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Outline

• Template models (6.3-6.5)

• Structural uncertainty (6.6)
• Multivariate Gaussians (7.1)

• Gaussian DAGs (7.2)
• Gaussian MRFs (7.3)
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Parameter tying

• A DBN defines a distribution over an unboundedly 
large number of variables by assuming that they all 
share the same CPDs.

• This is called parameter tying (weight sharing).

• It is useful even for fixed sized models in order to 
help learning (pool the sufficient statistics).

• We now discuss notational conventions (“syntactic 
sugar”) for representing large “unrolled” networks 
with shared parameters.
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Plates

• Plates are useful for specifying simple repetitive 
patterns, as frequently arise in hierarchical 
Bayesian models
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Plates



6

Unrolled network

Grade(s,c) in {A,B,C} is encoded on edges.
Cf discrete probabilistic matrix factorization
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Limitations of plates

• There are various structures that plates cannot 
represent

• Eg DBNs

• Eg genotype(x1) depends on genotype(x2), where 
x2=parent(x1)

• We can write programs to generate graphs of 
specified structure, but we would like a declarative 
representation language for such repetitive patterns 
so that no new code has to be written
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Beyond plates

• Probabilistic Relational Models (PRMs) encode 
large DAG models with tied CPDs

• Relational Markov Networks encode large MRFs
with tied factors

• Markov Logic Networks are like RMNs, except the 
factors are represented in log-linear form, and the 
features are represented as logical expressions
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Markov Logic Networks
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Directed vs undirected models

• Undirected models are simpler: no need to worry 
about cycles, lots of freedom in defining factors

• However, in a UG, the probability of a node 
depends on the *size* of the graph and/or its 
connectivity, even if all the other nodes are hidden.

• This may not be desirable.
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Structural uncertainty

• For a fixed domain, if we do not know the graph 
structure, we may estimate it using model selection.

• But for relational domains, the structure may 
change depending on the values of the nodes

• Eg. Genotype(x1) -> genotype(x2) is only active if 
parent(x1,x2)=true

• In addition, we may be uncertain about how many 
objects exist in the world

• Eg. In tracking, 3 blips on the radar is consistent 
with {0,1,…, infty} objects in the world!
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Data association ambiguity
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Citation matching

Are these the same article?
Huge industry concerned with database merging
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DAG model

• Assumes there is an unknown number of authors 
and papers, which generates the observed set of 
citation strings.
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UG model

• No unknown objects. Just enforce that citations are 
the same.

• Need 3 way factor to encode transitivity of 
sameness relation: S(c1,c2), and S(c2,c3) => 
S(c1,c3)

• And if 2 docs are same, text should be similar: 
Factor(s(c1,c2), T(c1), T(c2))
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MVN: 2 parameterizations

• Moment form

• Information (canonical) form

N (x|µ,Σ) def= 1

(2π)d/2|Σ|1/2 exp[−
1
2 (x− µ)TΣ

−1(x− µ)]

Λ
def
= Σ−1

η
def
= Σ−1µ

N (x|η,Λ) =
|Λ|1/2
(2π)d/2

exp[− 1
2 (x

TΛx+ ηTΛ−1η − 2xTη)]

= exp[c− 1
2x

TΛx+ xTη]

precision (information) matrix
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Moment and anonical form

• Canonical form is denoted

• Moment form

x ∼ NC(b,Q) ⇐⇒ p(x) ∝ exp
(
− 1
2
xTQx+ bTx

)

N (µ,Q−1) = NC(Qµ,Q)
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Independencies in MVN

• Thm 7.1.3. Let X ~ MVN. Xi ⊥ Xj iff Σi,j=0

• Thm 7.1.4. let X ~ MVN with info matrix J. Then 
Ji,j=0 iff Xi ⊥ Xj | X-ij

• Factorization thm. 

x ⊥ y|z ⇐⇒ p(x,y, z) = f(x, vz)g(y, vz)
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Indep => uncorrelated

• Ex 7.2.1. For any p(X,Y), if X ⊥ Y then Cov[X,Y]=0.

Cov[x, y] =

∫ ∫
p(x, y)(x− x)(y − y)dxdy

= (

∫
p(x)(x− x)dx)(

∫
p(y)(y − y)dy)

= (x− x)(y − y) = 0
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Uncorrelated & MVN => indep

• Ex 7.2.2. If p(X,Y) is Gaussian, and Cov[X,Y]=0, 
then X ⊥ Y.

• Pf. The bivariate Gaussian can be written as

• If \rho=0, then 

• Hence by factorization thm, x1 \perp x2.

p(x1, x2) =
1

2πσ1σ2
√
1− ρ2

exp[− 1

2(1− ρ2)
(
(x1 − µ1)

2

σ21
+
(x2 − µ2)

2

σ22

−2ρ (x1 − µ1)

σ1

(x2 − µ2)

σ2
)]

p(x1, x2) =
1

2πσ1σ2
exp[−1

2
(
(x1 − µ1)

2

σ21
+
(x2 − µ2)

2

σ22
)]

= f(x1)g(x2)
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Uncorrelated not imply independent

• Ex 7.2.3. Find an example where Cov[X,Y]=0 yet 
not X ⊥ Y.

• Let X ~ U(-1,1) and Y=X^2. Clearly Y is dependent 
on X yet one can show (exercise) that Cov(X,Y)=0.

• Let X ~ N(0,1) and Y= W X, p(W=-1)=p(W=1)=0.5. 
Clearly Y is dependent on X, yet one can show 
(exercise) that Y ~ N(0,1) and Cov[X,Y]=0.
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Independencies in MVN

• Thm 7.1.3. Let X ~ MVN. Xi ⊥ Xj iff Σi,j=0

• Pf. By ex 7.2.1, we have => direction.
• By ex 7.2.2, we have that <= direction.

• By ex 7.2.3, we have that X ~ MVN is necessary for 
<= direction to work. 
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Conditional Independencies in MVN

• Thm 7.1.4. let X ~ MVN with info matrix J. Then 
Ji,j=0 iff Xi ⊥ Xj | X-ij

• Pf. Let mu=0.

• The second term does not involve xi xj, and nor 
does the first iff Qij=0. Hence this factorizes into 
f(xi,x-ij) g(xj,x-ij) iff Qij=0. QED.

p(xi, xj ,x−ij) ∝ exp(− 1
2

∑

k,l

xkQklxl)

∝ exp



− 1
2xixj(Qij +Qji)− 1

2

∑

{k,l}�={i,j}

xkQklxl







26

Structural zeros

. 

Σ =




4 2 −2
2 5 −5
−2 −5 8



 , Λ = Σ−1 =




0.3125 −0.125 0
−0.125 0.5833 0.3333
0 0.3333 0.3333





Zeros in the precision matrix correspond to missing edges in the UGM
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Marginals and conditionals

Marginal p(x2)
Moment N (x2|µ2,Σ2)
Info N (x2|η2 −Λ21Λ−111 η1,Λ22 −Λ21Λ−111 Λ12)

Conditional p(x2|x1)
Moment N (x1|µ1 +Σ12Σ−122 (x2 − µ2),Σ11 −Σ12Σ−122 Σ21)
Info N (x2|η1 −Λ12x2,Λ11)

Marginalization easy in moment form.
Conditioning easy in canonical form.
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Conditioning in canonical form

• Thm (Conditioning).                              

• Thm (soft conditioning) . 

• We can accumulate evidence by addition of matrix-
vector products,  and then compute posterior mean 
at end by solving Qb = mu.                                            

x ∼ NC(b,Q) y|x ∼ N (x,P−1)

x|y ∼ NC(b+Py,Q+P)
Precisions add

x ∼ NC(b,Q)⇒ xA|xB ∼ NC(bA −QABxB,QAA)

and
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Partial correlation coefficient

• Let X ~ Mvn with precision matrix

• The conditional distribution p(x1,x2|x3,…,xd) is 
bivariate Gaussian with covariance

• The partial correlation coefficient is given by

Ω = Σ−1 =






ω11 . . . ω1d
...

. . .
.. .

ωd1 . . . ωdd






(
ω11 ω12
ω21 ω22

)−1
=

1

ω11ω22 − (ω12)2
(
ω22 −ω12
−ω21 ω11

)

ρ1,2|3,...,d
def
=

Cov[X1, X2|X3:d]√
Var [X1|X3:d]Var [X2|X3:d]

=
−ω21√
ω11ω22
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Conditioning in moment form

• Thm (Rue&Held p26). 

• Thus to find the mean we need to solve the linear 
system

• Eg if A={i} we have

QAAµA|B = QAAµA −QABxB +QABµB

x ∼ N (µ,Q−1)⇒
xA|xB ∼ N (µA|B ,Q−1

AA)

µA|B = µA −Q−1
AAQAB(xB − µB)

E[xi|x−i] = µi −
1

Qii

∑

j:j �=i

Qij(xj − µj)

prec(xi|x−i) = Qii
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Proof

• Assume \mu=0 for simplicity. Then

• Compare this to a Gaussian with precision K and 
mean m

• We see that Q_{AA} is the conditional precision and 
the conditional mean is given by

p(xA|xB) ∝ exp

(
− 1
2

(
xA xB

)(QAA QAB

QBA QBB

)(
xA
xB

))

∝ exp
(
− 1
2x

T
AQAAxA − (QABxB)

TxA
)

p(z) ∝ exp
(
− 1
2
zTKz+ (Km)T z

)

QAAµA|B = −QABxB

QED
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Soft conditioning in moment form

x ∼ N (µ,Σ)
y|x ∼ N (x,S)
x|y ∼ N (µx|y ,Σx|y)
Σ−1x|y = Σ−1 + S−1

Σ−1x|yµx|y = Σ−1µ+ S−1y

Bayes rule for linear Gaussian systems
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Linear Gaussian DGMs

• A CPD is linear Gaussian if

• A DGM is linear Gaussian if all CPDs are LG.
• Such networks define a joint Gaussian. Each node 

is given by

where εi ~ N(0,1) and E[εi εj] = Ii,j.
• W is lower triangular matrix: w_{i,j} = weights into i from j.

p(xi|xπi) = N (xi|
∑

j∈πi

wijxj + bi, vi)

xi =
∑

j∈πi

wijxj + bi +
√
viǫi



35

LG DGM to MVN

• We can compute the global mean and covariance 
recursively, in topological order

xi =
∑

j∈πi

wijxj + bi +
√
viǫi

E[xi] =
∑

j∈πi

wijE[xj ] + bi

Cov[xi, xj ] = E[(xi − E[xi])(xj − E[xj ])]

= E



(xi − E[xi])






∑

k∈πj

wjk(xk − E[xk]) +
√
vjǫj










=
∑

k∈πj

wjkCov[xi, xk] + Ii,jvj

Bishop p371
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LG DGM to MVN

• Consider a chain x1 -> x2 -> x3

• In general, when adding node (k+1)

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)

Σ =




v1 w21v1 w32w31v1

w21v1 v2 + w221v1 w32(v2 + w221v1)
w32w21v1 w32(v2 + w221v1) v3 + w232(v2 + ww21v1)





K&F Thm 7.2.2
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Alternative parameterization

• The results are much “prettier” if we write

where the offset is given by

• Then we have

Xj = µj +
∑

k∈πj

wjk(Xk − µk) +
√
vjZj

w
(0)
j = µj −

∑

k∈πj

wjkµk

(x− µ) = W(x− µ) + ST z =W(x− µ) + e
e = ST z = (I−W)(x− µ)






e1
e2
...
ed






=






1
−w21 1
−w32 −w31 1

...
. . .

−wd1 −wd2 . . . −wd,d−1 1











x1 − µ1
x2 − µ2

...
xd − µd





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DAG weights = Cholesky Decomposition

T =






1
−w21 1
−w32 −w31 1

...
. . .

−wd1 −wd2 . . . −wd,d−1 1






x− µ = (I−W)−1e
def
= Ue = UST z

def
= AT z

Σ = Var [x] = Var [x− µ]
= Var [AT z] = ATVar [z]A = ATA

= USTSUT = UDUT

Σ−1 = U−TD−1U−1 = (I−W)TD−1(I−W)
def
= TTD−1T
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Chains

• Consider a chain X1 -> X2 -> … -> X5

• The DAG and UG are both sparse (same CI)
n = 5;
w=randn(n,1);
W = spdiags([w zeros(n,1) zeros(n,1)], -1:1, n, n) ;
T = eye(n)-W;
D = diag(ones(n,1));
K = T' * D* T;

>> full(W)
ans =

0 0 0 0 0
1.1909 0 0 0 0

0 1.1892 0 0 0
0 0 -0.0376 0 0
0 0 0 0.3273 0

>> K
K =

2.4183 -1.1909 0 0 0
-1.1909 2.4141 -1.1892 0 0

0 -1.1892 1.0014 0.0376 0
0 0 0.0376 1.1071 -0.3273
0 0 0 - 0. 3273 1. 0000
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Diamond

• DAG is sparse, Sigma and SigmaInv are dense 

W =
0 0 0 0

0.5488 0 0 0
0.7152 0 0 0

0 0.6028 0.5449 0
>> K
K =

1.8127 -0.5488 -0.7152 0
-0.5488 1.3633 0.3284 -0.602 8
-0.7152 0.3284 1.2969 -0.544 9

0 -0.6028 -0.5449 1.000 0
>> inv(K)
ans =

1.0000 0.5488 0.7152 0.720 5
0.5488 1.3012 0.3925 0.998 2
0.7152 0.3925 1.5115 1.060 2
0. 7205 0. 9982 1. 0602 2. 1793



41



42

Gaussian MRFs

• Defn. A GMRF is a Gaussian of the form N(µ,Q-1) 
where Qij ≠ 0 iff Gij ≠ 0 (Q=precision matrix)

• Thm. For a GMRF, the following properties are 
equivalent.

• Pairwise Markov:
• Local Markov:

• Global Markov:

xi ⊥ xj |x−ij if Gi,j = 0 and i 
= j

xi ⊥ x−i,ne(i)|xne(i)
xA ⊥ xB |xC

Blacks indep given gray Black indep of white given gray Black indep
striped given gray

Rue&Held p25
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MVN to Gaussian UGM

• We can convert any MVN into a UGM with pairwise
potentials which are quadratics

J
def
= Σ−1

h
def
= Jµ

N (x|h,J) = exp[c− 1
2x

TJx+ xTh]

log p(x) = c− 1
2

∑

i

[Ji,ix
2
i + hixi]− 1

2

∑

i

∑

j

Ji,jxixj

= c+
∑

i

φi(xi) +
∑

i

∑

j>i

φi,j(xi, xj)

φi(xi) = − 1
2 [Ji,ix

2
i + hixi]

φi,j(xi, xj) = −Ji,jxixj
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Pairwise UGM to MVN

• Consider a UGM in which the node and edge 
potentials are quadratics

• We can always rewrite the corresponding 
unnormalized distribution as

• But the normalization constant Z will only be finite if 
J is positive definite.

ǫi(xi) = di0 + di1x1 + di2x
2
i

ǫij(xi, xj) = ai,j00 + ai,j01xi + aij10xj + aij11xixj + aij02x
2
i + aij20x

2
j

p′(x) = exp[− 1
2
xTJx+ xTh]



45

Sufficient conditions on info matrix

• Def 7.3.1. A matrix J is attractive if, for all i \neq j, 
we have that all partial correlations are non-neg

• Thm 7.3.2. If J is attractive, then p is a valid MVN.
• Def 7.3.1b. A matrix J is diagonally dominant if, for 

all rows i,

• Thm 7.3.2b. If J is diagonally dominant, then p is a 
valid MVN.

− Ji,j√
Ji,iJj,j

≥ 0

Jii >
∑

j �=i

|Ji,j |
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Pairwise normalizable

• Def 7.3.3. A pairwise MRF with energies of the form

is called pairwise normalizable if

• Thm 7.3.4. If the MRF is pairwise normalizable, 
then it defines a valid Gaussian.

• Sufficient but not necessary eg.

ǫi(xi) = di0 + di1x1 + di2x
2
i

ǫij(xi, xj) = ai,j00 + ai,j01xi + aij10xj + aij11xixj + aij02x
2
i + aij20x

2
j

di2 > 0,∀i
(

aij02 aij11/2

aij11/2 aij20

)
and is psd for all i,j




1 0.6 0.6
0.6 1 0.6
0.6 0.6 1




May be able to reparameterize the node/
edge potentials to ensure pairwise normalized.
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Conditional autoregressions (CAR)

• We can parameterize a GMRF in terms of its full 
conditionals

• From before, we have

• To be a valid MVN we must set

E[xi|x−i] = µi −
∑

j:j∼i

βij(xj − µj)

prec[xi|x−i] = κi > 0

E[xi|x−i] = µi −
1

Qii

∑

j:j �=i

Qij(xj − µj)

prec(xi|x−i) = Qii

κi = Qii, βij =
Qij
κi

, κiβij = κjβji

Q = diag(κ)(I+ β)

Rue&Held p29


