#### Stat 521A Lecture 2

1

# Outline

- DAGs
  - global Markov (3.3)
  - deriving graphs from distributions (3.4)
- UGs
  - Global Markov property (4.3.1)
  - Parameterization (4.2)
  - Gibbs distributions, energy based models (4.4.1)
  - Local and pairwise Markov properties (4.3.2)
  - From distributions to graphs (4.3.3)

## Active trails

- Whenever influence can flow from to Y via Z, we say that the trail X <-> Y <-> Z is active.
- Causal trail: X -> Z -> Y. Active iff Z not obs.
- Evidential trail: X <- Z <- Y. Active iff Z not obs
- Common cause: X <- Z -> Y. Active iff Z not obs
- Common effect; X -> Z <- Y. Active iff either Z or one of its descendants is observed.
- Def 3.3.1. Let G be a BN structure, and X1 <-> ... <-> Xn be a trail in G. Let E be a subset of nodes. The trail is active given E if
- Whenever we have a v-structure X<sub>i-1</sub> -> X<sub>i</sub> <- X<sub>i+1</sub>, then X<sub>i</sub> or one of its desc is in E
- No other node along the trail is in E

## Example

- D-> G <- I ->S not active for E={}
- D-> G <- I ->S is active for E={L}
- D-> G <- I ->S not active for E={L,I}
- Non-monotonic



## d-separation

Def 3.3.2, We say X and Y are d-separated given Z, denoted d-sep\_G(X;Y|Z), if there is no active trail between any node in X to any node in Y, given Z. The set of such independencies is denoted

 $I(G) = \{ X \perp Y | Z : \mathsf{dsep}_G(X; Y | Z) \}$ 

- Thm 3.3.3. (Soundness of dsep). If P factorizes according to G, then  $I(G) \subseteq I(P)$ .
- False thm (completeness of dsep). For any P that factorizes according to G, if  $X \perp Y \mid Z$  in I(P), then desp<sub>G</sub>(X;Y|Z) (i.e., P is faithful to G)

# Faithfulness

- Def 3.3.4. A distribution P is faithful to G if, whenever X ⊥ Y
   | Z in I(P), we have dsep\_G(X;Y|Z) i.e., there are no "non-graphical" independencies buried in the parameters
- A simple unfaithful distribution, with Imap A->B:

Such distributions are "rare"

 Thm 3.3.7. For almost all distributions P that factorize over G (ie except for a set of measure zero in the space of CPD parameterizations), we have that I(P)=I(G)

#### Markov equivalence

- A DAG defines a set of distributions. Different DAGs may encode the same set and hence are indistinguishable given observational data.
- Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2). The set of all DAGs can be partitioned into I-equivalence classes.

# Identifying I-equivalence

- Def 3.3.11. The skeleton of a DAG is an undirected graph obtained by dropping the arrows.
- Thm 3.3.12. If G1 and G2 have the same skeleton and the same v-structures, they are I-equivalent.
- However, there are structures that are I-equiv but do not have same v-structures (eg fully connected DAG).
- Def 3.3.13. A v-structure X->Z<-Y is an immorality if there is no edge between X and Y (unmarried parents who have a child)
- Thm 3.3.14. G1 and G2 have the same skeleton and set of immoralities iff they are I-equiv.













## Markov properties of DAGs

- DF: F factorizes over G
- DG:  $I(G) \subseteq I(P)$
- DL:  $I_I(G) \subseteq I(P)$





## Deriving graphs from distributions

- So far, we have discussed how to derive distributions from graphs.
- But how do we get the DAG?
- Assume we have access to the true distribution P, and can answer questions of the form

 $P \models X \perp Y | Z$ 

- For finite data samples, we can approximate this oracle with a CI test – the frequentist approach to graph structure learning (see ch 18)
- What DAG can be used to represent P?

# Minimal I-map

- The complete DAG is an I-map for any distribution (since it encodes no CI relations)
- Def 3.4.1. A graph K is a minimal I-map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from K renders it not an I-map.
- To derive a minimal I-map, we pick an arbitrary node ordering, and then find some minimal subset U to be X<sub>i</sub>'s parents, where

 $X_i \perp \{X_1, \ldots, X_{i-1}\} \setminus U | U$ 

• (K2 algorithm replace this CI test with a Bayesian scoring metric: sec 18.4.2).

## Effect of node ordering

- "Bad" node orderings can result in dense, unintuitive graphs.
- Eg L,S,G,I,D. Add L. Add S: must add L as parent, since  $P \not\models L \perp S$  Add G: must add L,S as parents.



Figure 3.8 Three minimal 1-maps for  $P_{elasteric}$  induced by different orderings: [4] D, I, S, G, L [b) L, S, G, I, D [U] L, D, S, I, G

## Perfect maps

- Minimal I-maps can have superfluous edges.
- Def 3.4.2. Graph K is a perfect map for a set of independencies I if I(K)=I. K is a perfect map for P if I(K)=I(P).
- Not all distributions can be perfectly represented by a DAG.
- Eg let Z = xor(X,Y) and use some independent prior on X, Y. Minimal I-map is X -> Z <- Y. However, X ⊥ Z in I(P), but not in I(G).
- Eg. A  $\perp$  C | {B,D} and B  $\perp$  D | {A,C}, A dep | B,C,

etc



# Finding perfect maps

- If P has a perfect map, we can find it in polynomial time, using an oracle for the CI tests.
- We can only identify the graph up to I-equivalence, so we return the PDAG that represents the corresponding equivalence class.
- The method\* has 3 steps (see sec 3.4.3)
  - Identify undirected skeleton
  - Identify immoralities
  - Compute eclass (compelled edges)
- This algorithm has been used to claim one can infer causal models from observational data, but this claim is controversial



## Global Markov property of UGs

- Def 4.3.1. The path X\_1 ... X\_k is active given E if none of the nodes on the path are in E.
- Def 4.3.2. The global Markov assumptions associated with a UG H are

 $I(H) = \{ X \perp Y | Z : \mathrm{sep}_H(X; Y | Z) \}$ 

•eg. A  $\perp$  C | {B,D} and B  $\perp$  D | {A,C}





Monotonic, unlike d-separation

 $\operatorname{sep}_H(X;Y|Z) \Rightarrow \operatorname{sep}_H(X;Y|Z') \forall Z \subset Z'$ 



#### Parameterization

- To specify a specific distribution, we need to associate parameters (local distributions) with the graph.
- CPDs cannot be used because they are not symmetric, and the chain rule need not apply.
- Marginals cannot be used because a product of marginals does not define a consistent joint.
- Instead we multiply a product of factors (potentials), one per maximal clique, and then compute a global normalization constant Z (partition function)



 $\mathsf{P}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}) = 1/Z \ \phi(\mathsf{A},\mathsf{B},\mathsf{D}) \ \phi(\mathsf{B},\mathsf{C},\mathsf{D})$ 

 $Z = \sum \{A,B,C,D\} \phi(A,B,D) \phi(B,C,D)$ 

## Misconception network

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A               |               |                                   |                      |       | ssig    | nme         | nt -    | Unnormalized | Normalized          |
|--------------------------------------------------------|-----------------|---------------|-----------------------------------|----------------------|-------|---------|-------------|---------|--------------|---------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                 |               |                                   |                      |       | $0^{n}$ | $c^{\circ}$ | $d_{0}$ | 300000       | 0.04                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                 | $a^0$         | $b^0$                             | $c^0$                | $d^1$ | 300000  | 0.04        |         |              |                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | U v             |               |                                   |                      |       |         | $c^1$       | $d^0$   | 300000       | 0.04                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                 |               |                                   |                      |       | $b^0$   | $c^1$       | $d^1$   | 30           | $4.1 \cdot 10^{-6}$ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                 |               |                                   |                      |       | $b^1$   | $c^0$       | $d^0$   | 500          | $6.9 \cdot 10^{-5}$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                 |               |                                   |                      |       | $b^1$   | $c^0$       | $d^{1}$ | 500          | $6.9 \cdot 10^{-5}$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                 | Ŭ             |                                   |                      | $a^0$ | $b^1$   | $c^1$       | $d^0$   | \$000000     | 0.69                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\phi_1[A,B]$   | $\phi_2[B,C]$ | $\phi_2[C, D]$                    | $\phi_4[D,A]$        | $a^0$ | $b^1$   | $c^1$       | $d^1$   | 500          | $6.9 \cdot 10^{-5}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |                 |               | ، مہ مہ ا                         | ، بير<br>100 °م °م ا | $a^1$ | $b^0$   | $c^0$       | $d^0$   | 100          | $1.4 \cdot 10^{-5}$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0 61 5          | $b^0 e^1 = 1$ | cº dº 100                         | $a^{0} a^{1} 1$      | $a^1$ | $b^0$   | $c^0$       | $d^1$   | 1000000      | 0.14                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $b^{1} b^{0} 1$ | $b^1 c^0 = 1$ | c <sup>1</sup> d <sup>0</sup> 100 | $a^{1} a^{0} 1$      | $a^1$ | $b^0$   | $c^1$       | $d^0$   | 100          | $1.4 \cdot 10^{-5}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 0 10            | 0 6 100       | c & 1                             | a a 100              | $a^1$ | $b^0$   | $c^1$       | $d^1$   | 100          | $1.4 \cdot 10^{-5}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |                 |               |                                   |                      | $a^1$ | $b^1$   | $c^0$       | $d^0$   | 10           | $1.4 \cdot 10^{-6}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |                 |               |                                   |                      | $a^1$ | $b^1$   | $c^0$       | $d^1$   | 100000       | 0.014               |
| $a^1 b^1 c^1 d^1$ 100000 0.014                         |                 |               |                                   |                      | $a^1$ | $b^1$   | $c^1$       | $d^0$   | 100000       | 0.014               |
|                                                        |                 |               |                                   |                      | $a^1$ | $b^1$   | $c^1$       | $d^1$   | 100000       | 0.014               |

 $a^0$  $a^0$  $a^1$  $a^1$ 

## Multiplying factors

 $\mathbb{R}^{2}$ 

 $\mathbb{R}^{N}$ 

61 E -

Ъř.

10 M

6. F.

10.

8 F.

 $\mathbb{R}^{2^{n}}$ 

8 <sup>8</sup> -

 $e^{it}$ 

이라이라 ~ 이것한

白色白了 人口通知

D. 8-D.2 - D.D.8

D 8 D 7 + D 18

D. 2 D. 5 + D. D.5

D D D T = D D T

 $D \oplus C = D$ 

D D Z = D

D.3.D.5 - D.15

 $D_1 > D_2 T + D_2 T$ 

D 5.00× 0.05

D. 9-D.2 × D.28

• Def 4.2.2. We multiply factors by matching up corresponding dimensions  $\Psi(X,Y,Z) = \phi_1(X,Y) \cdot \phi_2(Y,Z)$ 

|                   |                           |     |                |                     |                      |                          |   | $a^{1}$          | $b^{\mu}$        | $-\pi^{+}$   |
|-------------------|---------------------------|-----|----------------|---------------------|----------------------|--------------------------|---|------------------|------------------|--------------|
| _                 |                           |     | 1              |                     |                      |                          |   | $-6^{1}$         | $\mathbb{R}^{n}$ | $-\pi^{\mu}$ |
| - et              | . to 2                    | 0.5 | $\sim 10^{-1}$ |                     |                      |                          | _ | $-10^{10}$       | $-b^{2}$         | $-\pi^{2}$   |
| а.                | $\mathbf{b}_{\mathbf{c}}$ | 0,8 | $\sim$         | ${\mathfrak p}_{i}$ | ${\bf e}^{\pm}$      | 0.8                      |   | 10 <sup>17</sup> | - 6.4            | $-\pi^{\mu}$ |
| $e^{t}$ .         | $\mathbb{R}^{n}$          | D.1 | <b>₩</b>       | $\mathbb{R}^{n}$    | ${\mathbb R}^{2^n}$  | $\mathbb{D},\mathcal{T}$ |   |                  | 6.4              |              |
| ${\rm e}^{\rm c}$ | ${\mathbb P}^{r}$         | D   | Ŕ              | ${}^{b^{*}}$        | $\mathbb{R}^{1}$     | 0.1                      |   | 1.1              | 1.1              | - 10         |
| ${\rm e}^{\rm r}$ | $b^{\pm}$                 | 0.3 | 12             | $b^{\mu}$           | ${\cal R}^{\rm eff}$ | 0.7                      |   |                  | 64               |              |
| $e^{i}$           | ${\bf b}_{i}$             | 0.9 | 1              |                     |                      |                          |   |                  | 61               | - 12         |

#### Factors are not marginals

- In the misconception network, the marginal on A,B is
  - $a^0$   $b^0$  0.13  $a^0$   $b^1$  0.69  $a^1$   $b^0$  0.14  $a^1$   $b^1$  0.04
- But the local clique potential is
  - $a^0 \ b^0 \ 30$   $a^0 \ b^1 \ 5$   $a^1 \ b^0 \ 1$  $a^1 \ b^1 \ 10$
- Factors are local affinities or preferences, but get combined with other terms in a non-local way

## Factorization and I-maps

- Thm 4.3.3. If P factorizes over H, then H is an Imap for P, ie. I(H) ⊆ I(P). (Soundness of separation.)
- Proof. Suppose Z separates X from Y. Then we can partition the factors such that  $p(\mathbf{x}) = (1/Z)f(X,Z)g(Y,Z)$  QED.
- Def 2.1.11. A distribution is positive if P(x)>0 for all x.
- Thm 4.3.4 (Hammersley Clifford). If P is positive, and H is an I-map for P, then P factorizes over H:

$$p(\mathbf{x}) = (1/Z) \prod_{c} \phi_c(\mathbf{x}_c)$$



# Gibbs distributions

• Def 4.2.3. A Gibbs distribution is defined as

$$p(X_1,\ldots,X_n) = \frac{1}{Z}\phi_1(D_1) \times \cdots \times \phi_m(D_m)$$

- The D<sub>i</sub> are the domains or scopes of the factors. We can infer the graph by connecting up all nodes in the same domain. If the D<sub>i</sub> are on pairs of nodes (edges), we call it a pairwise Markov random field.
- For a complete graph, we could have one factor per edge or a single clique potential for the whole graph.

## Factor graphs

- For a complete graph, we could have one factor per edge or a single clique potential for the whole graph.
- Factor graphs can distinguish these cases.
- Def 4.4.1. Square nodes = factors, ovals = rv's.



## Energy based models

 It is common to work with energies = negative log factors/ potentials (low energy = more probable)

$$\phi(D) = \exp(-\epsilon(D)) \quad p(x_1, \dots, x_n) = 1/Z \exp\left[-\sum_{i=1}^{\infty} \epsilon_i(D_i)\right]$$

| $\epsilon_1[A,B]$                                                    |                                  |                            | $\epsilon_2[B,C]$ |                  |                     |                | $\epsilon_2[C$  | [,D]                     | $\epsilon_4[D,A]$ |                                                |                     |
|----------------------------------------------------------------------|----------------------------------|----------------------------|-------------------|------------------|---------------------|----------------|-----------------|--------------------------|-------------------|------------------------------------------------|---------------------|
| a <sup>0</sup><br>a <sup>0</sup><br>a <sup>1</sup><br>a <sup>1</sup> | $b^0$<br>$b^1$<br>$b^0$<br>$b^1$ | -3.4<br>-1.61<br>0<br>-2.3 | րդ<br>հր<br>հր    | ਦੀ<br>ਟੂਪ<br>ਟੂਪ | -4.61<br>0<br>-4.61 | ئے<br>ہے<br>ہے | ਲ<br>ਰਾਹ<br>ਰਾਹ | 0<br>-4.61<br>-4.61<br>0 | 4<br>4<br>4<br>4  | 0 a <sup>0</sup><br>a1<br>a <sup>0</sup><br>a1 | -4.61<br>0<br>-4.61 |
| $\phi_1[A,B]$                                                        |                                  | $\phi_2[B,C]$              |                   |                  | ¢                   | $_{2}[C,$      | D]              | $\phi_4[D,A]$            |                   |                                                |                     |
| $a^0$                                                                | $b^0$                            | 30                         | $b^0$             | $c^0$            | 100                 | $c^0$          | $d^0$           | 1                        | $d^0$             | $a^0$                                          | 100                 |
| $a^0$                                                                | -01<br>                          | 5                          | - 80<br>-         | $c^1$            | 1                   | $c^0$          | di .            | 100                      | $a^{\alpha}$      | $a^1$                                          | 1                   |
| $a^1$                                                                | $b^0$                            | 1                          | $b^1$             | $c^0$            | 1                   | $c^1$          | $d^0$           | 100                      | $d^{1}$           | $a^0$                                          | 1                   |
| $a^1$                                                                | $b^1$                            | 10                         | $b^1$             | $c^1$            | 100                 | $c^1$          | $d^1$           | 1                        | $d^1$             | $a^1$                                          | 100                 |

m

# Ising model

- $X_i = +1$  if atom is spin up,  $X_i = -1$  if spin down
- Define edge energy as

edge energy as  

$$\epsilon_{i,j}(x_i, x_j) = -w_{i,j} x_i x_j$$
 $\phi_{i,j} = \begin{pmatrix} -w_{i,j} & w_{i,j} \\ e & e \\ e &$ 

- If spins equal (aligned), product is +1, else -1.
- $w_{i,j} = 0.5$  (E(anti-aligned)-E(aligned)). If +ve, model aligns atoms (ferromagnetic). If -ve, spins should be different (anti-ferromagnetic).
- Define local node energy (external field) as

$$\epsilon_i(x_i) = -u_i x_i$$

**Overall distribution** 

$$p(x_1, \dots, x_n) = \frac{1}{Z} \exp\left(\sum_{i < j} w_{i,j} x_i x_j + \sum_i u_i x_i\right)$$

# Ising models capture pairwise correlation

• Energy can be written as

$$\begin{aligned} \epsilon(\mathbf{x}) &= -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i \\ &= -\frac{1}{2} \mathbf{x}^T \mathbf{W} \mathbf{x} - \mathbf{u}^T \mathbf{x} \\ &= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{W} (\mathbf{x} - \boldsymbol{\mu}) + c \\ \boldsymbol{\mu} &= -\mathbf{W}^{-1} \mathbf{u} \\ c &= \frac{1}{2} \boldsymbol{\mu}^T \mathbf{W} \boldsymbol{\mu} \end{aligned}$$

## Phase transition

The strength of the interactions is modulated by a global temperature parameter T

$$p(\mathbf{x}) = \frac{1}{Z} \exp\left(-\epsilon(\mathbf{x})/T\right)$$

- Large temperature "flattens" the energy landscape and makes the uniform distribution most probable
- Small temperature makes the distribution "peaky"
- One can compute the density of pure vs mixed state configurations as a function of T (as the number of atoms ->∞). There is often a phase transition: as T exceeds a critical temperature, there is a sudden regime change.
- This has computational analogs in the mixing time of Markov chains.

#### Samples from an Ising model



#### See GibbsDemoIsing in PMTK/bookCode

## Image denoising





#### See GibbsDemoIsing in PMTK/bookCode

# Hopfield network

- A Hopfield network is a stochastic, recurrent neural network.
- It is equivalent to a fully connected Ising model.
- Weights are learned.
- Often used for associative memory/ pattern completion.



Test Image 60% Occlusion

Interm Result fter 5 Iterations

Recoverd Image

## Boltzmann machine

- A Boltzmann machine is a Hopfield network (Ising model) with hidden nodes.
- A restricted Boltzmann machine (RBM) is a bipartite BM. This supports efficient block Gibbs sampling (see ch 12).





## Local Markov assumption

- So far, we have defined the global Markov assumptions using simple graph separation.
- We now consider some variants.
- The boundary of a node α, bd(α), is all nodes which are directly connected to it.
- The closure is  $cl(\alpha) = bd(\alpha)U \alpha$ .
- Def 4.3.9. The local Markov properties of H are

 $I_l(H) = \{ \alpha \perp S \setminus cl(\alpha) | bd(\alpha) \}$ 

 i.e. a is indep of rest given its Markov blanket bd(a).



#### Pairwise Markov assumption

• Def 4.3.7. The pairwise Markov independencies associated with H are

 $I_p(H) = \{ \alpha \perp \beta | S \setminus \{ \alpha, \beta \} : \alpha - \beta \notin H \}$ 

• i.e., a is independent of b given rest if not directly connected.

#### Markov properties

- G:  $I(G) \subseteq I(P)$
- L:  $I_I(G) \subseteq I(P)$
- $P: I_p(G) \subseteq I(P)$
- If P is positive, all are equivalent.



Based on Jordan ch 4, thm numbers refer to Koller&Friedman

#### Problems caused by determinism

- If the distribution is not positive, pairwise indep does not imply local or global indep.
- Ex 4.3.15. Let P be any distribution over (X<sub>1</sub>,...,X<sub>n</sub>). Make 3 identical copies of each variable, X<sub>i</sub>, X<sub>i</sub>', X<sub>i</sub>''. Let H be the empty MRF on this expanded state space. This satisfies the pairwise Markov properties eg X<sub>i</sub> and X<sub>i</sub>' are independent, because the remaining nodes contain X<sub>i</sub>''. Also, X\_i and X\_j are independent, because the remaining nodes contain X\_i'. However, H does not satisfy local or global indep.



## From distributions to graphs

- How do we derive a graph from a distribution?
- For positive distributions, there are two approaches, based on pairwise and local prop.
- Thm 4.3.17. Let P be a +ve dist. Let H be an MRF in which we add an edge X-Y for all X,Y which cannot be made independent when conditioned on any other set:

 $P \not\models (X \perp Y | \mathcal{X} \setminus \{X, Y\})$ 

Then H is the unique minimal I-map for P.

## From distributions to graphs

 Thm 4.3.18. Let P be a +ve dist. For each node X, let MB\_P(X) be a minimal set of nodes U rendering X indep of the rest:

 $X \perp \mathcal{X} \setminus \{X\} \setminus U | U \in I(P)$ 

Add an edge X-Y for all Y in MB\_P(X). Then H is a unique minimal I-map for P.

