Stat 521A
 Lecture 4

Admin

- CS auditors: please turn in your form to Joyce Poon, who will pass it to Laks for signing

Outline

- Aside on canonical parameterization (ex 4.4.14)
- Structured factors (4.4.1.2)
- Structured CPDs (5.2-5.6)
- Temporal models (6.2)

Degrees of freedom of a UGM

Why do we just need 8 numbers to uniquely parameterize the distribution?
$E g a^{\wedge} 1, b^{\wedge} 1, c^{\wedge} 1, d^{\wedge} 1,\left(a^{\wedge} 1, b^{\wedge} 1\right),\left(b^{\wedge} 1, c^{\wedge} 1\right),\left(c^{\wedge} 1, d^{\wedge} 1\right),\left(a^{\wedge} 1, d^{\wedge} 1\right)$

Num params = rank of feature matrix

- Let $F(n, i)=1$ iff i'th bit vector turns on n'th feature
- Each feature specifies a value for every pair of nodes connected by an edge, and hence is a vector in $R^{\wedge}\{16\} .4$ edges, 3 unique settings $=12$ rows.

Rank $=8$

Eg $a^{\wedge} 1, b^{\wedge} 1, c^{\wedge} 1, d^{\wedge} 1,\left(a^{\wedge} 1, b^{\wedge} 1\right),\left(b^{\wedge} 1, c^{\wedge} 1\right),\left(c^{\wedge} 1, d^{\wedge} 1\right),\left(a^{\wedge} 1, d^{\wedge} 1\right)$

Rank of feature matrix

- edges = \{[1 2], [1 3], [2 4], [3 4]\};
- $n d x=1$;
- $\mathrm{F}=$ zeros $\left(0,2^{\wedge} 4\right)$;
- for $\mathrm{e}=1$:length(edges)
- $\quad s=\operatorname{edges}\{e\}(1) ; \mathrm{t}=\operatorname{edges}\{\mathrm{e}\}(2)$;
- for $\mathrm{j}=1: 2$
- for $\mathrm{k}=1: 2$
- if $\mathrm{j}==2$ \& \& $\mathrm{k}==2$, continue; end
- \quad for $x=1: 16$
- $\quad x=$ ind2subv([2 222 2], x);
- if $x v(s)==j \& \& x(t)==k$
- $\quad \mathrm{F}(\mathrm{ndx}, \mathrm{x})=1$;
- end
- end
- $n d x=n d x+1$;
- end
- end
- end
- \quad rank(F)

Log-linear factors

- A factor defined on m discrete rv's with K states needs K^{m} parameters.
- Imagine a factor on triples of letters. Instead of having 26^{3} numbers, we can define binary features that only turn on for certain values, eg $\mathrm{f}_{\text {ing }}(x)=1$ iff $x_{1}={ }^{\prime}$ ', $x_{2}=$ ' n ', $x_{3}=$ ' g '. This has weight $\omega_{\text {ing }}$. We define

$$
\phi_{c}\left(\mathbf{x}_{c}\right)=\exp \left(\sum_{i=1}^{k} w_{c, i} f_{c, i}\left(\mathbf{x}_{c}\right)\right)
$$

Tables are a special case

$$
f_{1}\left(x_{1}, x_{1}\right)=s\left(x_{1}=0, x_{2}=0\right)
$$

$$
f_{1}\left(x_{1}, x_{t}\right)=s\left(x_{1}=0, x_{1}=1\right)
$$

$$
f_{i}\left(x_{1}, x_{1}\right)=s\left(x_{1}=1, x_{1}=0\right)
$$

$$
f_{4}\left(x_{1}, x_{4}\right)=s\left(x_{1}=1, x_{1}=1\right)
$$

$$
\varphi_{n}\left(x_{1}, x_{2}\right)=e^{\omega_{1}} f_{1}+\theta_{2} f 2+\theta_{4} f_{1}+\theta_{4} f
$$

CRF features

- Typical features used in a CRF model for language processing ($\mathrm{X}=$ words, $\mathrm{Y}=$ labels)
- $F_{1}\left(Y_{t}, X_{t}, X_{t-1}, X_{t}+1\right)=I\left(X_{t-1}=\right.$ "New", $X_{t}=$ "York", $X_{t+1}=$ "Times", $Y_{t}=$ "Object")
- $\mathrm{F}_{2}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}-1}, \mathrm{X}_{\mathrm{t}}+1\right)=\mathrm{I}\left(\mathrm{X}_{\mathrm{t}-1}=\right.$ "New", $\mathrm{X}_{\mathrm{t}}=$ "York", $\mathrm{X}_{\mathrm{t}+1} \neq$ "Times", $\mathrm{Y}_{\mathrm{t}}=$ "Place")
- Models often have ~100k manually specified features.
- Common to use L1 regularization to sparsify.
- Can also perform feature induction, by eg greedily creating conjunctions or disjunctions

Exponential family (maxent) models

- Combining all the local potentials

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{Z} \prod_{c} \phi_{c}\left(\mathbf{x}_{c}\right) \\
\phi_{c}\left(\mathbf{x}_{c}\right) & =\exp \left(\sum_{i=1}^{k} w_{c, i} f_{c, i}\left(\mathbf{x}_{c}\right)\right) \\
p(\mathbf{x}) & =\frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}\left(\mathbf{x}_{c_{i}}\right)\right)
\end{aligned}
$$

DAGs are a special case where each $\phi_{c}\left(x_{c}\right)=p\left(X_{i} \mid P a\left(X_{i}\right)\right)$ sums to 1 , so $Z=1$

See ch 8

Tabular CPDs

- If all nodes are discrete and have K values, we can represent $\mathrm{p}\left(\mathrm{X} _\mathrm{i} \mid \mathrm{Pa}\left(\mathrm{X} _i\right)\right)$ as a table, with one row per conditioning case (K^\#pa), and K columns which sum to 1
- If K and/or \#pa is large, this is too many parameters, so we seek more parsimonious representations.

Deterministic CPDs

- In some cases, the child is a deterministic function of the parents, eg bloodtype is determined by the 2 alleles
- Deterministic nodes often denoted by doubleringed oval.
- Determinism can imply additional (non-graphical) independencies
- $E g D \perp E \mid A, B$ since $C=f n(A, B)$

Det-sep

Context specific independence (CSI)

- Sometimes, the set of edges which are "active" depends on the value of the nodes
- Eg Y is a noisy observation of object X 1 , or X 2 . Z specifies the identity of the measurement. Let X $=$ multiplexer $(\mathrm{X} 1, \mathrm{X} 2, \mathrm{Z})$. Then $\mathrm{X} 2 \perp \mathrm{Y} \mid \mathrm{Z}=1$. So our posterior on X 2 is not affected by the measurement. (Data association ambiguity)

Contingently acyclic BNs

- Sometimes we can define a directed graph with cycles, but where some of the edges are not active for a given setting of certain variables C .
- If we can guarantee that the graph is a DAG for each context $\mathrm{C}=\mathrm{c}$, the result is a mixture of differently structured BNs.
- This is called a Bayesian multinet.

Tree-structured CPDs

- Different parents can be rendered irrelevant, depending on the values

Eg. $\mathrm{J} \mid \mathrm{S}, \mathrm{L}$ if $\mathrm{A}=0$ since we go down left branch of tree

Printer fault diagnosis in MS windows

- Uses tree structured CPDs, since different sets of variables are relevant in different contexts

Rule-structured CPDs

- Specify a pattern and a value

Logistic regression (sigmoid BNs)

- Suppose all nodes are binary. We can use logreg CPDs

$$
p(y=1 \mid \mathbf{x})=\sigma\left(w_{0}+\sum_{i=1}^{k} w_{i} x_{i}\right) \quad \sigma(u)=\frac{1}{1+e^{-u}}
$$

Multinomial logreg

- If Y is K -ary, and the parents are binary or cts, we can use a softmax function

$$
p(y=j \mid \mathbf{x})=\frac{\exp \left(\mathbf{w}_{j}^{T} \mathbf{x}\right)}{\sum_{j^{\prime}=1}^{K} \exp \left(\mathbf{w}_{j^{\prime}}^{T} \mathbf{x}\right)}
$$

For K-ary parents, use 1-of-K encoding

Independence of causal influence

- We can model the effects of many parents by assuming that each parent is corrupted by independent noise, and the results are deterministically combined via a simple function such as OR or MAX

Noisy-or model

- Each $X i$ in $\{0,1\}$ gets passed through a noisy wire to produce Zi in $\{0,1\}$. 0 maps to 0,1 maps to $0 \mathrm{wp} \mathrm{w}_{\mathrm{i}}$ (failure probability). $\lambda_{i}=1-w_{i}$ is the prob. that Xi alone turns on Y.
- The Zi's are combined in an OR to produce Z. Then $\mathrm{Y}=\mathrm{Z}$.
- The only way Y can be off is if all Zi's are off, which means all the wires for Xi st $\mathrm{Xi}=1$ independently failed:

$$
\begin{aligned}
& p(y=0 \mid \mathbf{x})=\prod_{i: x_{i}=1} w_{i}=\prod_{i=1}^{k} w_{i}^{x_{i}} \\
& p(y=1 \mid \mathbf{x})=1-p(y=0 \mid \mathbf{x})
\end{aligned}
$$

Example

- $\mathrm{P}($ fever $=0 \mid$ cold $=1$, flu $=0$, malaria $=0)=0.6$
- $P($ fever $=0 \mid$ cold $=0$, flu $=1$, malaria $=0)=0.2$
- $P($ fever $=0 \mid$ cold $=0$, flu=0, malaria=1) $=0.1$

Cold	Flu	Malaria	$\mathrm{p}($ Fever $=1)$	$\mathrm{p}($ Fever $=0)$
0	0	0	0.0	1.0
0	0	1	0.0	0.1
0	1	0	0.8	0.2
0	1	1	0.98	$0.02=0.2 \times 0.1$
1	0	0	0.4	0.6
1	0	1	0.94	$0.0 .6=0.6 \times 0.1$
1	1	0	0.88	$0.12=0.6 \times 0.2$
1	1	1	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Leak nodes

- If $\mathrm{Y}=0$ and all $\mathrm{X}=0$, the CPD assigns 0 probability to this event. To prevent this, we add a leak node, $X 0=1$, which is always on, to model "any other cause". The leak can fail wp w0.

$W 0=1$
$\mathrm{W} 0=0.5$

BN20 networks

- In medical diagnosis, it is common to construct 2 layered bipartite networks of binary nodes, mapping diseases to symptoms (findings).
- Because of the large number of parents, the child nodes use noisy-or.
- Conditional on F, the diseases D are correlated.
- The QMR-DT network is a standard testbed for evaluating approximate inference algorithms.

Negative findings

- If $\mathrm{Fi}=1$, the disease parents fight to explain the finding. Hence they become fully correlated.
- But if $\mathrm{Fi}=0$, the parents are independent! Hence the $\mathrm{p}(\mathrm{Fi}=0 \mid \mathrm{Pa}(\mathrm{Fi}))$ likelihood fully factorizes, and does not make inference harder (homework).

$$
D_{1} \perp D_{2} \mid F_{i}=0
$$

Conditional linear Gaussian CPDs

- If Y is continuous and all the parents are cts we can define

$$
p(y \mid \mathbf{x})=\mathcal{N}\left(y \mid \mathbf{x}^{T} \mathbf{w}, \sigma^{2}\right)
$$

- Networks of linear Gaussian CPDs define a joint multivariate Gaussian (see ch 7)
- For discrete parents u, we can use 1-of-K and LG, or we can use a different set of parameters for each discrete setting (CLG). The resulting distribution is a mixture of Gaussians, where each discrete setting defines a mixture component.

$$
p(y \mid \mathbf{x}, \mathbf{u}=k)=\mathcal{N}\left(y \mid \mathbf{x}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right)
$$

Example of CLG network

Hybrid network

$P($ buys $=1 \mid$ cost $)=$ logreg or probit. Joint distribution is no longer mixture of Gaussians. Closed-form inference no longer possible (see ch14).

Encapsulated BNs

- We can embed a BN inside a CPD, and "hide" the internal nodes using an interface layer.
- This, combined with parameter tying, yields OOBN.

Markov chains

- We can define a distribution over a semi-infinite sequence X_1, X_2, ... by using a discrete-time Markov chain with tied parameters (stationary)

$$
\begin{aligned}
& \stackrel{\pi}{\perp} \rightarrow \chi_{2} \rightarrow X_{3} \rightarrow \\
& p(\mathbf{x} \mid \boldsymbol{\theta})=p\left(x_{1} \mid \pi\right) \prod_{t=T}^{\infty} p\left(X_{t} \mid X_{t-1}, A\right) \\
& A(i, j)=p\left(X_{t}=j \mid X_{t-1}=i\right)
\end{aligned}
$$

State transition diagram

Picture of the stochastic finite state automaton

$$
T=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

$$
T=\left(\begin{array}{ccc}
T_{11} & T_{12} & 0 \\
0 & T_{22} & T_{29} \\
0 & 0 & 1
\end{array}\right)
$$

Hidden Markov Models

- An HMM is a function of a Markov chain.
- We observe V_{t}, hidden state is H_{t} in $\{1, \ldots, \mathrm{~K}\}$
- $P\left(H_{t}=j \mid H_{t-1}=i\right)$ is the transition model
- $P\left(V_{t} \mid H_{t}=j\right)$ is the observation model (eg mixture of Gaussians)

$$
\begin{aligned}
& H_{1} \rightarrow H_{2} \rightarrow \cdots \\
& I \\
& \check{U}_{1} \\
& V_{2}
\end{aligned}
$$

HMMs for speech recognition

Bigram model of words

Pronunciation model : word -> phonemes

Acoustic model: phonemes -> observations

State space models

- Same graph (CI assumptions) as HMM, but now X and Y are real-valued vectors
- Special case: linear dynamical system (LDS)

$$
\begin{gathered}
p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)=\mathcal{N}\left(\mathbf{x}_{t} \mid \mathbf{A} \mathbf{x}_{t-1}, \mathbf{Q}\right) \\
p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)=\mathcal{N}\left(\mathbf{y}_{t} \mid \mathbf{H} \mathbf{x}_{t}, \mathbf{R}\right) \\
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathcal{N}(\mathbf{0}, \mathbf{Q}) \\
\mathbf{y}_{t}=\mathbf{H} \mathbf{x}_{t}+\mathcal{N}(\mathbf{0}, \mathbf{R})
\end{gathered}
$$

Example: tracking in 2D

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1 t} \\
x_{2 t} \\
\dot{x}_{1 t} \\
\dot{x}_{2 t}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
x_{1 t-1} \\
x_{2 t} \\
x_{1 t-1} \\
\dot{x}_{2 t-1}
\end{array}\right)+\left(\begin{array}{l}
w_{1 t} \\
w_{2 t} \\
w_{3 t} \\
w_{4 t}
\end{array}\right) \\
& \binom{y_{1 t}}{y_{2 t}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \times\left(\begin{array}{l}
x_{1 t} \\
x_{2 t} \\
\dot{x}_{1 t} \\
\dot{x}_{2 t}
\end{array}\right)+\left(\begin{array}{l}
v_{1 t} \\
v_{2 t} \\
v_{3 t} \\
v_{4 t}
\end{array}\right)
\end{aligned}
$$

LDS as DGM

$$
\begin{array}{ll}
X_{1 t-1} \longrightarrow X_{1 t} \\
X_{2 t-1} \longrightarrow X_{2 t} \rightarrow Y_{1 t}
\end{array} \quad \mathbf{A}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For linear Gaussian systems, sparse matrices = sparse graphs

Dynamic Bayes Nets

If the variables are discrete, the transition matrix of the compound model (all 4 variables) is not sparse or structured. So the graph structure is crucial.

See ch 15

