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Stat 521A
Lecture 23
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Outline

• Basic issues (19.1)

• Gradient ascent for DGMs (19.2.1)
• EM for DGMs (19.2.2)

• Variational EM (19.2.4)
• MCMC for param inf in DGMs (19.3.2)

• Variational Bayes (19.3.3)
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MCAR

• Let Xi be the true value of variable I, and Oi in {0,1} 
be whether it is observed or not. Yi(Oi) = Xi or ?.

• Defn 19.1.6. Missing completely at random (MCAR) 
means X \perp O.

• Given MCAR, we can safely ignore the missing 
variables (for which Ox=1), since they tell us 
nothing about theta

p(θ, ψ|Y1, Y2) = p(θ|X1)p(ψ|O1, O2)
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Missing at random

• Defn 19.1.8. Let H be hidden vars, V be visible 
vars, and O be observation status. Missing at 
random means O \perp H | V.

• Intuitively, although O may depend on some of the 
variables Xv, since we observe Xv, we do not learn 
anything new about Xh. 
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Benefits of MAR

• Thm 19.1.9. Given MAR, and a factored prior, 
p(θ,ψ|D) = p(θ|Xv) p(ψ|Xv,O)

• Pf.
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Counter examples to MAR

• Collaborative filtering: people are more likely to rate 
movies they strongly like or dislike.

• Medicine: if a patient does not have a check mark 
in the “had X-ray” field, they probably don’t have 
any bone problems. However, if we explicitly write 
the “primary complaint” as the cause of which tests 
are performed, MAR is restored (since we observe 
why O(Xray)=0). 

• Henceforth we will assume MAR.
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Multimodality

• For fully observed DGMs, likelihood is convex 
(assuming each CPD is convex), and hence has a 
single global maximum.

• When we have missing data, the likelihood is a 
mixture of up to K^n modes, corresponding to every 
possible completion pattern
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Identifiability

• Sometimes we cannot uniquely identify the 
parameters, even given infinite data

• Eg The experimenter either tosses coin 1 or coin 2, 
but we don’t know which. The model is

• We have eg. p(D|θH=0.5, θ1=0.5, θ2=0.5) = 
p(D|θH=0.5, θ1=0.8, θ2=0.2). The problem is 
underconstrained. 
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Identifiability

• Defn 19.1.13. A parameter θ is identifiable if there 
is no θ’ ≠ θ st p(X|θ)=p(X|θ’). A model is identifiable 
if all θ are identifiable.

• A mixture model cannot be identifiable since we 
can always arbitrarily permute the hidden labels, 
and the corresponding parameters.

• Hence we  should not ask things like “what is the 
prob. Xi belongs to cluster k” but rather “what is the 
prob Xi and Xi belong to the same cluster”. 
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Gradient descent for DGMs

• We can find a local maximum using gradient based 
methods.

• Consider tabular CPDs.

• Thm 19.2.1. 

• Pf. 

∂

∂θijk
p(e) =

p(xi = k,xπi = j, e)

θijk

∂

∂θijk

∏

i′

θi′,xi′ ,xi′ =
∏

i′ �=i

θi′,xi′ ,xi′ I(xi = j, xi = k)

=
p(e)

θijk
I(xi = j, xi = k)
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Gradient descent for DGMs

• Pf contd

• Thm 19.2.2.

• Chain rule for non-tabular CPDs.
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Gradient algorithms

• Gradient requires inference to compute family 
marginals.

• Need to enforce positivity and sum-to-one 
constraints (for discrete) eg reparameterize to 
unconstrained form

• Need to enforce positive definite – optimize wrt the 
cholesky factors.

• Have to specify step-size and search direction (use 
black-box algorithm).

• EM is much easier…
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EM for DGMs

• Key intuition: if we knew the values of H, we could 
compute the MLEs/MAP estimates for θ easily. So 
we infer H|θ and then estimate θ|H. For the latter, 
we just need the expected sufficient statistics. For 
tabular CPDs, this is just a table of expcted counts

• E step

• M step

•



15

Pseudocode
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ECDLL

• Define expected complete data log likelihood, wrt Q 
distribution over H|D

• For tabular CPDs, we have
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ECDLL for exp fam

• The key to making EM simple for expfam models is  
that the log-likelihood is linear in the sufficient 
statistics
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Choosing Q (for E step)

• Define

• Thm 19.2.5.

• From (2), ECDLL is lower bound on LL.

• From (1), if Q=p(H|D,\theta), then bound is tight.
• EM alternates between optimizing Q and optimizing 

\theta. Can do partial updates.
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Convergence

• Thm 19.2.6. If we do exact EM (so Q=p(H|D,theta)), 
then the LL never decreases
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Convergence cont’d
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Rate of convergence

• Initially fast, then very slow; can switch over to 
conjugate gradient near optimum

• EM has linear convergence rate
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Local maxima

• Maxima can differ a lot in quality.

• Can do multiple restart, killing off some runs early if 
they look bad (as in beam search).
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Assessing convergence

• Can check whether parameters stop changing or 
LL stops changing. Can be quite different.

• Recall 

• If p(x,u|o[m]) small, gradient is small, else O(M)
• Hence effects of param on LL can be small or 

large.
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Accelerating convergence

• Hard assignment EM (eg Kmeans).  E step is 
searching over discrete assignments; this tends to 
converge faster (but to a worse solution).

• Hybrid EM/CG

• Over relaxation: step size > 1.
• Stochastic EM: since Q(H) = prod_m Q(hm|om), we 

can do inference on only a subset of the datacases
(mini-batch) and then do an M step

• (Monte Carlo EM: sampling in the E step)
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Example: fitting planes to 3d point clouds
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Variational EM

• Restrict Q distribution in E step to a tractable 
family, rather than p(H|D,theta)

• Eg do mean-field in the E step, then regular M step
• Maximizes a lower bound on the LL
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MCMC

• Can compute p(θ,H|D) using standard algorithms

• Parameter collapsed particles: sample θ, compute 
p(H|D) analytically

• Data completion collapsed particles: sample H, 
compute p(θ|H,D) analytically
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Marginalizing out H

• Bayesian Mixture model

Have to use MH
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Marginalizing out \theta

Collapsed Gibbs sampling
Cf DP mixtures
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Variational Bayes

• Min KL(Q|P) where we assume

• Thm 19.3.6. If we have global param independence 
and Q(θ,H)=Q(θ) Q(H) then

• Hence we can optimize each Q(h[m]) separately –
just like inference per case in the E step – and then 
optimize each Q(\theta_i) separately – just like 
optimizing each family in the M step

• E step: we do inference with expected params
• M step: we fit a distribution
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VB for MixBernoulli

Beta      Beta Bernoulli

thetaH

H thetaXi
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VB update for H[m]
Regular E step

VB version
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Variational methods

• From Lecture 10:

• Minimize

• This always increases the lower bound and will 
always converge

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)
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Mean field approximation

• Let us assume the approximate posterior is fully 
factorized

• Then the objective (negative free energy) is

• Eg 4x4 grid O(ne K2) for energy, O(ne K) for H

F (P̃ , Q)
def
= HQ(x) +

∑

c

EXc∼Q lnφc(Xc)

=
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)

Q(x) =
∏

i

Qi(xi)
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Convexity

• Objective is concave in each arg (entropy is concave in 
each Q_i, expected energy is linear in Q_i)

• The set of completely factorized distributions is not convex

• Hence we are optimizing the objective over a non-convex 
space, and will be subject to local maxima

• Let us derive equations that characterize the fixed points. 
These could correspond to saddle points or local minima, 
but such points are unstable and unlikely to be the result of 
our iterative update scheme.

Q3(x) = λ
∏

i

Q1(xi) + (1− λ)
∏

i

Q2i (xi)
Not factorized

F (P̃ , Q) =
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)
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Notation

• Define

〈f(xh)〉
def
=

∑

xh

[
∏

i∈h

Qi(xi)

]

f(xh)

〈f(xh)〉j,k
def
=

∑

xh\xj




∏

i∈h,i �=j

Qi(xi)



 f(xh|xj = k)

〈f(xh)〉 =
∑

k

Qj(xj = k)〈f(xh)〉j,k

ln p(xv) ≥
∑

c

〈lnφc(xc)〉+
∑

i

H(Qi)

=
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’s
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Mean field equations

ln p(xv) ≥
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

def
= L(Qj)

Sj,k
def
=

∑

c:j∈c

〈lnφc(xc)〉j,k

L(Qj) =
∑

k

Qj(k)(Sj,k − lnQj(k)) + C

L(Qj , λ)
def
= L(Qj) + λ(

∑

k′

Qj(k
′)− 1)

∂

∂Qj(k)
L(Qj , λ) = Sj,k − lnQj(k) − 1 + λ = 0

Qj(k) = exp(Sj,k) exp(λ− 1)

=
1

Zj
exp(

∑

c

〈lnφc(xc)〉j,k)
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Example: grid
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EM

• Suppose we want to find a MAP estimate

• If we have latent variables Z we can use EM

• E step: compute expected complete data log joint

• M step: set

max
θ
log p(θ) +

∑

n

log p(xn|θ)

f(θ, θold) = log p(θ) +
N∑

n=1

∑

z

p(z|xn, θold) log p(z, xn|θ)

θnew = argmax f(θ, θold)
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Variational EM

• Consider the negative free energy

• Earlier we showed this is a lower bound on the log-
likelihood

• Where the bound is tight if
• E step: find Qn(z) that maximize

• M step: find \theta that maximize

F (x,Q, θ) =
∑

z

Q(z) log p(x, z|θ) +H(Q)

Q∗(z) = p(z|x, θ)

F (x,Q, θ) = lnZ(x, θ)−D(Q||p(z|x, θ))

log p(x|θ) = lnZ = max
Q
F (x,Q, θ) = F (x,Q∗, θ) ≥ F (x,Q, θ)

log p(θ) +
∑

n

F (xn, Qn, θ)

F (xn, Qn, θold)
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Variational EM

• An exact E step is equivalent to setting

• The corresponding M step maximizes 

• Since H(Qn) is independent of θ, this reduces to the 
standard EM algorithm.

• Generalized EM merely increases (not maximizes) 
θ in the M step.

• Similarly we can simply improve Qn in the E step

∑

n

F (xn, Qn, θ) =
∑

n

[
∑

z

p(z|xn, θold) log p(z, xn|θ)] +H(Qn)

= f(θ, θold) +
∑

n

H(Qn)

Qn(z) = p(z|xn, θold)

Neal and Hinton, “A new view of the EM algorithm”, 1998
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Variational Bayes

• We can replace the point estimate of θ with a 
distribution and try to minimize

• The distinction between E and M vanishes: we are 
just doing sequential updates of Q(Zn) and Q(θ)

• This gives us the benefits of  being Bayesian for the 
same computational speed as EM

D(Q(z1:N , θ|x1:N )||p(z1:N , θ|x1:N ))



46

VB for univariate Gaussian

Gamma

Gaussian

Bishop p471
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VB for univariate Gaussian

Green = exact posterior (NormalGamma), blue = factorized approximation

At convergence
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VB for mixtures of Gaussians

Multinomial (soft responsibilities), as in EM,
except we used expected parameters rather than plug-in

Model
Inference
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Automatic model selection

• Recall π ~ Dir(α). If α << 1, we prefers skewed π
and hence sparse z. 

• MAP estimate from regular EM is

• Posterior mean estimate from VB is

π̂k =

∑
n rnk + αk − 1∑
k(rnk + αk − 1)

=
Nk + α− 1

N +Kα−K

π̂k =

∑
n rnk + αk∑
k(rnk + αk)

=
Nk + α

N +Kα
→

α

N +Kα
→0
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Selecting K with one run of VB
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Variational message passing

• Consider a DAG model

• The mean field equations are

• The only terms that depend on x_j are in x_j’s
Markov blanket

• If all CPDs have conjugate-exponential form, the 
VB updates can be converted into a msg passing 
algorithm

• VIBES software (John Winn)
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Structured variational approx

• Rather than assuming Q is fully factorized, we can 
use any structure for which computing the 
expectations of ln φc and the entropy is tractable

φ = model, ψ = approx


