Stat 521A
 Lecture 7

Outline

- Variable elimination (9.2-9.3)
- Complexity of VE (9.4)
- Conditioning (9.5)
- From VE to clique trees (10.1)
- Message passing on clique trees (10.2-10.3)
- Creating clique trees (10.4)

Inference

- Consider the following distribution

$$
\begin{aligned}
& P(C, D, I, G, S, L, J, H) \\
& \quad=\quad P(C) P(D \mid C) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, \\
& \quad=\quad \psi_{C}(C) \psi_{D}(D, C) \psi_{I}(I) \psi_{G}(G, I, D) \psi_{S}(S, I) \\
& \quad \psi_{L}(L, G) \psi_{J}(J, L, S) \psi_{H}(H, G, J)
\end{aligned}
$$

Brute force enumeration

- Compute marginal probability someone has a job

$$
P(J)=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)
$$

Variable elimination 1

- Push sums inside products (distributive law)

$$
\begin{aligned}
P(J)= & \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H) \\
= & \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \psi_{C}(C) \psi_{D}(D, C) \psi_{I}(I) \psi_{G}(G, I, D) \psi_{S}(S, I) \\
& \psi_{L}(L, G) \psi_{J}(J, L, S) \psi_{H}(H, G, J) \\
& \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \\
& \sum_{D} \psi_{G}(G, I, D) \sum_{C} \psi_{C}(C) \psi_{D}(D, C)
\end{aligned}
$$

VE 2: work right to left

$$
\begin{aligned}
& P(J)=\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \sum_{D} \psi_{G}(G, I, D) \sum_{C} \psi_{C}(C) \psi_{D}(D, C) \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \underbrace{\sum_{D} \psi_{G}(G, I, D) \tau_{1}(D)}_{\tau_{2}(G, I)} \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \underbrace{\sum_{I} \psi_{S}(S, I) \psi_{I}(I) \tau_{2}(G, I)}_{\tau_{3}(G, S)} \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \underbrace{\sum_{H} \psi_{H}(H, G, J)}_{\tau_{4}(G, J)} \tau_{3}(G, S) \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \underbrace{\sum_{G} \psi_{L}(L, G) \tau_{4}(G, J) \tau_{3}(G, S)}_{\tau_{5}(J, L, S)} \\
& =\sum_{L} \underbrace{\sum_{S} \psi_{J}(J, L, S) \tau_{5}(J, L, S)} \\
& \tau_{6}(J, L) \\
& =\underbrace{\sum_{L} \tau_{6}(J, L)}_{\tau_{7}(J)} \\
& \text { Variable elimination } \\
& \text { Bucket elimination } \\
& \text { Peeling } \\
& \text { Non-serial dynamic programming }
\end{aligned}
$$

Pseudocode

```
Algorithm 9.1 Sum-Product Variable Elimination algorithm
    Procedure Sum-Product-Variable-Elimination (
        \(\Phi, \quad / /\) Set of factors
        \(Z, \quad / /\) Set of variables to be eliminated
        \(\prec \quad / /\) Ordering on \(\boldsymbol{Z}\)
    )
        Let \(Z_{1}, \ldots, Z_{k}\) be an ordering of \(\boldsymbol{Z}\) such that
        \(Z_{i} \prec Z_{j}\) iff \(i<j\)
        for \(i=1, \ldots, k\)
            \(\Phi \leftarrow\) Sum-Product-Eliminate- \(\operatorname{Var}\left(\Phi, Z_{i}\right)\)
            \(\phi^{*} \leftarrow \prod_{\phi \in \Phi} \phi\)
            return \(\phi^{*}\)
    Procedure Sum-Product-Eliminate-Var (
            \(\Phi, \quad / \quad\) Set of factors
            \(Z \quad / \quad\) Variable to be eliminated
    )
            \(\Phi^{\prime} \leftarrow\{\phi \in \Phi: Z \in \operatorname{Scope}[\phi]\}\)
            \(\Phi^{\prime \prime} \leftarrow \Phi-\Phi^{\prime}\)
            \(\psi \leftarrow \prod_{\phi \in \Phi^{\prime}} \phi\)
            \(\tau \leftarrow \sum_{Z} \psi\)
            return \(\Phi^{\prime \prime} \cup\{\tau\}\)
```


Dealing with evidence

- Conditional prob is ratio of uncond prob

$$
P(J \mid I=1, H=0)=\frac{P(J, I=1, H=0)}{P(I=1, H=0)}
$$

- Soft/ virtual evidence: $\phi_{i}\left(X_{i}\right)=p\left(y_{i} \mid X_{i}\right)$

$$
P(J, I=1, H=0)=
$$

$$
\begin{aligned}
& \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \phi_{\mathbf{H}}(\mathbf{H}) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \phi_{\mathbf{I}}(\mathbf{I}) \\
& \sum_{D} \psi_{G}(G, I, D) \sum_{C} \psi_{C}(C) \psi_{D}(D, C)
\end{aligned}
$$

- Hard evidence: $\phi_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{I}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}{ }^{*}\right)$

$$
\begin{aligned}
& P(J, I=1, H=0)= \\
& \quad \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \psi_{H}(H=0, G, J) \psi_{S}(S, I=1) \psi_{I}(I=1) \\
& \quad \sum_{D} \psi_{G}(G, I, D) \sum_{C} \psi_{C}(C) \psi_{D}(D, C)
\end{aligned}
$$

Reduced graph

- If nodes are instantiated (fully observed), we can remove them and their edges and absorb their effect by updating all the other factors that reference them
- Eg if G is observed

VE with hard evidence

```
Procedure Cond Prob VE
    \mathcal{L}.// A network over \mathcal{X}
    Y. // Set of query variables
    E=e // Evidence
    \Phi< Facturs parameterizing }\mathcal{K
    Replace earh }\phi\in\Phi\mathrm{ by }\phi[\boldsymbol{E}=\boldsymbol{e}
    Select an elimination ordering <
    Z\leftarrow=X - Y - E
    \phi
    \alpha\leftarrow \sum 
    return }\alpha,\mp@subsup{\phi}{}{*
```


Complexity analysis of VE

- At step i , we multiply all factors involving x_{i} into a large factor, then sum out x_{i} to get τ_{i}.
- Let N_{i} be number of entries in factor ψ_{i}.
- The total number of factors is $m+n$, where $m=$ original number of factors in model ($m \geq n$), and $\mathrm{n}=\mathrm{num}$. vars.
- Each factor gets multiplied into something bigger once. Hence \#mult is at most

$$
(n+m) N_{i} \leq(n+m) N_{\max }=O\left(m N_{\max }\right)
$$

- When we sum out a node from a factor, we touch each entry once, so \#adds is at most

$$
n N_{\max }
$$

Complexity analysis of VE

- If each variable has v values, and factor ψ_{i} involves k_{i} variables, then $\mathrm{N}_{\mathrm{i}} \leq \mathrm{v}^{k}$
- So complexity is exponential in the size of the largest factor.

Different elimination ordering

$$
\begin{aligned}
P(J) & =\sum_{D} \sum_{C} \psi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{I} \psi_{I}(I) \psi_{S}(S, I) \underbrace{\sum_{G} \psi_{G}(G, I, D) \psi_{L}(L,) \psi_{H}(H, G, J)}_{\tau_{G}(I, D, L, J, H)} \\
& =\sum_{D} \sum_{C} \psi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \psi_{J}(J, L, S) \underbrace{\sum_{I} \psi_{I}(I) \psi_{S}(S, I) \tau_{1}(I, D, L, J, H)}_{\tau_{2}(D, L, S, J, H)} \\
& =\sum_{D} \sum_{C} \psi_{D}(D, C) \sum_{H} \sum_{L} \underbrace{\sum_{S} \psi_{J}(J, L, S) \tau_{2}(D, L, S, J, H)}_{\tau_{3}(D, L, J, H)} \\
& =\sum_{D}^{\sum_{C} \sum_{C} \psi_{D}(D, C) \underbrace{\sum_{H} \underbrace{\sum_{L}^{\tau_{3}(D, L, J, H)}}_{\tau_{4}(D, J, H)}}_{H}} \begin{aligned}
& \sum_{D} \sum_{C} \psi_{D}(D, C) \\
&=\underbrace{\sum_{D} \tau_{4}(D, J, H)}_{\tau_{5}(D, J)} \\
&=\underbrace{\sum_{\tau_{7}} \psi_{\tau_{6}}(D, J)}_{\tau_{7}(D, J)}
\end{aligned}
\end{aligned}
$$

Effect of ordering

- A bad ordering can create larger intermediate factors, and therefore is slower

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_{C}(C), \phi_{D}(D, C)$	C, D	$\tau_{1}(D)$
2	D	$\phi_{G}(G, I, D), \tau_{1}(D)$	G, I, D	$\tau_{2}(G, I)$
3	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{2}(G, I)$	G, S, I	$\tau_{3}(G, S)$
4	H	$\phi_{H}(H, G, J)$	H, G, J	$\tau_{4}(G, J)$
5	G	$\tau_{4}(G, J), \tau_{3}(G, S), \phi_{L}(L, G)$	G, J, L, S	$\tau_{5}(J, L, S)$
6	S	$\tau_{3}(J, L, S), \phi,(J, L, S)$	J, L, S	$\tau_{6}(J, L)$
7	L	$\tau, J, L)$	J, L	$\tau_{7}(J)$

4

Table 9.1 A run of variable elimination for the query $P(J)$.

Step	Variable eliminated	Facturs used	Variables inw,lua,	New factor
1	G	$\phi_{G}(G, I, D), \phi_{L}(L, G), \phi_{H}(H, G, J)$	$G, L D, L, J, H$	$\tau_{1}(I, D, L, J, H)$
2	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{1}(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_{2}(D, L, S, J, H)$
3	S	$\phi_{J}(J, L, S), \tau_{2}(D, L, S, J, H)$	D, L, S, J, H	$\tau_{3}(D, L, J, H)$
4	L	$\tau_{3}(D, L, J, H)$	D, L, J, H	$\tau_{4}(D, J, H)$
5	H	$\tau_{4}(D, J, H)$	D, J, H	$\tau_{5}(D, J)$
6	C	$\tau_{5}(D, J), \phi_{D}(D, C)$	D, J, C	$\tau_{6}(D, J)$
7	D	$\tau_{6}(D, J)$	D, J	$\tau_{7}(J)$

Table 9.2 A different run of variable elimination for the query $P(J)$.

Graph theoretic analysis

- Every time we eliminate a node, we build a new factor which combines variables that may have previously been in separate factors. Let us add an edge (fill-in edge) between such nodes to create tho indinod aranh

When we eliminate I, we add a fill-in between G and S

$$
\tau_{3}(G, S)=\sum_{I} \psi_{S}(S, I) \psi_{I}(I) \tau_{2}(G, I)
$$

Induced graph

- Def 9.4.3. Let $\mathrm{I}(\mathrm{G},<)$ represent the graph induced by applying VE with order < to graph G.
- Thm 9.4.4.Every factor generated by VE is a clique in $\mathrm{I}(\mathrm{G},<)$. Also, every maximal clique in $\mathrm{I}(\mathrm{G},<)$ corresponds to some intermediate factor.

$$
\{C, D\},\{D, I, G\},\{G, L, S, J\},\{G, J, H\},\{G, I, S\}
$$

Treewidth

- Def 9.4.5. The width of an induced graph is the number of nodes in the largest clique minus 1 . The minimal induced width of a graph, aka the treewidth, is defined as

$$
W_{G}=\min _{\prec} \max _{i}\left|\tau_{i}\right|-1
$$

- The treewidth of a tree is 1 , since the max clique (edge) in the original graph has size 2, and the optimal elimination order (eliminate all the leaves, then the root) adds no fill-in edges.

$$
\begin{aligned}
& 1,2,3: \sum_{x_{3}} \sum_{x_{2}} \phi\left(x_{3}, x_{2}\right) \sum_{x_{1}} \phi\left(x_{3}, x_{1}\right) \\
& 3,2,1: \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \phi\left(x_{3}, x_{1}\right) \phi\left(x_{3}, x_{2}\right)
\end{aligned}
$$

Finding an elim order

- Thm 9.4.6. Finding the optimal elimination order (which minimizes induced width) is NP-hard.
- Typical approach: greedy search, where at each step, we eliminate the node that minimizes some cost function
- Min-fill heuristic: the cost of a node is the number of fill-in edges that would be added.
- Min-weight heuristic: the cost of a node is the number of states in the factor that would be created (product of cardinalities).

Empirical comparison of heuristics

Min-fill is often close to best known ordering (computed with simAnneal)

Chordal graphs

- Def 2.2.15. Let $X_{1}-X_{2}-\ldots X_{k}-X_{1}$ be a loop in a graph. A chord is an edge connecting X_{i} and X_{j} for two nonconsecutive nodes. An undirected graph is chordal (triangulated) if every loop of length $\mathrm{k}>=4$ has a chord.

- Thm 9.4.7. Every induced graph is chordal.
- Thm 9.4.8. Any chordal graph admits a perfect elimination order which does not introduce any fillin edges.

Finding perfect elim order

- The max cardinality search algorithm will find a perfect elimination ordering for a chordal graph.

```
Procedure Max Cardinality
    H}//\mathrm{ An undirected graph over }\mathcal{X
)
    Initialize all nodes in X as unmarked
    for }k=|\mathcal{X}|\ldots
        X\leftarrow unmarked variable in }X\mathrm{ with largest number of marked neighbors
        \pi(X)\leftarrowk
        Mark }
    return \pi
```


For non-chordal graphs, the MCS ordering often results in large induced width

Conditioning

- We can condition on a variable to break the graph into smaller pieces, run VE on each piece, and then add up the results. We also need the probability of each conditioning case.

$$
\tilde{P}(\mathbf{Y})=\sum_{\mathbf{u}} \tilde{P}(\mathbf{Y}, \mathbf{u}) \quad Z=\sum_{\mathbf{u}} Z(\mathbf{u})
$$

Evidence G=g

Condition on S

Conditioning + VE

```
```

Procedure Sum-Product-Conditioning (

```
```

Procedure Sum-Product-Conditioning (
$\Phi, \quad / /$ Set of factors, possibly reduced by evidence
$\Phi, \quad / /$ Set of factors, possibly reduced by evidence
$\boldsymbol{Y}, \quad / /$ Set of query variables
$\boldsymbol{Y}, \quad / /$ Set of query variables
$U \quad / /$ Set of variables on which to condition
$U \quad / /$ Set of variables on which to condition
)
)
1 for each $\boldsymbol{u} \in \operatorname{Val}(U)$

```
1 for each \(\boldsymbol{u} \in \operatorname{Val}(U)\)
```

```
        \(\Phi_{u} \leftarrow\{\phi[U=u]: \phi \in \Phi\}\)
```

 \(\Phi_{u} \leftarrow\{\phi[U=u]: \phi \in \Phi\}\)
 Construct \(\mathcal{H}_{\Phi_{u}}\)
 Construct \(\mathcal{H}_{\Phi_{u}}\)
 \(\left(\alpha_{\boldsymbol{u}}, \phi_{\boldsymbol{u}}(\boldsymbol{Y})\right) \leftarrow\) Cond-Prob-VE \(\left(\mathcal{H}_{\Phi_{\boldsymbol{u}}}, \boldsymbol{Y}, \emptyset\right)\)
 \(\left(\alpha_{\boldsymbol{u}}, \phi_{\boldsymbol{u}}(\boldsymbol{Y})\right) \leftarrow\) Cond-Prob-VE \(\left(\mathcal{H}_{\Phi_{\boldsymbol{u}}}, \boldsymbol{Y}, \emptyset\right)\)
 \(\phi^{*}(\boldsymbol{Y}) \leftarrow \frac{\sum_{u} \phi_{u}(\boldsymbol{Y})}{\sum_{u} \alpha_{u}}\)
 \(\phi^{*}(\boldsymbol{Y}) \leftarrow \frac{\sum_{u} \phi_{u}(\boldsymbol{Y})}{\sum_{u} \alpha_{u}}\)
 Return \(\phi^{*}(\boldsymbol{Y})\)
    ```
    Return \(\phi^{*}(\boldsymbol{Y})\)
```


Cutset conditioning

- If we instantiate a set of nodes such that the resulting network is a tree, we can apply a simple message passing algorithm on the tree (see later).
- This is called cutset conditioning.
- Thm 9.5.2. Conditioning + VE is never more efficient than VE.

Left: condition on A_{k}. Repeatedly re-eliminate $A_{1} \ldots A_{k-1}$ instead of reusing computation (as in DP/VE).

Right: condition on A_{k}, k odd.
Exponential in k. But induced width is only 2.
Space-time tradeoff.

VE on chain = forwards algorithm

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3} \mid y_{1}, y_{2}, y_{3}\right) \propto \phi_{1}\left(x_{1}\right) \psi\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}\right) \psi\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}\right) \\
& \phi_{1}\left(x_{1}\right)=\pi_{1}\left(x_{1}\right) p\left(y_{1} \mid x_{1}\right) \\
& \phi_{t}\left(x_{t}\right)=p\left(y_{t} \mid x_{t}\right), t>1 \\
& \psi\left(x_{t-1}, x_{t}\right)=p\left(x_{t} \mid x_{t-1}\right) \\
& p\left(x_{3} \mid y_{1: 3}\right) \propto \phi_{3}\left(x_{3}\right) \sum_{x_{2}} \phi_{2}\left(x_{2}\right) \psi\left(x_{2}, x_{3}\right) \sum_{x_{1}} \phi_{1}\left(x_{1}\right) \psi\left(x_{1}, x_{2}\right) \\
& \alpha_{1}\left(x_{1}\right) \quad \propto \quad \phi_{1}\left(x_{1}\right) \\
& \alpha_{2}\left(x_{2}\right) \propto \phi_{2}\left(x_{2}\right) \sum_{x_{1}} \alpha_{1}\left(x_{1}\right) \psi\left(x_{1}, x_{2}\right) \\
& \alpha_{3}\left(x_{3}\right) \propto \phi_{3}\left(x_{3}\right) \sum_{x_{2}} \alpha_{2}\left(x_{2}\right) \psi\left(x_{2}, x_{3}\right)
\end{aligned}
$$

What's wrong with VE?

- Consider a chain X1 - X2 - .. - XT, where the local evidence has been absorbed into the node factors.
- If we use VE to compute $\mathrm{p}(\mathrm{XT} \mid \mathrm{y}(1: \mathrm{T}))$, it is equivalent to the forwards algorithm for HMMs, and takes $\mathrm{O}\left(\mathrm{T} \mathrm{K}^{2}\right)$ time, where $\mathrm{K}=$ \#states.
- Suppose we also want to compute $p(X(T-1) \mid y(1: T))$. We could rerun the algorithm for an additional O (T K^{2}) time.
- We now discuss how to reuse most of the computation we have already done in eliminating $X(1: T-2)$. We can then compute all marginals in $\mathrm{O}\left(2 \mathrm{~K}^{2} \mathrm{~T}\right)$ time (FB algorithm).

Cluster graphs

- Def 10.1.1. A cluster graph for a set of factors on X is an undirected graph, each of whose nodes I is associated with a set $\mathrm{C}_{\mathrm{i}} \subseteq \mathrm{X}$. Each factor is contained in precisely one cluster. Each edge between a pair of clusters $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}$ is associated with a sepset (separating set) $\mathrm{S}_{\mathrm{ij}} . \quad S_{i j}=C_{i} \cap C_{j}$

Cluster graph from VE

- We can create a cluster graph to represent the process of VE. Before we marginalize out x_{i}, we create factor ψ_{i} (its bucket potential); make this a cluster. When we marginalize out x_{i}, we create factor τ_{i} which is stored in bucket j ; think of this as a message from i to j. Draw an edge $C_{i}-C_{i}$.

Properties of VE cluster graph

- The VE cluster graph is a tree, since each message gets sent to a single bucket (so each cluster connects to at most one other cluster)
- Def 10.1.3. Let T be a cluster tree. T has the running intersection property if, whenever X in Ci and X in Cj , then X is also in every cluster on the unique path from Ci to Cj .
- Thm 10.1.5. The VE CG has RIP.
- Pf (sketch). A variable appears in every factor from the moment it is introduced to when it is summed out.

Messages

- Thm 10.1.6. The scope of the $m s a \tau_{i}$ from C_{i} to C_{i} is $S_{i, j}$.

$$
\begin{aligned}
& 1: C, D \rightarrow 2: G, I, D \xrightarrow{-} 3: G, S, I
\end{aligned}
$$

- Def. For any sepset S_{ij}, let $\mathrm{W}_{<\mathrm{ij}}$ be the variables in the scope of the clusters on the C_{i} side, and $\mathrm{W}_{<\mathrm{ji}}$ be the vars on the C_{j} side.
- Thm $\mathrm{W}_{\text {cij }} \perp \mathrm{W}_{\text {<ji }} \mid \mathrm{S}_{\mathrm{ij}}$. . . satisfies RIP iff for every S_{ij},
- Hence msg from C_{i} to C_{j} is sufficient statistic for all info to left of $C_{i}-C_{j}$.
- RIP ensures local communication => global consistency.

Clique trees

- Def 10.1.7. A cluster tree that satisfies RIP is called a clique tree or join tree or junction tree.
- Thm 4.5.15. A graph has a Jtree (where the clusters are the maxcliques) iff it is chordal.
- Thm 10.4.1. We can always remove non maximal cliques from a Jtree without violating RIP.

$$
\begin{aligned}
& 1: C, D \rightarrow 2: G, I, D \rightarrow 3: G, S, I
\end{aligned}
$$

Message passing on a clique tree

- To compute $p\left(X _i\right)$, find a clique that contains $X _i$, make it the root, and send messages to it from all other nodes.
- A clique cannot send a node to its parent until it is ready, ie. Has received msgs from all its children.
- Hence we send from leaves to root.

Message passing on a clique tree

$$
\begin{aligned}
& P(J)=\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \sum_{D} \psi_{G}(G, I, D) \underbrace{\sum_{C} \psi_{C}(C) \psi_{D}(D, C)}_{\tau_{1}(D)} \\
& =\sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \underbrace{\sum_{D} \psi_{G}(G, I, D) \tau_{1}(D)}_{\tau_{2}(G, I)} \\
& \delta_{1 \rightarrow 2}(D)=\tau_{1}(D)
\end{aligned}
$$

$\psi_{1}\left(c_{1}\right)=\psi_{c}(c) \psi_{0}(0, C)$

Multiply terms in bucket (local \& incoming), sum out those that are not in sepses, send to nb upstream

Upwards pass (collect to root)

```
Procedure C Tree Sum Product Up
    \(\Phi\). / Set of factors
    Root
    \(\mathcal{T}\) Clique tree over \(\Phi\)
    \(\alpha_{1} \quad / /\) Initial assignment of factors to cliques
    \(C_{r} \quad\) Some selected root clique
)
    Initialize Cliques
    while \(C_{r}\) is not ready
        Let \(C_{6}\) be a ready clique
        \(\delta_{i \rightarrow p_{r}(i)}\left(S_{i, p_{r}(i)}\right) \leftarrow\) SP Message \(\left(i, p_{r}(i)\right)\)
    \(\beta_{r} \leftarrow \psi_{r} \cdot \prod_{k \in \mathrm{Nb}_{C_{r}}} \delta_{k \rightarrow r}\)
    return \(\beta_{r}\)
Procedure Initialize Cliques (
```



```
for each clique \(C_{i}\)
```

for each clique C_{i}
$\psi_{i}\left[C_{i}\right] \leftarrow \prod_{\phi_{j}: \alpha\left(\phi_{j}\right)=i} \phi$
$\psi_{i}\left[C_{i}\right] \leftarrow \prod_{\phi_{j}: \alpha\left(\phi_{j}\right)=i} \phi$
Procedure SP Message (
$\beta_{i}\left(C_{i}\right)=\phi_{i}\left(C_{i}\right) \prod_{k \in n_{i}, k \neq j} \delta_{k \rightarrow i}\left(S_{k, i}\right)$
i. //sending clique
j //receiving clique
)

$$
\delta_{i \rightarrow j}\left(S_{i j}\right)=\sum_{C_{i} \backslash S_{i j}} \beta_{i}\left(C_{i}\right)
$$

 \(\psi\left(C_{i}\right) \leftarrow \psi_{z} \cdot \prod_{k \in\left(\mathrm{Nb}_{i}-\{y\}\right)} \delta_{k \rightarrow t}\)
 \(\tau\left(\boldsymbol{S}_{i, j}\right) \leftarrow \sum_{\boldsymbol{C}_{i}-\boldsymbol{S}_{i, j}} \psi\left(\boldsymbol{C}_{i}\right)\)
 return \(\tau\left(S_{i, j}\right)\)
    ```

\section*{Message passing to a different root}
- If we send messages to a different root, many of them will be the same
- Hence if we send messages to all the cliques, we can reuse the messages- dynamic programming!


\section*{Downwards pass (distribute from root)}
- At the end of the upwards pass, the root has seen all the evidence.
- We send back down from root to leaves.


\section*{Beliefs}
- Thm 10.2.7. After collect/distribute, each clique potential represents a marginal probability (conditioned on the evidence)
\[
\beta_{i}\left(C_{i}\right)=\sum_{\mathbf{x} C_{i}} \tilde{P}(\mathbf{x})
\]
- If we get new evidence on \(X_{i}\), we can multiply it in to any clique containing i , and then distribute messages outwards from that clique to restore consistency.

\section*{MAP configuration}
- We can generalize the Viterbi algorithm to find a MAP configuration as follows.
- On the upwards pass, replace sum with max.
- At the root, find the most probable joint setting and send this as evidence to the root's children.
- Each child finds its most probable setting and sends this to its children.
- The jtree property ensures that when the state of a variable is fixed in one clique, that variable assumes the same state in all other cliques.

\section*{Samples}
- We can generalize forwards-filtering backwardssampling to draw exact samples from the joint as follows.
- Do a collect pass to the root as usual.
- Sample xR from the root marginal, and then enter it as evidence in all the children.
- Each child then samples itself from its updated local distribution and sends this to its children.

\section*{Calibrated clique tree}
- Def 102.8. A clique tree is calibrated if, for all pairs of neighboring cliques, we have
\[
\sum_{C_{i} \backslash S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j} \backslash S_{i, j}} \beta_{j}\left(C_{j}\right)=\mu_{i, j}\left(S_{i, j}\right)
\]
- Eg. A-B-C clq tree \(A B-[B]-B C\). We require
\[
\sum_{a} \beta_{a b}(a, b)=\sum_{c} \beta_{b c}(b, c)
\]
- Thm. After collect/distribute, all cliques are calibrated.
- Thm 10.2.12. A calibrated tree defines a joint distribution as follows \(\quad p(x)=\frac{\prod_{i} \beta_{i}\left(C_{i}\right)}{\left.\prod_{i i j} \mu_{i, j} S_{i j}\right)}\)
eg \(\quad p(A, B, C)=\frac{p(A, B) p(B, C)}{p(C)}=p(A, B) p(C \mid B)=p(A \mid B) p(B, C)\)

\section*{Clique tree invariant}
- Suppose at every step, clique i sends a msg to clique j , and stores it in \(\mu_{\mathrm{i}, \mathrm{i}}\) :
```

Procedure Send-BU-Msg
i, /// sending clique
j // receiving clique
\sigmai->j}\leftarrow\mp@subsup{\sum}{\mp@subsup{\boldsymbol{C}}{i}{}-\mp@subsup{\boldsymbol{S}}{i,j}{}}{}\mp@subsup{\beta}{i}{
/marginalize the clique over the sepset
\beta}\mp@code{~}\leftarrow\mp@subsup{\beta}{j}{}\cdot\frac{\mp@subsup{\sigma}{i-j}{*}}{\mp@subsup{\mu}{i,j}{\prime}
\mui,j}\leftarrow\mp@subsup{\sigma}{i->j}{

```
- Initially \(\mu_{\mathrm{i}, \mathrm{j}}=1\) and \(\beta_{\mathrm{i}}=\prod_{\mathrm{f}: \mathrm{fass} \text { to } i} \phi_{\mathrm{f}}\). Hence the following holds.
\[
p(x)=\frac{\prod_{i} \beta_{i}\left(C_{i}\right)}{\prod_{<i j>} \mu_{i, j}\left(S_{i j}\right)}
\]
- Thm 10.3.4. This property holds after every belief updating operation.

\section*{Out of clique queries}
- We can compute the distribution on any set of variables inside a clique. But suppose we want the joint on variables in different cliques. We can run VE on the calibrated subtree
- eg \(\quad A-B-C-D \quad A B-B C-C D\)
\[
\begin{aligned}
P(B, D) & =\sum_{c} p(B C D) \\
& =\sum_{c} \frac{\beta_{2}(D C) \beta_{3} \notin(D)}{\mu_{23}(c)} \\
& =\sum_{c} p(B \mid C)_{2}(C, D)
\end{aligned}
\]

\section*{Out of clique inference}
```

Procedure CTree-Query (
$\mathcal{T} . \quad$ Clique tree over Φ
$\left\{\beta_{i}\right\},\left\{\mu_{i, j}\right\}$, $/ /$ Calibrated clique and sepset beliefs for T
$\boldsymbol{Y} / /$ A query
Let T^{\prime} be a subtree of \mathcal{T} such that $Y \subseteq S$ cope $\left[T^{\prime}\right]$
Select a clique $r \in \mathcal{V}_{T}$, to be the root
$\Phi \leftarrow \beta_{r}$
for each $i \in \mathcal{V}_{T}^{\prime}$
$\phi \leftarrow \frac{\beta_{s}}{\mu_{i, p_{r}(\theta)}}$
$\Phi \leftarrow \Phi \cup\{\phi\}$
$Z \leftarrow \operatorname{Scope}\left[T^{\prime}\right]-Y$
Let \prec be some ordering over Z
return Sum-Product-Variable-Elimination(Φ, Z, \prec)

```

\section*{Creating a Jtree}


Murphy PhD thesis (2002) p140

\section*{Max cliques from a chordal graph}
- Triangulate the graph according to some ordering.
- Start with all vertices unnumbered, set counter \(i:=N\).
- While there are still some unnumbered vertices:
- Let \(v_{i}=\pi(i)\).
- Form the set \(C_{i}\) consisting of \(v_{i}\) and its (unnumbered/ uneliminated) neighbors.
- Fill in edges between all pairs of vertices in \(C_{i}\).
- Eliminate \(v_{i}\) and decrement \(i\) by 1.
- At each step, keep track of the clique that is created; if it is a subset of any previously created clique, discard it (since non maximal).

\section*{Cliques to Jtree}
- Build a weighted graph where \(\mathrm{W}_{\mathrm{ij}}=\mid \mathrm{C}_{\mathrm{i}}\) intersect \(\mathrm{C}_{\mathrm{j}} \mid\)
- Find max weight spanning tree. This is a jtree.```

