Stat 521A
 Lecture 5

Outline

- Template models (6.3-6.5)
- Structural uncertainty (6.6)
- Multivariate Gaussians (7.1)
- Gaussian DAGs (7.2)
- Gaussian MRFs (7.3)

Parameter tying

- A DBN defines a distribution over an unboundedly large number of variables by assuming that they all share the same CPDs.
- This is called parameter tying (weight sharing).
- It is useful even for fixed sized models in order to help learning (pool the sufficient statistics).
- We now discuss notational conventions ("syntactic sugar") for representing large "unrolled" networks with shared parameters.

Plates

- Plates are useful for specifying simple repetitive patterns, as frequently arise in hierarchical Bayesian models

Plates

Unrolled network

Limitations of plates

- There are various structures that plates cannot represent
- Eg DBNs
- Eg genotype(x1) depends on genotype(x2), where x2=parent(x1)
- We can write programs to generate graphs of specified structure, but we would like a declarative representation language for such repetitive patterns so that no new code has to be written

Beyond plates

- Probabilistic Relational Models (PRMs) encode large DAG models with tied CPDs
- Relational Markov Networks encode large MRFs with tied factors
- Markov Logic Networks are like RMNs, except the factors are represented in log-linear form, and the features are represented as logical expressions

Markov Logic Networks

Table I. Example of a first-order knowledge base and MLN. Fr() is short for Friendo 0 , Sn() for Smokea(), and Ca0 for Cancer 0.

English	First-Order Logic	Clausal Fomm	Weight
Friends of friends ane friends.		$-\operatorname{Fr}(\mathrm{x}, \mathrm{y}) \cup-\operatorname{Fr}(\mathrm{y}, \mathrm{z}) \cup \operatorname{Fr}(\mathrm{x}, \mathrm{z})$	0.7
Friendless people smole.	$\forall x(\neg(\exists y \operatorname{Fr}(\mathrm{x}, \mathrm{y})) \Rightarrow \operatorname{sm}(x))$	$\operatorname{Fr}(\mathrm{x}, \mathrm{g}(\mathrm{x})$) $\mathrm{Sm}(\mathrm{x})$	23
Smoking causes cancer.	$\forall x \operatorname{Sn}(x) \Rightarrow C s(x)$	$-\operatorname{sm}(x) \mathrm{VCa}(x)$	1.5
If two people are friends, either	$\forall x F y F r(x, y) \Rightarrow(\operatorname{sm}(x) \Leftrightarrow \operatorname{Sn}(y))$	$-\mathrm{Fr}(\mathrm{x}, \mathrm{y}) \cup \operatorname{Sn}(x)$ V $-\operatorname{Sn}(\mathrm{y})$,	1.1
both smoke or neither does.		$-\operatorname{Fr}(x, y) \cup-\operatorname{Sm}(x) V \operatorname{sm}(y)$	1.1

Directed vs undirected models

- Undirected models are simpler: no need to worry about cycles, lots of freedom in defining factors
- However, in a UG, the probability of a node depends on the *size* of the graph and/or its connectivity, even if all the other nodes are hidden.
- This may not be desirable.

$$
\begin{array}{ll}
x_{1} \rightarrow x_{2} \rightarrow x_{3} & x_{1}-x_{2}-x_{3} \\
x_{1} \rightarrow x_{2} \rightarrow \ldots \rightarrow x_{10} & x_{1}-x_{2}-\cdots-x_{10} \\
p\left(x_{2}\right) \text { same } & p\left(x_{2}\right) \text { different }
\end{array}
$$

Structural uncertainty

- For a fixed domain, if we do not know the graph structure, we may estimate it using model selection.
- But for relational domains, the structure may change depending on the values of the nodes
- Eg. Genotype(x1) -> genotype(x2) is only active if parent(x1,x2)=true
- In addition, we may be uncertain about how many objects exist in the world
- Eg. In tracking, 3 blips on the radar is consistent with $\{0,1, \ldots$, infty $\}$ objects in the world!

Data association ambiguity

Citation matching

Are these the same article? Huge industry concerned with database merging

```
Elston R, Stewart A. A General Model for the Genetic Analysis of Pedigree Data.
``` Hum. Hered. 1971;21:523-542.

Elston RC, Stewart J (1971): A general model for the analysis of pedigree data. Hum Hered 21523-542.

\section*{DAG model}
- Assumes there is an unknown number of authors and papers, which generates the observed set of citation strings.

\section*{UG model}
- No unknown objects. Just enforce that citations are the same.
- Need 3 way factor to encode transitivity of sameness relation: S(c1,c2), and S(c2,c3) => S(c1,c3)
- And if 2 docs are same, text should be similar: Factor(s(c1,c2), T(c1), T(c2))

\section*{MVN: 2 parameterizations}
- Moment form
\[
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \stackrel{\text { def }}{=} \frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
\]
- Information (canonical) form
\[
\begin{aligned}
\boldsymbol{\Lambda} & \stackrel{\text { def }}{=} \boldsymbol{\Sigma}^{-1} \quad \text { precision (information) matrix } \\
\boldsymbol{\eta} & \stackrel{\text { def }}{=} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\eta}, \boldsymbol{\Lambda}) & =\frac{|\boldsymbol{\Lambda}|^{1 / 2}}{(2 \pi)^{d / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}^{T} \boldsymbol{\Lambda} \mathbf{x}+\boldsymbol{\eta}^{T} \boldsymbol{\Lambda}^{-1} \boldsymbol{\eta}-2 \mathbf{x}^{T} \boldsymbol{\eta}\right)\right] \\
& =\exp \left[c-\frac{1}{2} \mathbf{x}^{T} \boldsymbol{\Lambda} \mathbf{x}+\mathbf{x}^{T} \boldsymbol{\eta}\right]
\end{aligned}
\]

\section*{Moment and anonical form}
- Canonical form is denoted
\[
\mathbf{x} \sim \mathcal{N}_{C}(\mathbf{b}, \mathbf{Q}) \Longleftrightarrow p(\mathbf{x}) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}\right)
\]
- Moment form
\[
\mathcal{N}\left(\boldsymbol{\mu}, \mathbf{Q}^{-1}\right)=\mathcal{N}_{C}(\mathbf{Q} \boldsymbol{\mu}, \mathbf{Q})
\]

\section*{Independencies in MVN}
- Thm 7.1.3. Let \(X \sim M V N . X_{i} \perp X_{j}\) iff \(\Sigma_{i, j}=0\)
- Thm \(\mathrm{J}_{\mathrm{i}, \mathrm{j}}=\mathrm{Ciff} \mathrm{X}_{\mathrm{i}} \perp \mathrm{X}_{\mathrm{i}} \perp \mathrm{X}_{\mathrm{j}} \mid \tilde{X}_{\mathrm{ij}} \mathrm{MVN}\) with info matrix J . Then
- Factorization thm.
\[
\mathbf{x} \perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z})=f(\mathbf{x}, v z) g(\mathbf{y}, v z)
\]

\section*{Indep => uncorrelated}
- Ex 7.2.1. For any \(p(X, Y)\), if \(X \perp Y\) then \(\operatorname{Cov}[X, Y]=0\).
\[
\begin{aligned}
\operatorname{Cov}[x, y] & =\iint p(x, y)(x-\bar{x})(y-\bar{y}) d x d y \\
& =\left(\int p(x)(x-\bar{x}) d x\right)\left(\int p(y)(y-\bar{y}) d y\right) \\
& =(\bar{x}-\bar{x})(\bar{y}-\bar{y})=0
\end{aligned}
\]

\section*{Uncorrelated \& MVN => indep}
- Ex 7.2 .2 . If \(p(X, Y)\) is Gaussian, and \(\operatorname{Cov}[X, Y]=0\),
- Pf. The bivariate Gaussian can be written as
\[
\begin{aligned}
p\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right.\right. \\
& \left.\left.-2 \rho \frac{\left(x_{1}-\mu_{1}\right)}{\sigma_{1}} \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2}}\right)\right]
\end{aligned}
\]
- If \(\backslash\) rho \(=0\), then
\[
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left[-\frac{1}{2}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)\right] \\
& =f\left(x_{1}\right) g\left(x_{2}\right)
\end{aligned}
\]
- Hence by factorization thm, x1 \perp x2.

\section*{Uncorrelated not imply independent}
- Ex 7.2.3. Find an example where \(\operatorname{Cov}[X, Y]=0\) yet not \(X \perp\) Y.
- Let \(X \sim U(-1,1)\) and \(Y=X^{\wedge} 2\). Clearly \(Y\) is dependent on \(X\) yet one can show (exercise) that \(\operatorname{Cov}(X, Y)=0\).
- Let \(X \sim N(0,1)\) and \(Y=W X, p(W=-1)=p(W=1)=0.5\). Clearly \(Y\) is dependent on \(X\), yet one can show (exercise) that \(\mathrm{Y} \sim \mathrm{N}(0,1)\) and \(\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0\).

\section*{Independencies in MVN}
- Thm 7.1.3. Let \(X \sim M V N . X_{i} \perp X_{j}\) iff \(\Sigma_{i, j}=0\)
- Pf. By ex 7.2.1, we have => direction.
- By ex 7.2.2, we have that <= direction.
- By ex 7.2.3, we have that X ~ MVN is necessary for <= direction to work.

\section*{Conditional Independencies in MVN}
- Thm 7.14. let \(X \sim M V N\) with info matrix J. Then \(J_{i, j}=0\) iff \(\dot{X}_{i} \perp X_{j} \mid X_{-i j}\)
- Pf. Let mu=0.
\[
\begin{aligned}
p\left(x_{i}, x_{j}, \mathbf{x}_{-i j}\right) & \propto \exp \left(-\frac{1}{2} \sum_{k, l} x_{k} Q_{k l} x_{l}\right) \\
& \propto \exp \left(-\frac{1}{2} x_{i} x_{j}\left(Q_{i j}+Q_{j i}\right)-\frac{1}{2} \sum_{\{k, l\} \neq\{i, j\}} x_{k} Q_{k l} x_{l}\right)
\end{aligned}
\]
- The second term does not involve \(x_{i} x_{j}\), and nor does the first iff \(Q_{i j}=0\). Hence this factorizes into \(f\left(x_{i}, x_{-i j}\right) g\left(x_{j}, x_{-i j}\right)\) iff \(Q_{i j}=0\). QED.

\section*{Structural zeros}

Zeros in the precision matrix correspond to missing edges in the UGM
\[
\begin{gathered}
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
4 & 2 & -2 \\
2 & 5 & -5 \\
-2 & -5 & 8
\end{array}\right), \quad \boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ccc}
0.3125 & -0.125 & 0 \\
-0.125 & 0.5833 & 0.3333 \\
0 & 0.3333 & 0.3333
\end{array}\right) \\
X_{1}-X_{2}-X_{3}
\end{gathered}
\]

\section*{Marginals and conditionals}
\begin{tabular}{l|l}
& Marginal \(p\left(\mathbf{x}_{2}\right)\) \\
\hline Moment & \(\mathcal{N}\left(\mathbf{x}_{2} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)\) \\
Info & \(\mathcal{N}\left(\mathbf{x}_{2} \mid \boldsymbol{\eta}_{2}-\boldsymbol{\Lambda}_{21} \boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\eta}_{1}, \boldsymbol{\Lambda}_{22}-\boldsymbol{\Lambda}_{21} \boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12}\right)\)
\end{tabular}
\begin{tabular}{l|l}
& Conditional \(p\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right)\) \\
\hline Moment & \(\mathcal{N}\left(\mathbf{x}_{1} \mid \boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)\) \\
Info & \(\mathcal{N}\left(\mathbf{x}_{2} \mid \boldsymbol{\eta}_{1}-\boldsymbol{\Lambda}_{12} \mathbf{x}_{2}, \boldsymbol{\Lambda}_{11}\right)\)
\end{tabular}

Marginalization easy in moment form.
Conditioning easy in canonical form.

\section*{Conditioning in canonical form}
- Thm (Conditioning).
\[
\mathbf{x} \sim \mathcal{N}_{C}(\mathbf{b}, \mathbf{Q}) \Rightarrow \quad \mathbf{x}_{A} \mid \mathbf{x}_{B} \sim \mathcal{N}_{C}\left(\mathbf{b}_{A}-\mathbf{Q}_{A B} \mathbf{x}_{B}, \mathbf{Q}_{A A}\right)
\]
- Thm (soft conditioning) .
\[
\begin{aligned}
\mathbf{x} \sim \mathcal{N}_{C}(\mathbf{b}, \mathbf{Q}) \quad \text { and } \quad \mathbf{y} \mid \mathbf{x} & \sim \mathcal{N}\left(\mathbf{x}, \mathbf{P}^{-1}\right) \\
\mathbf{x} \mid \mathbf{y} & \sim \mathcal{N}_{C}(\mathbf{b}+\mathbf{P} \mathbf{y}, \mathbf{Q}+\mathbf{P}) \quad \quad \text { Precisions add }
\end{aligned}
\]
- We can accumulate evidence by addition of matrixvector products, and then compute posterior mean at end by solving \(\mathrm{Qb}=\mathrm{mu}\).

\section*{Partial correlation coefficient}
- Let \(X\) ~ Mvn with precision matrix
\(\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ccc}\omega_{11} & \cdots & \omega_{1 d} \\ \vdots & \ddots & \ddots \\ \omega_{d 1} & \cdots & \omega_{d d}\end{array}\right)\)
- The conditional distribution \(\mathrm{p}(\mathrm{x} 1, \mathrm{x} 2 \mid \mathrm{x} 3, \ldots, \mathrm{xd})\) is bivariate Gaussian with covariance
\(\left(\begin{array}{ll}\omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22}\end{array}\right)^{-1}=\frac{1}{\omega_{11} \omega_{22}-\left(\omega_{12}\right)^{2}}\left(\begin{array}{cc}\omega_{22} & -\omega_{12} \\ -\omega_{21} & \omega_{11}\end{array}\right)\)
- The partial correlation coefficient is given by
\(\rho_{1,2 \mid 3, \ldots, d} \stackrel{\text { def }}{=} \frac{\operatorname{Cov}\left[X_{1}, X_{2} \mid X_{3: d}\right]}{\sqrt{\operatorname{Var}\left[X_{1} \mid X_{3: d}\right] \operatorname{Var}\left[X_{2} \mid X_{3: d}\right]}}=\frac{-\omega_{21}}{\sqrt{\omega_{11} \omega_{22}}}\)

\section*{Conditioning in moment form}
- Thm (Rue\&Held p26).
\[
\begin{aligned}
\mathbf{x} & \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathbf{Q}^{-1}\right) \Rightarrow \\
\mathbf{x}_{A} \mid \mathbf{x}_{B} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{A \mid B}, \mathbf{Q}_{A A}^{-1}\right) \\
\boldsymbol{\mu}_{A \mid B} & =\boldsymbol{\mu}_{A}-\mathbf{Q}_{A A}^{-1} \mathbf{Q}_{A B}\left(\mathbf{x}_{B}-\boldsymbol{\mu}_{B}\right)
\end{aligned}
\]
- Thus to find the mean we need to solve the linear system
\[
\mathbf{Q}_{A A} \boldsymbol{\mu}_{A \mid B}=\mathbf{Q}_{A A} \boldsymbol{\mu}_{A}-\mathbf{Q}_{A B} \mathbf{x}_{B}+\mathbf{Q}_{A B} \boldsymbol{\mu}_{B}
\]
- \(E g\) if \(A=\{i\}\) we have
\[
\begin{aligned}
E\left[x_{i} \mid \mathbf{x}_{-i}\right] & =\mu_{i}-\frac{1}{Q_{i i}} \sum_{j: j \neq i} Q_{i j}\left(x_{j}-\mu_{j}\right) \\
\operatorname{prec}\left(x_{i} \mid \mathbf{x}_{-i}\right) & =Q_{i i}
\end{aligned}
\]

\section*{Proof}
- Assume \(\backslash m u=0\) for simplicity. Then
\[
\begin{aligned}
p\left(\mathbf{x}_{A} \mid \mathbf{x}_{B}\right) & \propto \exp \left(-\frac{1}{2}\left(\begin{array}{ll}
\mathbf{x}_{A} & \mathbf{x}_{B}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{Q}_{A A} & \mathbf{Q}_{A B} \\
\mathbf{Q}_{B A} & \mathbf{Q}_{B B}
\end{array}\right)\binom{\mathbf{x}_{A}}{\mathbf{x}_{B}}\right) \\
& \propto \exp \left(-\frac{1}{2} \mathbf{x}_{A}^{T} \mathbf{Q}_{A A} \mathbf{x}_{A}-\left(\mathbf{Q}_{A B} \mathbf{x}_{B}\right)^{T} \mathbf{x}_{A}\right)
\end{aligned}
\]
- Compare this to a Gaussian with precision K and mean m
\[
p(\mathbf{z}) \propto \exp \left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{K} \mathbf{z}+(\mathbf{K m})^{T} \mathbf{z}\right)
\]
- We see that Q_\{AA\} is the conditional precision and the conditional mean is given by
\[
\mathbf{Q}_{A A} \boldsymbol{\mu}_{A \mid B}=-\mathbf{Q}_{A B} \mathbf{x}_{B}
\]

QED

\section*{Soft conditioning in moment form}
\[
\begin{aligned}
\mathbf{x} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathbf{y} \mid \mathbf{x} & \sim \mathcal{N}(\mathbf{x}, \mathbf{S}) \\
\mathbf{x} \mid \mathbf{y} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{x \mid y}, \boldsymbol{\Sigma}_{x \mid y}\right) \\
\boldsymbol{\Sigma}_{x \mid y}^{-1} & =\boldsymbol{\Sigma}^{-1}+\mathbf{S}^{-1} \\
\boldsymbol{\Sigma}_{x \mid y}^{-1} \boldsymbol{\mu}_{x \mid y} & =\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\mathbf{S}^{-1} \mathbf{y}
\end{aligned}
\]

Bayes rule for linear Gaussian systems

\section*{Linear Gaussian DGMs}
- A CPD is linear Gaussian if
\[
p\left(x_{i} \mid x_{\pi_{i}}\right)=\mathcal{N}\left(x_{i} \mid \sum_{j \in \pi_{i}} w_{i j} x_{j}+b_{i}, v_{i}\right)
\]
- A DGM is linear Gaussian if all CPDs are LG.
- Such networks define a joint Gaussian. Each node is given by
\[
x_{i}=\sum_{j \in \pi_{i}} w_{i j} x_{j}+b_{i}+\sqrt{v_{i}} \epsilon_{i}
\]
where \(\varepsilon_{i} \sim N(0,1)\) and \(E\left[\varepsilon_{i} \varepsilon_{j}\right]=I_{i, j}\).
- W is lower triangular matrix: \(\left.w _i, j\right\}=\) weights into \(i\) from \(j\).

\section*{LG DGM to MVN}
- We can compute the global mean and covariance recursively, in topological order
\[
\begin{aligned}
x_{i}= & \sum_{j \in \pi_{i}} w_{i j} x_{j}+b_{i}+\sqrt{v_{i}} \epsilon_{i} \\
E\left[x_{i}\right]= & \sum_{j \in \pi_{i}} w_{i j} E\left[x_{j}\right]+b_{i} \\
\operatorname{Cov}\left[x_{i}, x_{j}\right] & =E\left[\left(x_{i}-E\left[x_{i}\right]\right)\left(x_{j}-E\left[x_{j}\right]\right)\right] \\
& =E\left[\left(x_{i}-E\left[x_{i}\right]\right)\left\{\sum_{k \in \pi_{j}} w_{j k}\left(x_{k}-E\left[x_{k}\right]\right)+\sqrt{v_{j}} \epsilon_{j}\right\}\right] \\
& =\sum_{k \in \pi_{j}} w_{j k} \operatorname{Cov}\left[x_{i}, x_{k}\right]+I_{i, j} v_{j}
\end{aligned}
\]

LG DGM to MVN
- Consider a chain x1 -> x2 -> x3
\(\omega:\)
\[
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & x & x \\
2 & x \\
3 & w_{1} & x \\
0 & w_{32} & x
\end{array}\right)
\]
\[
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
v_{1} & w_{21} v_{1} & w_{32} w_{31} v_{1} \\
w_{21} v_{1} & v_{2}+w_{21}^{2} v_{1} & w_{32}\left(v_{2}+w_{21}^{2} v_{1}\right) \\
w_{32} w_{21} v_{1} & w_{32}\left(v_{2}+w_{21}^{2} v_{1}\right) & v_{3}+w_{32}^{2}\left(v_{2}+w_{21}^{w} v_{1}\right)
\end{array}\right)
\]
- In general, when adding node \((k+1)\)

K\&F Thm 7.2.2

\section*{Alternative parameterization}
- The results are much "prettier" if we write
\[
X_{j}=\mu_{j}+\sum_{k \in \pi_{j}} w_{j k}\left(X_{k}-\mu_{k}\right)+\sqrt{v_{j}} Z_{j}
\]
where the offset is given by
\[
w_{j}^{(0)}=\mu_{j}-\sum_{k \in \pi_{j}} w_{j k} \mu_{k}
\]
- Then we have
\[
\begin{aligned}
(\mathbf{x}-\boldsymbol{\mu}) & =\mathbf{W}(\mathbf{x}-\boldsymbol{\mu})+\mathbf{S}^{T} \mathbf{z}=\mathbf{W}(\mathbf{x}-\boldsymbol{\mu})+\mathbf{e} \\
\mathbf{e} & =\mathbf{S}^{T} \mathbf{z}=(\mathbf{I}-\mathbf{W})(\mathbf{x}-\boldsymbol{\mu}) \\
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{d}
\end{array}\right) & =\left(\begin{array}{ccccc}
1 & 1 & & \\
-w_{21} & 1 & \\
-w_{32} & -w_{31} & 1 & \\
\vdots & & & \ddots & \\
-w_{d 1} & -w_{d 2} & \ldots & -w_{d, d-1} & 1
\end{array}\right)\left(\begin{array}{c}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2} \\
\vdots \\
x_{d}-\mu_{d}
\end{array}\right)
\end{aligned}
\]

\section*{DAG weights = Cholesky Decomposition}
\[
\begin{aligned}
& \mathbf{x}-\boldsymbol{\mu}=(\mathbf{I}-\mathbf{W})^{-1} \mathbf{e} \stackrel{\text { def }}{=} \mathbf{U e}=\mathbf{U S}^{T} \mathbf{z} \stackrel{\text { def }}{=} \mathbf{A}^{T} \mathbf{z} \\
& \boldsymbol{\Sigma}=\operatorname{Var}[\mathbf{x}]=\operatorname{Var}[\mathbf{x}-\boldsymbol{\mu}] \\
&=\operatorname{Var}\left[\mathbf{A}^{T} \mathbf{z}\right]=\mathbf{A}^{T} \operatorname{Var}[\mathbf{z}] \mathbf{A}=\mathbf{A}^{T} \mathbf{A} \\
&=\mathbf{U S}^{T} \mathbf{S} \mathbf{U}^{T}=\mathbf{U D} \mathbf{U}^{T} \\
& \mathbf{\Sigma}^{-1}=\mathbf{U}^{-T} \mathbf{D}^{-1} \mathbf{U}^{-1}=(\mathbf{I}-\mathbf{W})^{T} \mathbf{D}^{-1}(\mathbf{I}-\mathbf{W}) \stackrel{\text { def }}{=} \mathbf{T}^{T} \mathbf{D}^{-1} \mathbf{T} \\
& \mathbf{T}=\left(\begin{array}{cccc}
1 & & \\
\left.\begin{array}{cccc}
-w_{21} & 1 & & \\
-w_{32} & -w_{31} & 1 & \ddots \\
\vdots & & & \\
-w_{d 1} & -w_{d 2} & \ldots & -w_{d, d-1}
\end{array}\right)
\end{array}\right.
\end{aligned}
\]

\section*{Chains}
- Consider a chain X1 -> X2 -> ... -> X5
- The DAG and UG are both sparse (same CI)
\(\mathrm{n}=5\);
\(\mathrm{w}=\mathrm{randn}(\mathrm{n}, 1)\);
\(\mathrm{W}=\operatorname{spdiags}([\mathrm{w} \operatorname{zeros}(\mathrm{n}, 1) \operatorname{zeros}(\mathrm{n}, 1)],-1: 1, \mathrm{n}, \mathrm{n})\);
\(T=\) eye (n)-W;
\(D=\operatorname{diag}(o n e s(n, 1)) ;\)
\(K=T^{\prime} * D * T\);
>> full(W)
ans \(=\)
\begin{tabular}{rr}
0 & 0 \\
1.1909 & 0 \\
0 & 1.1892 \\
0 & 0 \\
0 & 0
\end{tabular}
0
0
0
-0.0376
0
\begin{tabular}{rr}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0.3273 & 0
\end{tabular}
\[
\begin{aligned}
& \gg \mathrm{K} \\
& \mathrm{~K}=
\end{aligned}
\]
\[
\begin{array}{rrrrr}
2.4183 & -1.1909 & 0 & 0 & 0 \\
-1.1909 & 2.4141 & -1.1892 & 0 & 0 \\
0 & -1.1892 & 1.0014 & 0.0376 & 0 \\
0 & 0 & 0.0376 & 1.1071 & -0.3273 \\
0 & 0 & 0 & -0.3273 & 1.0000
\end{array}
\]

\section*{Diamond}

\section*{- DAG is sparse, Sigma and Sigmalnv are dense}

\section*{Gaussian MRFs}
- Defn. A GMRF is a Gaussian of the form \(\mathrm{N}\left(\mu, \mathrm{Q}^{-1}\right)\) where \(Q_{i j} \neq 0\) iff \(\mathrm{G}_{\mathrm{ij}} \neq 0\) (\(\mathrm{Q}=\) precision matrix)
- Thm. For a GMRF, the following properties are equivalent.
- Pairwise Markov: \(x_{i} \perp x_{j} \mid \mathbf{x}_{-i j}\) if \(G_{i, j}=0\) and \(i \neq j\)
- Local Markov: \(x_{i} \perp \mathbf{x}_{-i, n e(i)} \mid \mathbf{x}_{n e(i)}\)

Rue\&Held p25
- Global Markov: \(x_{A} \perp x_{B} \mid x_{C}\)

Blacks indep given gray

Black indep of white given gray

Black indep striped given gray 42

\section*{MVN to Gaussian UGM}
- We can convert any MVN into a UGM with pairwise potentials which are quadratics
\[
\begin{aligned}
\mathbf{J} & \stackrel{\text { def }}{=} \boldsymbol{\Sigma}^{-1} \\
\mathbf{h} & \stackrel{\text { def }}{=} \mathbf{J} \boldsymbol{\mu} \\
\mathcal{N}(\mathbf{x} \mid \mathbf{h}, \mathbf{J}) & =\exp \left[c-\frac{1}{2} \mathbf{x}^{T} \mathbf{J} \mathbf{x}+\mathbf{x}^{T} \mathbf{h}\right] \\
\log p(\mathbf{x}) & =c-\frac{1}{2} \sum_{i}\left[J_{i, i} x_{i}^{2}+h_{i} x_{i}\right]-\frac{1}{2} \sum_{i} \sum_{j} J_{i, j} x_{i} x_{j} \\
& =c+\sum_{i} \phi_{i}\left(x_{i}\right)+\sum_{i} \sum_{j>i} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
\phi_{i}\left(x_{i}\right) & =-\frac{1}{2}\left[J_{i, i} x_{i}^{2}+h_{i} x_{i}\right] \\
\phi_{i, j}\left(x_{i}, x_{j}\right) & =-J_{i, j} x_{i} x_{j}
\end{aligned}
\]

\section*{Pairwise UGM to MVN}
- Consider a UGM in which the node and edge potentials are quadratics
\[
\begin{aligned}
\epsilon_{i}\left(x_{i}\right) & =d_{0}^{i}+d_{1}^{i} x_{1}+d_{2}^{i} x_{i}^{2} \\
\epsilon_{i j}\left(x_{i}, x_{j}\right) & =a_{00}^{, i j}+a_{01}^{, i j} x_{i}+a_{10}^{i j} x_{j}+a_{11}^{i j} x_{i} x_{j}+a_{02}^{i j} x_{i}^{2}+a_{20}^{i j} x_{j}^{2}
\end{aligned}
\]
- We can always rewrite the corresponding unnormalized distribution as
\[
p^{\prime}(\mathbf{x})=\exp \left[-\frac{1}{2} \mathbf{x}^{T} \mathbf{J} \mathbf{x}+\mathbf{x}^{T} \mathbf{h}\right]
\]
- But the normalization constant \(Z\) will only be finite if \(J\) is positive definite.

\section*{Sufficient conditions on info matrix}
- Def 7.3.1. A matrix J is attractive if, for all i \neq j , we have that all partial correlations are non-neg
\[
-\frac{J_{i, j}}{\sqrt{J_{i, i} J_{j, j}}} \geq 0
\]
- Thm 7.3.2. If \(J\) is attractive, then \(p\) is a valid MVN.
- Def 7.3.1b. A matrix J is diagonally dominant if, for all rows i, \(\quad J_{i i}>\sum_{j \neq i}\left|J_{i, j}\right|\)
- Thm 7.3.2b. If J is diagonally dominant, then p is a valid MVN.

\section*{Pairwise normalizable}
- Def 7.3.3. A pairwise MRF with energies of the form
\[
\begin{aligned}
\epsilon_{i}\left(x_{i}\right) & =d_{0}^{i}+d_{1}^{i} x_{1}+d_{2}^{i} x_{i}^{2} \\
\epsilon_{i j}\left(x_{i}, x_{j}\right) & =a_{00}^{, i j}+a_{01}^{, i j} x_{i}+a_{10}^{i j} x_{j}+a_{11}^{i j} x_{i} x_{j}+a_{02}^{i j} x_{i}^{2}+a_{20}^{i j} x_{j}^{2}
\end{aligned}
\]
is called pairwise normalizable if
\[
d_{2}^{i}>0, \forall i \quad \text { and } \quad\left(\begin{array}{cc}
a_{0}^{i j} & a_{11}^{i j} / 2 \\
a_{11}^{j} / 2 & a_{20}^{i j}
\end{array}\right) \text { is psd for all i,j }
\]
- Thm 7.3.4. If the MRF is pairwise normalizable, then it defines a valid Gaussian.
- Sufficient but not necessary eg.
\[
\left(\begin{array}{ccc}
1 & 0.6 & 0.6 \\
0.6 & 1 & 0.6 \\
0.6 & 0.6 & 1
\end{array}\right)
\]

May be able to reparameterize the node/ edge potentials to ensure pairwise normalized.

\section*{Conditional autoregressions (CAR)}
- We can parameterize a GMRF in terms of its full conditionals
\[
\begin{aligned}
E\left[x_{i} \mid \mathbf{x}_{-i}\right] & =\mu_{i}-\sum_{j: j \sim i} \beta_{i j}\left(x_{j}-\mu_{j}\right) \\
\operatorname{prec}\left[x_{i} \mid \mathbf{x}_{-i}\right] & =\kappa_{i}>0
\end{aligned}
\]
- From before, we have
\[
\begin{aligned}
E\left[x_{i} \mid \mathbf{x}_{-i}\right] & =\mu_{i}-\frac{1}{Q_{i i}} \sum_{j: j \neq i} Q_{i j}\left(x_{j}-\mu_{j}\right) \\
\operatorname{prec}\left(x_{i} \mid \mathbf{x}_{-i}\right) & =Q_{i i}
\end{aligned}
\]
- To be a valid MVN we must set
\[
\begin{aligned}
\kappa_{i} & =Q_{i i}, \beta_{i j}=\frac{Q_{i j}}{\kappa_{i}}, \kappa_{i} \beta_{i j}=\kappa_{j} \beta_{j i} \\
\mathbf{Q} & =\operatorname{diag}(\boldsymbol{\kappa})(\mathbf{I}+\boldsymbol{\beta})
\end{aligned}
\]```

