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Outline

• Exponential family: what?(8.2)
• Why? (Extra)

• Connection with GMs (8.3)
• Entropy  (8.4)

• Projections (8.5)
• Querying a distribution (“inference”) – 2.1.5

• Worst case complexity of exact inference (9.1)
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Exponential family

• Def 8.2.2. The exponential family is a set of 
distributions of the form

Where x ∈ X are the variables, h(x) defines the 
support (must not depend on θ), T(x) ∈ RK are the 
sufficient statistics, θ ∈ Θ ⊆ RM are the parameters, 
t(θ) in RK are the natural parameters, and Z(θ) ∈ R+

is the partition function.
We would like Θ to be a convex open subset of RM, 

and to be non-redundant (iff t(θ) is invertible).

p(x|θ) =
1

Z(θ)
h(x) exp

(
t(θ)TT(x)

)

Z(θ) =
∑

x∈S

h(x) exp
(
t(θ)TT(x)

)
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Examples

• X ~ Ber(θ). 

• X ~ N(µ,σ2).

T(x) = [I(x = 0), I(x = 1)]

t(θ) = [log θ, log(1− θ)]

Z(θ) = 1

p(x) = exp
(
T(x)T t(θ)

)

Θ = [0, 1],X = {0, 1}

Θ = R× R+,X = R

p(x) =
1√
2πσ

exp(− 1

2σ2
x2 +

µ

σ2
x− 1

2σ2
µ2)

T(x) = [x, x2]

t(µ, σ2) = [
µ

σ2
,− 1

2σ2
]

Z(µ, σ2) =
√
2πσ exp(

µ2

2σ2
)
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Non-examples

• Let X ~ Unif(a,b). Then

• Support depends on \theta.

• Let X ~ ∑k πk f(x,φk) – mixture model. Cannot be 
written in required form.

p(x|θ) =
1

b− a
I(a ≤ x ≤ b) = exp(log

1

b− a
))I(a ≤ x ≤ b)
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Linear exponential family

• Consider the set

• If Θ is open and convex, and t(θ)=θ, we say it is a 
linear exponential family.

• We write

• Or

Θ = {θ ∈ RK :
∫
exp(θTT(x))dx <∞}

p(x|η) =
1

Z(η)
h(x) exp[ηTT(x)]

Z(η) =

∫
h(x) exp[ηTT(x)]dx

p(x|η) = h(x) exp[ηTT(x)− A(η)]

A(η) = logZ(η)
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Bernoulli try 1

• .

• However, (log \theta, log (1-\theta)) is a curve, not a 
convex subset. Also, it is redundant. 

T(x) = [I(x = 0), I(x = 1)]

η = [log θ, log(1− θ)]

p(x) = exp
(
ηTT(x)

)
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Bernoulli try 2

• Define
T (x) = [I(x = 1)]

η = log
θ

1− θ

Z(η) = 1 +
θ

1− θ
=

1

1− θ

p(x) =
1

Z(η)
exp(ηT (x)) = (1− θ) exp(x log

θ

1− θ
)

p(x = 0) = (1− θ)

p(x = 1) = (1− θ)
θ

1− θ
= θ

Θ = R
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Gaussian – natural params

η = [
µ

σ2
,− 1

2σ2
]

T(x) = [x, x2]

The natural parameter space is R× R−
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Finite sufficient statistics

• Defn. A statistic is a function of the data, T(D), 
where D=(x1,…,xn). A sufficient statistic is one that 
contains all the information in the data. More 
formally, T is sufficient for θ if θ -> T(D) -> D. 

• Let Xi ~ ExpFam. The likelihood is given by

• Hence the distribution has sufficient statistics of 
size K, independent of n

• Thm (Pitman-Koopman-Darmois). The expfam is 
the only family (amongst those where support is 
indep of theta) with fixed sized suff stat.

p(D|θ) =

n∏

i=1

p(xi|θ) =
1

Z(θ)n
[
∏

i

h(xi)] exp(t(θ)
T

n∑

i=1

T(xi))

T(D) =

n∑

i=1

T(xi))
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Non-parametric models

• Parametric = fixed sized theta

• Exp fam = fixed size suff stat
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LogZ is MGF

• Consider a linear expfam

• Define

• Then

p(x|η) =
1

Z(η)
h(x) exp[ηTT(x)]

1

g(η)

def
= Z(η) =

∫
h(x) exp[ηTT(x)]dx

1 = g(η)

∫
h(x) exp[ηTT(x)]dx

0 = ∇g(η)
∫

h(x) exp[ηTT(x)]dx

+g(η)

∫
h(x) exp[ηTT(x)]T(x)dx

∫
p(x|η)T(x)dx = −∇g(η)

∫
h(x) exp[ηTT(x)]dx
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LogZ is MGF

∫
p(x|η)T(x)dx = −∇g(η)

∫
h(x) exp[ηTT(x)]dx

−∇ log g(η) = −∇g(η)
g(η)

= −(∇g(η))(
∫

h(x) exp[ηTT(x)]dx)

E[T(X)] = −∇ log g(η) = ∇ logZ(η)
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MLE is moment matching

• Proof

• Example. Gaussian, T(X) = (X, X^2).

log p(D|θ) = −n logZ(θ) + θTT(D)
∇θℓ(θ) = −n∇θ logZ(θ) +T(D) = 0

ET(X) =
1

n
T(D)

E[X ] = µ =
1

n

∑

i

xi

Var [X] = (EX2)− (EX)2

E[X2] = σ2 + µ2 =
1

n

∑

i

x2i

σ2 =
1

n

∑

i

x2i − µ2
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Conjugate priors 

• Defn. A prior p(θ) ∈ F is conjugate to a likelihood 
p(D|θ) if the posterior satistifes p(θ|D) ∈ F, i.e., has 

the same functional form as the prior.
• Thm. All dist in expfam have conj prior.

• Most distrib with conj prior are in exp fam.
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Maximum entropy principle

• Defn. The entropy of a pmf is

• The differential entropy of a pdf can be –ve

• The relative entropy, or KL divergence, from p to q 
is given by

• KL is always >= 0, even for pdf’s. 

H(p)
def
= −

∑

x

p(x) log p(x), H(p) ≥ 0

h(p)
def
= −

∫

S

p(x) log p(x)dx

KL(p, q)
def
=

∑

x

p(x) log
p(x)

q(x)
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Maxent principle

• Suppose we want to pick the most uncertain 
distribution (principle of least commitment) subject 
to the constraints that

• Optimize the Lagrangian
J(p) = −

∑

x

p(x) log p(x) + λ0(1−
∑

x

p(x)) +
∑

k

λk(Fk −
∑

x

p(x)fk(x))

∂J

∂p(x)
= −1− log p(x)− λ0 −

∑

k

λkfk(x) = 0

p(x) =
1

Z
exp(−

∑

k

λkfk(x))

Z = e1+λ0

1 =
∑

x

p(x) =
1

Z

∑

x

exp(−
∑

k

λkfk(x))

Z = Z(λ) =
∑

x

exp(−
∑

k

λkfk(x))

∑

x

fk(x)p(x) = Fk
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Gaussian maximizes entropy

• MVN is in expfam. p(x) =
1

Z
exp(− 1

2
xTKx) =

1

Z
exp(

∑

k

λkfk(x))

fij(x) = xixj , λij =
1

2
Kij

Theorem0.1. Let g(x) beanydensitysatisfying
∫
g(x)xixj = Σij . Let φ = N (0,Σ).

Then h(g) ≤ h(φ).

Proof. (From (?, p234).) Wehave

0 ≤ KL(g||φ) (1)

=

∫
g(x) log

g(x)

φ(x)
dx (2)

= −h(g)−
∫

g(x) logφ(x)dx (3)

= −h(g)−
∫

φ(x) logφ(x)dx (** ) (4)

= −h(g) + h(φ) (5)

where the line marked (** ) follows since g and φ yield the same moments for the
quadratic form log φ(x).
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Some GMs are expfam models

• We showed earlier that many +ve UGM can be 
represented as an expfam

• Most CPDs can be represented as expfam
• Eg table p(X|U). T(X,U)=[I(X=x), I(U=u)],

t(\theta) = [\log p(x|u)].
• Eg lingauss.

• Product of expfam is expfam.

p(x) =
1

Z
exp(

∑

i

θTi fi(x))

p(x|u) =
1√
2πσ

exp

(
− 1

2σ2
(x− (w0 + w1u1 + · · ·+ wkuk))

2

)

T(x,u) = [1, x, u1, . . . , uk, xu1, . . . , xuk, u
2
1, u1u2, . . . , u

2
k]
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DGMs are curved expfam

• In general, the fact that CPDs sum to 1 locally 
means that they are not linear expfam

• See p248 of K&F 

• Geiger’01 shows that DGMs are curved expfam
models (curved means the params are not linearly 
indep, so \theta is smaller than t(\theta)).

• Geiger’01 also shows that GMs with hidden 
variables are stratified exponential families (SEFs) -
a finite union of CEFs of various dimensions 
satisfying some regularity conditions.

Stratified exponential families: Graphical models and model selection
Dan Geiger, David Heckerman, Henry King, and Christopher Meek
Source: Ann. Statist. Volume 29, Number 2 (2001), 505-529.
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Entropy of an expfam model

• Thm 8.4.1. If X ~ ExpFam(theta), then

• Ex 8.4.2. Gaussian.

H(Pθ(x)) = logZ(θ)− E[T(x)T t(θ)]

p(x) =
1√
2πσ

exp(− 1

2σ2
x2 +

µ

σ2
x− 1

2σ2
µ2)

T(x) = [x, x2]

t(µ, σ2) = [
µ

σ2
,− 1

2σ2
]

Z(µ, σ2) =
√
2πσ exp(

µ2

2σ2
)

H = 1

2
ln(2πσ2) +

µ2

2σ2
− µ

σ2
E[x] +

1

2σ2
E[x2]

= 1

2
ln(2πσ2) +

µ2

2σ2
− 2µ2

2σ2
+

1

2σ2
(µ2 + σ2)

= 1

2
ln(2πσ2) + 1

2
= 1

2
ln(2πσ2) + 1

2
ln e = 1

2
ln(2πσ2e)
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Entropy of a GM

• Thm 8.4.3. If P(X) = 1/Z ∏c φc(X) is a UGM, then

• Thm 8.4.5. If P(X) is a DGM, then

• Pf.  

• Thm 8.4.6. If P(X) is a DGM, then

H(Pθ(x)) = logZ(θ) +
∑

c

E[− lnφc(xc)]

H(P (X)) =
∑

i

H(P (Xi|Xπi))

H(P (X)) = E[− log p(X)] = E[−
∑

i

log p(Xi|Xπi)]

=
∑

i

E[− log p(Xi|Xπi)] =
∑

i

H(P (Xi|Xπi))

=
∑

i

∑

xπi

p(xπi)H(P (Xi|xπi))

∑

i

min
xπi

H(P (Xi|xπi)) ≤ H(P (X)) ≤
∑

i

max
xπi

H(P (Xi|xπi))
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Projections

• Def 8.5.1. Let P b a distribution and Q a convex set 
of distributions.

• The I-projection (information) is

• The M-projection (moment) is

QI = arg min
Q∈Q

D(Q||P )

QM = arg min
Q∈Q

D(P ||Q)

Zero forcing: P=0 => Q=0

Q=0 => P=0 High variance

Mode seeking
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M-projection is moment matching

• Thm 8.5.5. Let P be any distrib over X, and let Q be 
expfam. If there is a set of params θ st EQ(θ)[τ(X)] = 
EP[τ(X)], then the M-projection of P onto Q is Qθ.

• Ex. Let Q = fully factorized distribution. Then Q^M 
is given by product of marginals.

• Ex. Let P = mix Gaussians, Q = single Gaussian.

QM (x) = p(X1) . . . p(Xd)

p(x) =
∑

k

πkN (x|µk,Σk)

QM (x) = N (x|µQ,ΣQ)
µQ =

∑

k

πkµk

ΣQ =
∑

k

πk(Σk + (µk − µQ)(µk − µQ)T )
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I-projection

• I-projection requires computing expectations of 
log(P) – which often factorizes - wrt Q, and the 
entropy of Q.

• We can choose Q to be “simple”, so that it is easy 
to compute these expectations and entropy terms.

• This is the basis of variational inference.

• By contrast, M-projections require expectations wrt
P. Usually this can only be done locally, as in 
expectation propagation.

QI = arg min
Q∈Q

D(Q||P ) = argmin
∑

x

Q(x) log
Q(x)

P (x)
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Querying a distribution (“inference”)

• Suppose we have a joint p(X1,…,Xd). Partition the 
variables into E (evidence), Q (query), and H 
(hidden/ nuisance). We might pose the following 
queries

• Conditional probability (posterior):

• MAP estimate (H=∅)  (posterior mode)

• Marginal MAP estimate (mode of marginal post):

p(XQ|xE) ∝
∑

xH

p(XQ,xE ,xH)

x∗Q = argmaxxQ
p(xQ|xE) = argmax

xQ

∑

xH

p(xQ,xE ,xH)

x∗Q = argmaxxQ
p(xQ|xE) = argmax

xQ
p(xQ,xE)
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MAP vs marginal MAP

• Max max ≠ max sum
• Ex 2.1.12. Joint is

• One can show that max sum is strictly 
computationally harder than sum, which is in turn 
harder than max

a∗ = argmax
a

∑

b

p(a, b) = 1

b∗ = argmax
b

∑

a

p(a, b) = 1

(a, b)∗ = argmax
a,b

p(a, b) = (0, 1)
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Speech recognition

• Eg speech recognition. Let Q=words, H = 
pronunciation (phonemes sequence), E = signal.

• We often make the following approximation, which 
lets us use the Viterbi algorithm

• Eg. Consider W1=“a back”, vs W2=“aback”. There 
might be 10 alternative state sequences for W1, 
each with prob 0.03, but just one sequence for W2, 
with prob 0.2. Viterbi would choose W2, but W1 is 
actually more likely. 

w∗ = argmax
w

∑

h

p(w,h|e) ≈ argmax
w

max
h

p(w,h|e)
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Bayesian statistics

• Bayesian statistics amounts to defining a single 
joint distribution for both “variables” – latent and 
observed - and “parameters” (often fixed in 
number), and then querying the parameters.

p(θ|X,Y) ∝ p(θ)
∏

i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi
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Probability of evidence

• To compute conditional queries, we need to 
evaluate p(xE)

• This may be a high dimensional integral

• p(xE) can be used to decide how likely xE is to have 
come from this model (classification and model 
selection)

p(XQ|xE) =

∑
xH p(XQ,xE ,xH)

p(xE)

p(xE) =
∑

xQ

∑

xH

p(xQ,xE ,xH)

p(θ|X,Y) =
p(θ)

∏
i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi

p(X,Y)

p(X,Y) =

∫
p(θ)

[
∏

i

∫
p(zi|θ)p(yi|xi, zi, θ)dzi

]

dθ
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Sampling

• Often the posterior is too big to even store explicitly.
• Marginals and MAP estimates are one summary, but may 

be unrepresentative.
• Samples may provide a better summary.
• eg Attractive Ising model has 2 modes, all 0 and all 1. The 

marginals are [0.5, 0.5].
• We want to be able to sample from p(xQ|xE)
• Sometimes we can do this even if we cannot evaluate p(xE) 

– this is the key idea behind MCMC
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Monte Carlo integration

• Sometimes we want to E[f(xQ)|xE], where f() 
depends on global properties of Q, so we cannot 
use marginal distributions.

• However, if we sample from p(XQ|xE), we can use

E[f(XQ)|xE ] =
∫

f(xQ)p(xQ|xE)dxQ ≈
1

N

n∑

i=1

f(xiQ)
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Inference in discrete state spaces

• We will mostly focus on the case where Q and H 
are discrete rv’s (E can be cts or discrete).

• Thus everything amounts to computing a large 
number of sums as quickly as possible.

• We will also consider the case where Q, H and E 
are all jointly Gaussian, where exact answers can 
also be obtained.

• For general distributions (eg for applications in 
Bayesian statistics), exact inference is usually not 
possible (except 1 layer of parameters with 
conjugate priors and no latent variables).
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Complexity of inference

• Consider computing p(X_Q), p(X_Q|x_E), or p(x_E) 
for a discrete state space.

• Later we will show that if P is representable by a 
GM, then we can compute these quantities 
efficiently, if the graph has special properties.

• However, in general, the problem is 
computationally expensive.
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Complexity of exact inference

• Thm 9.1.1. Given a DGM, deciding if p(X=x)>0 is 
NP-complete.

• Pf. Easy to see is in NP (linear time to check if 
p(x)>0.) Can show is NP-hard by showing how to 
reduce 3-SAT to  a poly-sized DGM.

X = (Q1 ∨ ¬Q2 ∨Q3) ∧ (Q2 ∨Q5 ∨Q3) · · ·

P(X=1) = #satisfying assignments/ 2^n 
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Complexity of exact inference

• Defn. NP is the class of problems of the form “are 
there any solutions x such that f(x) is true”. #P is 
the class of problems “Count the number of 
solutions x st f(x) is true”.

• Thm 9.1.2. Given a DGM, computing p(X=x) is #P-
complete.
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Complexity of approximate inference

• Def 9.1.3. A estimate ρ has absolute error ε if

• Def 9.1.4. An estimate ρ has relative error ε if

• Thm 9.1.5. Given a DGM, finding a number ρ which as 
relative error ε for p(X=x) is NP-hard. 

• Thm 9.1.6. Given a DGM, finding a number ρ that has 
absolute error ε for p(X|e) is NP-hard for any 0 ≤ ε ≤ 0.5.

|p(xQ|xe)− ρ| ≤ ǫ

ρ

1 + ǫ
≤ p(xQ|xe) ≤ ρ(1 + ǫ)


