Stat 521A Lecture 5

1

Outline

- Template models (6.3-6.5)
- Structural uncertainty (6.6)
- Multivariate Gaussians (7.1)
- Gaussian DAGs (7.2)
- Gaussian MRFs (7.3)

Parameter tying

- A DBN defines a distribution over an unboundedly large number of variables by assuming that they all share the same CPDs.
- This is called parameter tying (weight sharing).
- It is useful even for fixed sized models in order to help learning (pool the sufficient statistics).
- We now discuss notational conventions ("syntactic sugar") for representing large "unrolled" networks with shared parameters.

Plates

 Plates are useful for specifying simple repetitive patterns, as frequently arise in hierarchical Bayesian models

Plates

Unrolled network

Limitations of plates

- There are various structures that plates cannot represent
- Eg DBNs
- Eg genotype(x1) depends on genotype(x2), where x2=parent(x1)
- We can write programs to generate graphs of specified structure, but we would like a declarative representation language for such repetitive patterns so that no new code has to be written

Beyond plates

- Probabilistic Relational Models (PRMs) encode large DAG models with tied CPDs
- Relational Markov Networks encode large MRFs with tied factors
- Markov Logic Networks are like RMNs, except the factors are represented in log-linear form, and the features are represented as logical expressions

Markov Logic Networks

Table I. Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sn() for Smokes(), and Ca() for Cancer().

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall \mathtt{x} \forall \mathtt{y} \forall \mathtt{z} \; \mathtt{Fr}(\mathtt{x}, \mathtt{y}) \land \mathtt{Fr}(\mathtt{y}, \mathtt{z}) \Rightarrow \mathtt{Fr}(\mathtt{x}, \mathtt{z})$	$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \neg \mathtt{Fr}(\mathtt{y},\mathtt{z}) \vee \mathtt{Fr}(\mathtt{x},\mathtt{z})$	0.7
Friendless people smoke.	$\forall x (\neg (\exists y Fr(x, y)) \Rightarrow Sm(x))$	$Fr(x, g(x)) \vee Sn(x)$	2.3
Smoking causes cancer.	$\forall x \operatorname{Sn}(x) \Rightarrow \operatorname{Ca}(x)$	$\neg Sm(x) \lor Ca(x)$	1.5
If two people are friends, either	$\forall x \forall y Fx(x,y) \Rightarrow (\Im m(x) \Leftrightarrow \Im n(y))$	$\neg Fr(x,y) \lor Sn(x) \lor \neg Sn(y),$	1.1
both smoke or neither does.		$\neg Fr(x,y) \vee \neg Sm(x) \vee Sm(y)$	1.1

Directed vs undirected models

- Undirected models are simpler: no need to worry about cycles, lots of freedom in defining factors
- However, in a UG, the probability of a node depends on the *size* of the graph and/or its connectivity, even if all the other nodes are hidden.
- This may not be desirable.

Structural uncertainty

- For a fixed domain, if we do not know the graph structure, we may estimate it using model selection.
- But for relational domains, the structure may change depending on the values of the nodes
- Eg. Genotype(x1) -> genotype(x2) is only active if parent(x1,x2)=true
- In addition, we may be uncertain about how many objects exist in the world
- Eg. In tracking, 3 blips on the radar is consistent with {0,1,..., infty} objects in the world!

Data association ambiguity

Citation matching

Are these the same article? Huge industry concerned with database merging

Elston R, Stewart A. A General Model for the Genetic Analysis of Pedigree Data. Hum. Hered. 1971;21:523-542.

Elston RC, Stewart J (1971): A general model for the analysis of pedigree data. Hum Hered 21523-542.

DAG model

 Assumes there is an unknown number of authors and papers, which generates the observed set of citation strings.

UG model

- No unknown objects. Just enforce that citations are the same.
- Need 3 way factor to encode transitivity of sameness relation: S(c1,c2), and S(c2,c3) => S(c1,c3)
- And if 2 docs are same, text should be similar: Factor(s(c1,c2), T(c1), T(c2))

MVN: 2 parameterizations

• Moment form

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \stackrel{\text{def}}{=} \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})]$$

• Information (canonical) form

$$\begin{split} \mathbf{\Lambda} &\stackrel{\text{def}}{=} & \mathbf{\Sigma}^{-1} & \text{precision (information) matrix} \\ \boldsymbol{\eta} &\stackrel{\text{def}}{=} & \mathbf{\Sigma}^{-1} \boldsymbol{\mu} \\ \mathcal{N}(\mathbf{x}|\boldsymbol{\eta}, \boldsymbol{\Lambda}) &= & \frac{|\mathbf{\Lambda}|^{1/2}}{(2\pi)^{d/2}} \exp[-\frac{1}{2}(\mathbf{x}^T \mathbf{\Lambda} \mathbf{x} + \boldsymbol{\eta}^T \mathbf{\Lambda}^{-1} \boldsymbol{\eta} - 2\mathbf{x}^T \boldsymbol{\eta})] \\ &= & \exp[c - \frac{1}{2}\mathbf{x}^T \mathbf{\Lambda} \mathbf{x} + \mathbf{x}^T \boldsymbol{\eta}] \end{split}$$

Moment and anonical form

- Canonical form is denoted $\mathbf{x} \sim \mathcal{N}_C(\mathbf{b}, \mathbf{Q}) \iff p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{b}^T \mathbf{x}\right)$
- Moment form

 $\mathcal{N}(\boldsymbol{\mu}, \mathbf{Q}^{-1}) = \mathcal{N}_C(\mathbf{Q}\boldsymbol{\mu}, \mathbf{Q})$

Independencies in MVN

- Thm 7.1.3. Let X ~ MVN. $X_i \perp X_j$ iff $\Sigma_{i,j}=0$
- Thm 7.1.4. let X ~ MVN with info matrix J. Then $J_{i,j}{=}0$ iff $X_i \perp X_j \mid X_{{}_{ij}}$
- Factorization thm.

 $\mathbf{x} \perp \mathbf{y} | \mathbf{z} \iff p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = f(\mathbf{x}, vz) g(\mathbf{y}, vz)$

Indep => uncorrelated

• Ex 7.2.1. For any p(X,Y), if $X \perp Y$ then Cov[X,Y]=0.

$$\begin{aligned} \mathsf{Cov}[x,y] &= \int \int p(x,y)(x-\overline{x})(y-\overline{y})dxdy \\ &= (\int p(x)(x-\overline{x})dx)(\int p(y)(y-\overline{y})dy) \\ &= (\overline{x}-\overline{x})(\overline{y}-\overline{y}) = 0 \end{aligned}$$

Uncorrelated & MVN => indep

- Ex 7.2.2. If p(X,Y) is Gaussian, and Cov[X,Y]=0, then X \perp Y.
- Pf. The bivariate Gaussian can be written as

$$p(x_{1}, x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left[-\frac{1}{2(1-\rho^{2})}\left(\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}}\right) - 2\rho\frac{(x_{1}-\mu_{1})}{\sigma_{1}}\frac{(x_{2}-\mu_{2})}{\sigma_{2}}\right)\right]$$

• If \rho=0, then

$$p(x_{1}, x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}}\exp\left[-\frac{1}{2}\left(\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}}\right)\right]$$

$$= f(x_{1})g(x_{2})$$

• Hence by factorization thm, x1 \perp x2.

Uncorrelated not imply independent

- Ex 7.2.3. Find an example where Cov[X,Y]=0 yet not X \perp Y.
- Let X ~ U(-1,1) and Y=X^2. Clearly Y is dependent on X yet one can show (exercise) that Cov(X,Y)=0.
- Let X ~ N(0,1) and Y= W X, p(W=-1)=p(W=1)=0.5.
 Clearly Y is dependent on X, yet one can show (exercise) that Y ~ N(0,1) and Cov[X,Y]=0.

Independencies in MVN

- Thm 7.1.3. Let X ~ MVN. X_i \perp X_j iff $\Sigma_{i,j}$ =0
- Pf. By ex 7.2.1, we have => direction.
- By ex 7.2.2, we have that <= direction.
- By ex 7.2.3, we have that X ~ MVN is necessary for <= direction to work.

Conditional Independencies in MVN

- Thm 7.1.4. let X ~ MVN with info matrix J. Then $J_{i,j}{=}0$ iff $X_i \perp X_j \mid X_{{-}ij}$
- Pf. Let mu=0.

$$p(x_{i}, x_{j}, \mathbf{x}_{-ij}) \propto \exp\left(-\frac{1}{2}\sum_{k,l} x_{k}Q_{kl}x_{l}\right)$$

$$\propto \exp\left(-\frac{1}{2}x_{i}x_{j}(Q_{ij} + Q_{ji}) - \frac{1}{2}\sum_{\{k,l\}\neq\{i,j\}} x_{k}Q_{kl}x_{l}\right)$$

The second term does not involve x_i x_j, and nor does the first iff Q_{ij}=0. Hence this factorizes into f(x_i,x_{-ij}) g(x_j,x_{-ij}) iff Q_{ij}=0. QED.

Structural zeros

. Zeros in the precision matrix correspond to missing edges in the UGM

$$\Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}, \quad \Lambda = \Sigma^{-1} = \begin{pmatrix} 0.3125 & -0.125 & 0 \\ -0.125 & 0.5833 & 0.3333 \\ 0 & 0.3333 & 0.3333 \end{pmatrix}$$
$$\chi - \chi - \chi - \chi \zeta$$

Marginals and conditionals

$$\begin{array}{c|c} & \mathsf{Marginal} \ p(\mathbf{x}_2) \\ \hline \mathsf{Moment} & \mathcal{N}(\mathbf{x}_2 | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ \mathsf{Info} & \mathcal{N}(\mathbf{x}_2 | \boldsymbol{\eta}_2 - \boldsymbol{\Lambda}_{21} \boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\eta}_1, \boldsymbol{\Lambda}_{22} - \boldsymbol{\Lambda}_{21} \boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12}) \end{array}$$

$$\begin{array}{c|c|c|c|c|c|c|c|c|} & \text{Conditional } p(\mathbf{x}_2 | \mathbf{x}_1) \\ \hline \text{Moment} & \mathcal{N}(\mathbf{x}_1 | \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}) \\ \hline \text{Info} & \mathcal{N}(\mathbf{x}_2 | \boldsymbol{\eta}_1 - \boldsymbol{\Lambda}_{12} \mathbf{x}_2, \boldsymbol{\Lambda}_{11}) \end{array}$$

Marginalization easy in moment form. Conditioning easy in canonical form.

Conditioning in canonical form

• Thm (Conditioning).

 $\mathbf{x} \sim \mathcal{N}_C(\mathbf{b}, \mathbf{Q}) \Rightarrow \qquad \mathbf{x}_A | \mathbf{x}_B \sim \mathcal{N}_C(\mathbf{b}_A - \mathbf{Q}_{AB} \mathbf{x}_B, \mathbf{Q}_{AA})$

- Thm (soft conditioning) . $\mathbf{x} \sim \mathcal{N}_C(\mathbf{b}, \mathbf{Q})$ and $\mathbf{y} | \mathbf{x} \sim \mathcal{N}(\mathbf{x}, \mathbf{P}^{-1})$ $\mathbf{x} | \mathbf{y} \sim \mathcal{N}_C(\mathbf{b} + \mathbf{P}\mathbf{y}, \mathbf{Q} + \mathbf{P})$ Precisions add
- We can accumulate evidence by addition of matrixvector products, and then compute posterior mean at end by solving Qb = mu.

Partial correlation coefficient

- Let X ~ Mvn with precision matrix $\Omega = \Sigma^{-1} = \begin{pmatrix} \omega_{11} & \dots & \omega_{1d} \\ \vdots & \ddots & \ddots \\ \omega_{d1} & \dots & \omega_{dd} \end{pmatrix}$
- The conditional distribution p(x1,x2|x3,...,xd) is bivariate Gaussian with covariance

$$\begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix}^{-1} = \frac{1}{\omega_{11}\omega_{22} - (\omega_{12})^2} \begin{pmatrix} \omega_{22} & -\omega_{12} \\ -\omega_{21} & \omega_{11} \end{pmatrix}$$

• The partial correlation coefficient is given by

$$\rho_{1,2|3,...,d} \stackrel{\text{def}}{=} \frac{Cov[X_1, X_2 | X_{3:d}]}{\sqrt{\mathsf{Var}\left[X_1 | X_{3:d}\right]} \mathsf{Var}\left[X_2 | X_{3:d}\right]}} = \frac{-\omega_{21}}{\sqrt{\omega_{11}\omega_{22}}}$$

Conditioning in moment form

• Thm (Rue&Held p26).

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{Q}^{-1}) \Rightarrow$$

$$\mathbf{x}_A | \mathbf{x}_B \sim \mathcal{N}(\boldsymbol{\mu}_{A|B}, \mathbf{Q}_{AA}^{-1})$$

$$\boldsymbol{\mu}_{A|B} = \boldsymbol{\mu}_A - \mathbf{Q}_{AA}^{-1} \mathbf{Q}_{AB}(\mathbf{x}_B - \boldsymbol{\mu}_B)$$

Thus to find the mean we need to solve the linear system

$$\mathbf{Q}_{AA}\boldsymbol{\mu}_{A|B} = \mathbf{Q}_{AA}\boldsymbol{\mu}_{A} - \mathbf{Q}_{AB}\mathbf{x}_{B} + \mathbf{Q}_{AB}\boldsymbol{\mu}_{B}$$

Eg if A={i} we have

$$E[x_i | \mathbf{x}_{-i}] = \mu_i - \frac{1}{Q_{ii}} \sum_{j:j \neq i} Q_{ij}(x_j - \mu_j)$$

prec $(x_i | \mathbf{x}_{-i}) = Q_{ii}$

Proof

• Assume \mu=0 for simplicity. Then

$$p(\mathbf{x}_{A}|\mathbf{x}_{B}) \propto \exp\left(-\frac{1}{2}\begin{pmatrix}\mathbf{x}_{A} & \mathbf{x}_{B}\end{pmatrix}\begin{pmatrix}\mathbf{Q}_{AA} & \mathbf{Q}_{AB}\\\mathbf{Q}_{BA} & \mathbf{Q}_{BB}\end{pmatrix}\begin{pmatrix}\mathbf{x}_{A}\\\mathbf{x}_{B}\end{pmatrix}\right)$$
$$\propto \exp\left(-\frac{1}{2}\mathbf{x}_{A}^{T}\mathbf{Q}_{AA}\mathbf{x}_{A} - (\mathbf{Q}_{AB}\mathbf{x}_{B})^{T}\mathbf{x}_{A}\right)$$

Compare this to a Gaussian with precision K and mean m

$$p(\mathbf{z}) \propto \exp\left(-\frac{1}{2}\mathbf{z}^T\mathbf{K}\mathbf{z} + (\mathbf{K}\mathbf{m})^T\mathbf{z}\right)$$

 We see that Q_{AA} is the conditional precision and the conditional mean is given by Q_{AA}μ_{A|B} = -Q_{AB}x_B

Soft conditioning in moment form

$$egin{array}{rcl} \mathbf{x}&\sim&\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})\ \mathbf{y}|\mathbf{x}&\sim&\mathcal{N}(\mathbf{x},\mathbf{S})\ \mathbf{x}|\mathbf{y}&\sim&\mathcal{N}(oldsymbol{\mu}_{x|y},oldsymbol{\Sigma}_{x|y})\ \mathbf{\Sigma}_{x|y}^{-1}&=&\mathbf{\Sigma}^{-1}+\mathbf{S}^{-1}\ \mathbf{\Sigma}_{x|y}^{-1}oldsymbol{\mu}_{x|y}&=&\mathbf{\Sigma}^{-1}oldsymbol{\mu}+\mathbf{S}^{-1}\mathbf{y} \end{array}$$

Bayes rule for linear Gaussian systems

Linear Gaussian DGMs

• A CPD is linear Gaussian if

$$p(x_i|x_{\pi_i}) = \mathcal{N}(x_i|\sum_{j\in\pi_i} w_{ij}x_j + b_i, v_i)$$

- A DGM is linear Gaussian if all CPDs are LG.
- Such networks define a joint Gaussian. Each node is given by

$$x_i = \sum_{j \in \pi_i} w_{ij} x_j + b_i + \sqrt{v_i} \epsilon_i$$

where $\varepsilon_i \sim N(0,1)$ and $E[\varepsilon_i \varepsilon_j] = I_{i,j}$.

W is lower triangular matrix: $w_{i,j} = weights$ into i from j.

LG DGM to MVN

• We can compute the global mean and covariance recursively, in topological order

$$\begin{aligned} x_i &= \sum_{j \in \pi_i} w_{ij} x_j + b_i + \sqrt{v_i} \epsilon_i \\ E[x_i] &= \sum_{j \in \pi_i} w_{ij} E[x_j] + b_i \\ \operatorname{Cov}[x_i, x_j] &= E[(x_i - E[x_i])(x_j - E[x_j])] \\ &= E\left[\left(x_i - E[x_i] \right) \left\{ \sum_{k \in \pi_j} w_{jk} (x_k - E[x_k]) + \sqrt{v_j} \epsilon_j \right\} \right] \\ &= \sum_{k \in \pi_j} w_{jk} \operatorname{Cov}[x_i, x_k] + I_{i,j} v_j \end{aligned}$$

Bishop p371

LG DGM to MVN

Consider a chain x1 -> x2 -> x3

$$\boldsymbol{\mu} = (b_1, b_2 + w_{21}b_1, b_3 + w_{32}b_2 + w_{32}w_{21}b_1)$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} v_1 & w_{21}v_1 & w_{32}w_{31}v_1 \\ w_{21}v_1 & v_2 + w_{21}^2v_1 & w_{32}(v_2 + w_{21}^2v_1) \\ w_{32}w_{21}v_1 & w_{32}(v_2 + w_{21}^2v_1) & v_3 + w_{32}^2(v_2 + w_{21}^wv_1) \end{pmatrix}$$

• In general, when adding node (k+1)

Alternative parameterization

• The results are much "prettier" if we write

$$X_j = \mu_j + \sum_{k \in \pi_j} w_{jk} (X_k - \mu_k) + \sqrt{v_j} Z_j$$

where the offset is given by $w_{j}^{(0)} = \mu_{j} - \sum w_{jk}\mu_{k}$ $k \in \pi_i$ • Then we have $(\mathbf{x} - \boldsymbol{\mu}) = \mathbf{W}(\mathbf{x} - \boldsymbol{\mu}) + \mathbf{S}^T \mathbf{z} = \mathbf{W}(\mathbf{x} - \boldsymbol{\mu}) + \mathbf{e}$ $\mathbf{e} = \mathbf{S}^T \mathbf{z} = (\mathbf{I} - \mathbf{W})(\mathbf{x} - \boldsymbol{\mu})$ $\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_d \end{pmatrix} = \begin{pmatrix} 1 & & & \\ -w_{21} & 1 & & \\ -w_{32} & -w_{31} & 1 & & \\ \vdots & & \ddots & \\ -w_{d1} & -w_{d2} & \dots & -w_{d,d-1} & 1 \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \\ \vdots \\ x_d - \mu_d \end{pmatrix}$

DAG weights = Cholesky Decomposition

$$\begin{split} \mathbf{x} - \boldsymbol{\mu} &= (\mathbf{I} - \mathbf{W})^{-1} \mathbf{e} \stackrel{\text{def}}{=} \mathbf{U} \mathbf{e} = \mathbf{U} \mathbf{S}^T \mathbf{z} \stackrel{\text{def}}{=} \mathbf{A}^T \mathbf{z} \\ \mathbf{\Sigma} &= \mathsf{Var} [\mathbf{x}] = \mathsf{Var} [\mathbf{x} - \boldsymbol{\mu}] \\ &= \mathsf{Var} [\mathbf{A}^T \mathbf{z}] = \mathbf{A}^T \mathsf{Var} [\mathbf{z}] \mathbf{A} = \mathbf{A}^T \mathbf{A} \\ &= \mathbf{U} \mathbf{S}^T \mathbf{S} \mathbf{U}^T = \mathbf{U} \mathbf{D} \mathbf{U}^T \\ \mathbf{\Sigma}^{-1} &= \mathbf{U}^{-T} \mathbf{D}^{-1} \mathbf{U}^{-1} = (\mathbf{I} - \mathbf{W})^T \mathbf{D}^{-1} (\mathbf{I} - \mathbf{W}) \stackrel{\text{def}}{=} \mathbf{T}^T \mathbf{D}^{-1} \mathbf{T} \end{split}$$

$$\mathbf{T} = \begin{pmatrix} 1 & & & \\ -w_{21} & 1 & & \\ -w_{32} & -w_{31} & 1 & \\ \vdots & & \ddots & \\ -w_{d1} & -w_{d2} & \dots & -w_{d,d-1} & 1 \end{pmatrix}$$

Chains

- Consider a chain X1 -> X2 -> ... -> X5
- The DAG and UG are both sparse (same CI)

```
n = 5;
w=randn(n,1);
W = spdiags([w zeros(n,1) zeros(n,1)], -1:1, n, n);
T = eye(n) - W;
D = diag(ones(n,1));
K = T' * D * T;
>> full(W)
ans =
         0
                    0
                               0
                                         0
                                                    0
    1.1909
                               0
                    0
                                         0
                                                    0
         0
              1.1892
                               0
                                         0
                                                    0
                    0
                        -0.0376
         0
                                         0
                                                    0
         0
                              0
                                    0.3273
                    0
                                                    0
>> K
K =
    2.4183
           -1.1909
                               0
                                         0
                                                    0
   -1.1909
            2.4141
                      -1.1892
                                         0
                                                    0
             -1.1892 1.0014 0.0376
         0
                                                    0
                         0.0376 1.1071
                                             -0.3273
                    0
         0
         0
                                   -0.3273
                                           1.0000
                    0
                              0
```

Diamond

• DAG is sparse, Sigma and SigmaInv are dense

= W			
0	0	0	0
0.5488	0	0	0
0.7152	0	0	0
0	0.6028	0.5449	0
>> K			
К =			
1.8127	-0.5488	-0.7152	0
-0.5488	1.3633	0.3284	-0.6028
-0.7152	0.3284	1.2969	-0.5449
0	-0.6028	-0.5449	1.0000
>> inv(K)			
ans =			
1.0000	0.5488	0.7152	0.7205
0.5488	1.3012	0.3925	0.9982
0.7152	0.3925	1.5115	1.0602
0.7205	0.9982	1.0602	2.1793

Gaussian MRFs

- Defn. A GMRF is a Gaussian of the form $N(\mu,Q^{-1})$ where $Q_{ij} \neq 0$ iff $G_{ij} \neq 0$ (Q=precision matrix)
- Thm. For a GMRF, the following properties are equivalent.
- Pairwise Markov: $x_i \perp x_j | \mathbf{x}_{-ij}$ if $G_{i,j} = 0$ and $i \neq j$
- Local Markov: $x_i \perp \mathbf{x}_{-i,ne(i)} | \mathbf{x}_{ne(i)} |$
 - Global Markov: $x_A \perp x_B | x_C$

Blacks indep given gray

Black indep of white given gray

Black indep striped given gray 42

Rue&Held p25

MVN to Gaussian UGM

 We can convert any MVN into a UGM with pairwise potentials which are quadratics

$$\begin{aligned}
\mathbf{J} &\stackrel{\text{def}}{=} & \mathbf{\Sigma}^{-1} \\
\mathbf{h} &\stackrel{\text{def}}{=} & \mathbf{J}\mu \\
\mathcal{N}(\mathbf{x}|\mathbf{h}, \mathbf{J}) &= & \exp[c - \frac{1}{2}\mathbf{x}^T \mathbf{J}\mathbf{x} + \mathbf{x}^T \mathbf{h}] \\
&\log p(\mathbf{x}) &= & c - \frac{1}{2} \sum_i [J_{i,i}x_i^2 + h_i x_i] - \frac{1}{2} \sum_i \sum_j J_{i,j} x_i x_j \\
&= & c + \sum_i \phi_i(x_i) + \sum_i \sum_{j>i} \phi_{i,j}(x_i, x_j) \\
\phi_i(x_i) &= & -\frac{1}{2} [J_{i,i}x_i^2 + h_i x_i] \\
\phi_{i,j}(x_i, x_j) &= & -J_{i,j} x_i x_j
\end{aligned}$$

Pairwise UGM to MVN

• Consider a UGM in which the node and edge potentials are quadratics

 $\epsilon_i(x_i) = d_0^i + d_1^i x_1 + d_2^i x_i^2$ $\epsilon_{ij}(x_i, x_j) = a_{00}^{i,j} + a_{01}^{i,j} x_i + a_{10}^{ij} x_j + a_{11}^{ij} x_i x_j + a_{02}^{ij} x_i^2 + a_{20}^{ij} x_j^2$

• We can always rewrite the corresponding unnormalized distribution as

 $p'(\mathbf{x}) = \exp[-\frac{1}{2}\mathbf{x}^T\mathbf{J}\mathbf{x} + \mathbf{x}^T\mathbf{h}]$

• But the normalization constant Z will only be finite if J is positive definite.

Sufficient conditions on info matrix

 Def 7.3.1. A matrix J is attractive if, for all i \neq j, we have that all partial correlations are non-neg

$$-\frac{J_{i,j}}{\sqrt{J_{i,i}J_{j,j}}} \ge 0$$

- Thm 7.3.2. If J is attractive, then p is a valid MVN.
- Def 7.3.1b. A matrix J is diagonally dominant if, for all rows i, $J_{ii} > \sum_{j \neq i} |J_{i,j}|$
- Thm 7.3.2b. If J is diagonally dominant, then p is a valid MVN.

Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

$$\epsilon_i(x_i) = d_0^i + d_1^i x_1 + d_2^i x_i^2$$

$$\epsilon_{ij}(x_i, x_j) = a_{00}^{i,j} + a_{01}^{i,j} x_i + a_{10}^{ij} x_j + a_{11}^{ij} x_i x_j + a_{02}^{ij} x_i^2 + a_{20}^{ij} x_j^2$$

is called pairwise normalizable if

$$d_2^i>0, orall i$$
 and $egin{pmatrix} a_{02}^{ij} & a_{11}^{ij}/2\ a_{11}^{ij}/2 & a_{20}^{ij} \end{pmatrix}$ is psd for all i,j

- Thm 7.3.4. If the MRF is pairwise normalizable, then it defines a valid Gaussian.
- Sufficient but not necessary eg.

$\left(1 \right)$	0.6	0.6
0.6	1	0.6
$\setminus 0.6$	0.6	1 /

May be able to reparameterize the node/ edge potentials to ensure pairwise normalized.

Conditional autoregressions (CAR)

• We can parameterize a GMRF in terms of its full conditionals

$$E[x_i|\mathbf{x}_{-i}] = \mu_i - \sum_{j:j\sim i} \beta_{ij}(x_j - \mu_j)$$

 $\operatorname{prec}[x_i|\mathbf{x}_{-i}] = \kappa_i > 0$

• From before, we have

$$E[x_i | \mathbf{x}_{-i}] = \mu_i - \frac{1}{Q_{ii}} \sum_{j: j \neq i} Q_{ij} (x_j - \mu_j)$$

prec $(x_i | \mathbf{x}_{-i}) = Q_{ii}$

• To be a valid MVN we must set

$$\kappa_{i} = Q_{ii}, \beta_{ij} = \frac{Q_{ij}}{\kappa_{i}}, \kappa_{i}\beta_{ij} = \kappa_{j}\beta_{ji}$$
$$\mathbf{Q} = \operatorname{diag}(\boldsymbol{\kappa})(\mathbf{I} + \boldsymbol{\beta})$$

Rue&Held p29