter(initDist, transmat, obslik);
samples = zeros(T, nsamples);
dist = normalize(alpha(:,T));
samples(T,:) = sample(dist, nsamples);
for t=T-1:-1:1
    tmp = obslik(:,t+1) ./ (alpha(:,t+1)+eps); %b_{t+1}(j) / al pha_{t+1}(j)
    xi_filtered = transmat .* (alpha(:,t) * tmp');
    for n=1:nsamples
        dist = xi_filtered(:,samples(t+1,n));
        samples(t,n) = sample(dist);
    end
end

\section*{Message passing on a clique tree}
- To compute \(p\left(X \_i\right)\), find a clique that contains \(X \_i\), make it the root, and send messages to it from all other nodes.
- A clique cannot send a node to its parent until it is ready, ie. Has received msgs from all its children.
- Hence we send from leaves to root.


\section*{Message passing on a clique tree}
\[
\begin{aligned}
& P(J)=\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \sum_{D} \psi_{G}(G, I, D) \underbrace{\sum_{C} \psi_{C}(C) \psi_{D}(D, C)}_{\tau_{1}(D)} \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \underbrace{\sum_{D} \psi_{G}(G, I, D) \tau_{1}(D)}_{\tau_{2}(G, I)} \\
& \delta_{1 \rightarrow 2}(D)=\tau_{1}(D)
\end{aligned}
\]
\(\psi_{1}\left(c_{1}\right)=\psi_{c}(c) \psi_{0}(0, c)\)

Multiply terms in bucket (local \& incoming), sum out those that are not in sepses, send to nb upstream

\section*{Upwards pass (collect to root)}
```

Procedure C Tree Sum Product Up
Φ. / Set of factors
\mathcal{T} Clique tree over Φ
$\alpha_{,} \quad / /$ Initial assignment of factors to cliques
$C_{r} \quad$ Some selected root clique
)
Initialize Cliques
while C_{r} is not ready
Let C_{6} be a ready clique
$\delta_{i \rightarrow p_{r}(i)}\left(S_{i, p_{r}(i)}\right) \leftarrow$ SP Message $\left(i, p_{r}(i)\right)$
$\beta_{r} \leftarrow \psi_{r} \cdot \prod_{k \in \mathrm{Nb}_{C_{r}}} \delta_{k \rightarrow r}$
return β_{r}

```
        Root
        Root
```

for each clique C_{i}

```
for each clique \(C_{i}\)
        \(\psi_{i}\left[C_{i}\right] \leftarrow \prod_{\phi_{j}: \alpha\left(\phi_{j}\right)=i} \phi\)
        \(\psi_{i}\left[C_{i}\right] \leftarrow \prod_{\phi_{j}: \alpha\left(\phi_{j}\right)=i} \phi\)
Procedure SP Message (
                \(\beta_{i}\left(C_{i}\right)=\phi_{i}\left(C_{i}\right) \prod_{k \in n_{i}, k \neq j} \delta_{k \rightarrow i}\left(S_{k, i}\right)\)
    i. //sending clique
    j //receiving clique
)
\[
\delta_{i \rightarrow j}\left(S_{i j}\right)=\sum_{C_{i} \backslash S_{i j}} \beta_{i}\left(C_{i}\right)
\]
    \(\psi\left(C_{i}\right) \leftarrow \psi_{i} \cdot \prod_{k \in\left(\mathrm{Nb}_{i}-\{j\}\right)^{\delta_{k \rightarrow i}}}\)
    \(\tau\left(\boldsymbol{S}_{i, j}\right) \leftarrow \sum_{\boldsymbol{C}_{i}-\boldsymbol{S}_{i, j}} \psi\left(\boldsymbol{C}_{i}\right)\)
    return \(\tau\left(S_{i, j}\right)\)
```


Message passing to a different root

- If we send messages to a different root, many of them will be the same
- Hence if we send messages to all the cliques, we can reuse the messages- dynamic programming!

Downwards pass (distribute from root)

- At the end of the upwards pass, the root has seen all the evidence.
- We send back down from root to leaves.

Beliefs

- Thm 10.2.7. After collect/distribute, each clique potential represents a marginal probability (conditioned on the evidence)

$$
\beta_{i}\left(C_{i}\right)=\sum_{\mathbf{x} C_{i}} \tilde{P}(\mathbf{x})
$$

- If we get new evidence on X_{i}, we can multiply it in to any clique containing i , and then distribute messages outwards from that clique to restore consistency.

MAP configuration

- We can generalize the Viterbi algorithm to find a MAP configuration as follows.
- On the upwards pass, replace sum with max.
- At the root, find the most probable joint setting and send this as evidence to the root's children.
- Each child finds its most probable setting and sends this to its children.
- The jtree property ensures that when the state of a variable is fixed in one clique, that variable assumes the same state in all other cliques.

Samples

- We can generalize forwards-filtering backwardssampling to draw exact samples from the joint as follows.
- Do a collect pass to the root as usual.
- Sample xR from the root marginal, and then enter it as evidence in all the children.
- Each child then samples itself from its updated local distribution and sends this to its children.

Calibrated clique tree

- Def 102.8. A clique tree is calibrated if, for all pairs of neighboring cliques, we have

$$
\sum_{C_{i} \backslash S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j} \backslash S_{i, j}} \beta_{j}\left(C_{j}\right)=\mu_{i, j}\left(S_{i, j}\right)
$$

- Eg. A-B-C clq tree $A B-[B]-B C$. We require

$$
\sum_{a} \beta_{a b}(a, b)=\sum_{c} \beta_{b c}(b, c)
$$

- Thm. After collect/distribute, all cliques are calibrated.
- Thm 10.2.12. A calibrated tree defines a joint distribution as follows $\quad p(x)=\frac{\prod_{i} \beta_{i}\left(C_{i}\right)}{\left.\prod_{i i j} \mu_{i, j} S_{i j}\right)}$
eg $\quad p(A, B, C)=\frac{p(A, B) p(B, C)}{p(C)}=p(A, B) p(C \mid B)=p(A \mid B) p(B, C)$

Clique tree invariant

- Suppose at every step, clique i sends a msg to clique j , and stores it in $\mu_{\mathrm{i}, \mathrm{i}}$:

```
Procedure Send-BU-Msg
                i, /// sending clique
                        j // receiving clique
    \sigmai->j}\leftarrow\mp@subsup{\sum}{\mp@subsup{\boldsymbol{C}}{i}{}-\mp@subsup{\boldsymbol{S}}{i,j}{}}{}\mp@subsup{\beta}{i}{
                /marginalize the clique over the sepset
    \beta}\mp@code{~}\leftarrow\mp@subsup{\beta}{j}{}\cdot\frac{\mp@subsup{\sigma}{i-j}{*}}{\mp@subsup{\mu}{i,j}{\prime}
    \mui,j}\leftarrow\mp@subsup{\sigma}{i->j}{
```

- Initially $\mu_{\mathrm{i}, \mathrm{j}}=1$ and $\beta_{\mathrm{i}}=\prod_{\mathrm{f}: \mathrm{fass} \text { to } i} \phi_{\mathrm{f}}$. Hence the following holds.

$$
p(x)=\frac{\prod_{i} \beta_{i}\left(C_{i}\right)}{\left.\prod_{\langle i j} \mu_{i, j} S_{i j}\right)}
$$

- Thm 10.3.4. This property holds after every belief updating operation.

Out of clique queries

- We can compute the distribution on any set of variables inside a clique. But suppose we want the joint on variables in different cliques. We can run VE on the calibrated subtree
- eg $\quad A-B-C-D \quad A B-B C-C D$

$$
\begin{aligned}
P(B, D) & =\sum_{c} p(B C D) \\
& =\sum_{c} \frac{\beta_{2}(D C) \beta_{3} \notin(D)}{\mu_{23}(c)} \\
& =\sum_{c} p(B \mid C)_{2}(C, D)
\end{aligned}
$$

Out of clique inference

```
Procedure CTree-Query (
    T. / Clique tree over $
    {\mp@subsup{\beta}{i}{}},{\mp@subsup{\mu}{i,j}{}}, // Calibrated clique and sepset beliefs for T
    Y // A query
    Let }\mp@subsup{T}{}{\prime}\mathrm{ be a subtree of }\mathcal{T}\mathrm{ such that }Y\subseteqS\mathrm{ Sope[ [']
    Select a clique r\in\mathcal{V}}\mp@subsup{\mathcal{T}}{}{\prime}\mathrm{ , to be the root
    \Phi\leftarrow \beta
    for each i\in\mathcal{V}
        \phi}\leftarrow\frac{\mp@subsup{\beta}{i}{}}{\mp@subsup{\mu}{i,\mp@subsup{P}{r}{}(0)}{(t)}
        \Phi\leftarrow\Phi\cup{\phi}
    Z}\leftarrowScope[T'] - Y
    Let }<\mathrm{ be some ordering over }
    return Sum-Product-Variable-Elimination( }\Phi,Z,\prec
```


Creating a Jtree

Murphy PhD thesis (2002) p140

Max cliques from a chordal graph

- Triangulate the graph according to some ordering.
- Start with all vertices unnumbered, set counter $i:=N$.
- While there are still some unnumbered vertices:
- Let $v_{i}=\pi(i)$.
- Form the set C_{i} consisting of v_{i} and its (unnumbered/ uneliminated) neighbors.
- Fill in edges between all pairs of vertices in C_{i}.
- Eliminate v_{i} and decrement i by 1.
- At each step, keep track of the clique that is created; if it is a subset of any previously created clique, discard it (since non maximal).

Cliques to Jtree

- Build a weighted graph where $\mathrm{W}_{\mathrm{ij}}=\mid \mathrm{C}_{\mathrm{i}}$ intersect $\mathrm{C}_{\mathrm{j}} \mid$
- Find max weight spanning tree. This is a jtree.

