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Outline

• DAGs
– global Markov (3.3)
– deriving graphs from distributions (3.4)

• UGs
– Global Markov property (4.3.1)
– Parameterization (4.2)
– Gibbs distributions, energy based models (4.4.1)
– Local and pairwise Markov properties (4.3.2)
– From distributions to graphs (4.3.3)
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Active trails

• Whenever influence can flow from  to Y via Z, we say that 
the trail X <-> Y <-> Z is active.

• Causal trail: X -> Z -> Y. Active iff Z not obs.
• Evidential trail: X <- Z <- Y. Active iff Z not obs
• Common cause: X <- Z -> Y. Active iff Z not obs
• Common effect; X -> Z <- Y. Active iff either Z or one of its 

descendants is observed.
• Def 3.3.1. Let G be a BN structure, and X1 <-> … <-> Xn be 

a trail in G. Let E be a subset of nodes. The trail is active 
given E if

• Whenever we have a v-structure Xi-1 -> Xi <- Xi+1, then Xi or 
one of its desc is in E

• No other node along the trail is in E
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Example

• D-> G <- I ->S not active for E={}

• D-> G <- I ->S is active for E={L}
• D-> G <- I ->S not active for E={L,I}

• Non-monotonic
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d-separation

• Def 3.3.2,  We say X and Y are d-separated given 
Z, denoted d-sep_G(X;Y|Z),  if there is no active 
trail between any node in X to any node in Y, given 
Z. The set of such independencies is denoted

• Thm 3.3.3. (Soundness of dsep). If P factorizes 
according to G, then I(G) ⊆ I(P).

• False thm (completeness of dsep). For any P that 
factorizes according to G, if X ⊥ Y | Z in I(P), then 

despG(X;Y|Z) (i.e., P is faithful to G)

I(G) = {X ⊥ Y |Z : dsepG(X;Y |Z)}
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Faithfulness
• Def 3.3.4. A distribution P is faithful to G if, whenever X ⊥ Y 

| Z in I(P), we have dsep_G(X;Y|Z) i.e., there are no “non-
graphical” independencies buried in the parameters

• A simple unfaithful distribution, with Imap A->B:

•

Such distributions are “rare”
• Thm 3.3.7. For almost all distributions P that factorize over 

G (ie except for a set of measure zero in the space of CPD 
parameterizations), we have that I(P)=I(G)
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Markov equivalence

• A DAG defines a set of distributions. Different DAGs may 
encode the same set and hence are indistinguishable given 
observational data.

• Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2). 
The set of all DAGs can be partitioned into I-equivalence 
classes.

• Def 3.4.11. Each can be represented by a class PDAG: only 
has a directed edge if every member shares that edge.
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Identifying I-equivalence 

• Def 3.3.11. The skeleton of a DAG is an undirected 
graph obtained by dropping the arrows.

• Thm 3.3.12. If G1 and G2 have the same skeleton 
and the same v-structures, they are I-equivalent.

• However, there are structures that are I-equiv but 
do not have same v-structures (eg fully connected 
DAG).

• Def 3.3.13. A v-structure X->Z<-Y is an immorality if 
there is no edge between X and Y (unmarried 
parents who have a child)

• Thm 3.3.14. G1 and G2 have the same skeleton 
and set of immoralities iff they are I-equiv.
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Examples
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Markov properties of DAGs

• DF: F factorizes over G
• DG: I(G) ⊆ I(P)  
• DL: Il(G) ⊆ I(P)  

Based on Jordan ch 4
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Deriving graphs from distributions

• So far, we have discussed how to derive 
distributions from graphs.

• But how do we get the DAG?

• Assume we have access to the true distribution P, 
and can answer questions of the form

• For finite data samples, we can approximate this 
oracle with a CI test – the frequentist approach to 
graph structure learning (see ch 18)

• What DAG can be used to represent P?

P |=X ⊥ Y |Z
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Minimal I-map

• The complete DAG is an I-map for any distribution 
(since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the 
removal of even a single edge from K renders it not 
an I-map.

• To derive a minimal I-map, we pick an arbitrary 
node ordering, and then find some minimal subset 
U  to be Xi’s parents, where

• (K2 algorithm replace this CI test with a Bayesian 
scoring metric: sec 18.4.2).

Xi ⊥ {X1, . . . , Xi−1} \ U |U
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Effect of node ordering

• “Bad” node orderings can result in dense, 
unintuitive graphs.

• Eg L,S,G,I,D. Add L. Add S: must add L as parent, 
since               .  Add G: must add L,S as parents.P � |=L ⊥ S
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Perfect maps

• Minimal I-maps can have superfluous edges.

• Def 3.4.2. Graph K is a perfect map for a set of 
independencies I if I(K)=I. K is a perfect map for P if 
I(K)=I(P).

• Not all distributions can be perfectly represented by 
a DAG.

• Eg let Z = xor(X,Y) and use some independent prior 
on X, Y. Minimal I-map is X -> Z <- Y. However, X 
⊥ Z in I(P), but not in I(G).

• Eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}, A dep | B,C, 

etc
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Finding perfect maps

• If P has a perfect map, we can find it in polynomial 
time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence, 
so we return the PDAG that represents the 
corresponding equivalence class.

• The method  has 3 steps (see sec 3.4.3)
– Identify undirected skeleton
– Identify immoralities
– Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer 
causal models from observational data, but this 
claim is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995

*
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Global Markov property of UGs

• Def 4.3.1. The path X_1 - … - X_k is active given E 
if none of the nodes on the path are in E.

• Def 4.3.2. The global Markov assumptions 
associated with a UG H are 

I(H) = {X ⊥ Y |Z : sepH(X ;Y |Z)}

•eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}

sepH(X;Y |Z)⇒ sepH(X ;Y |Z
′)∀Z ⊂ Z ′

Monotonic, unlike d-separation
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Parameterization

• To specify a specific distribution, we need to associate 
parameters (local distributions) with the graph.

• CPDs cannot be used because they are not symmetric, and 
the chain rule need not apply.

• Marginals cannot be used because a product of marginals
does not define a consistent joint.

• Instead we multiply a product of factors (potentials), one 
per maximal clique, and then compute a global 
normalization constant Z (partition function)

P(A,B,C,D) = 1/Z φ(A,B,D) φ(B,C,D)

Z = ∑_{A,B,C,D} φ(A,B,D) φ(B,C,D) 
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Misconception network

P(A,B,C,D) = 1/Z φ(A,B) φ(A,D) φ(C,D) φ(C,B)
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Multiplying factors

• Def 4.2.2. We multiply factors by matching up 
corresponding dimensions

� Ψ(X,Y,Z) = φ1(X,Y) · φ2(Y,Z)
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Factors are not marginals

• In the misconception network, the marginal on A,B 
is

• But the local clique potential is

• Factors are local affinities or preferences, but get 
combined with other terms in a non-local way
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Factorization and I-maps

• Thm 4.3.3. If P factorizes over H, then H is an I-
map for P, ie. I(H) ⊆ I(P). (Soundness of 

separation.)
• Proof. Suppose Z separates X from Y. Then we can 

partition the factors such that

QED.
• Def 2.1.11. A distribution is positive if P(x)>0 for all 

x.
• Thm 4.3.4 (Hammersley Clifford). If P is positive, 

and H is an I-map for P, then P factorizes over H:

p(x) = (1/Z)f(X,Z)g(Y, Z)

p(x) = (1/Z)
∏

c

φc(xc)
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Gibbs distributions

• Def 4.2.3. A Gibbs distribution is defined as

• The Di are the domains or scopes of the factors. 
We can infer the graph by connecting up all nodes 
in the same domain. If the Di are on pairs of nodes 
(edges), we call it a pairwise Markov random field.

• For a complete graph, we could have one factor per 
edge or a single clique potential for the whole 
graph.

p(X1, . . . ,Xn) =
1

Z
φ1(D1)× · · · × φm(Dm)
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Factor graphs

• For a complete graph, we could have one factor per 
edge or a single clique potential for the whole 
graph.

• Factor graphs can  distinguish these cases.

• Def 4.4.1. Square nodes = factors, ovals = rv’s.
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Energy based models

• It is common to work with energies = negative log 
factors/ potentials (low energy = more probable)

φ(D) = exp(−ǫ(D)) p(x1, . . . , xn) = 1/Z exp[−

m∑

i=1

ǫi(Di)]
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Ising model

• X_i = +1 if atom is spin up, X_i = -1 if spin down

• Define edge energy as

• If spins equal (aligned), product is +1, else -1. 
• w_{i,j} = 0.5 (E(anti-aligned)-E(aligned)). If +ve, 

model aligns atoms (ferromagnetic). If –ve, spins 
should be different (anti-ferromagnetic).

• Define local node energy (external field) as

• Overall distribution

ǫi,j(xi, xj) = −wi,jxixj

ǫi(xi) = −uixi

p(x1, . . . , xn) =
1

Z
exp




∑

i<j

wi,jxixj +
∑

i

uixi
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Ising models capture pairwise correlation

• Energy can be written as

ǫ(x) = −
∑

i<j

wi,jxixj −
∑

i

uixi

= − 1

2
xTWx − uTx

= − 1

2
(x − µ)TW(x− µ) + c

µ = −W−1u

c = 1

2
µTWµ
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Phase transition

• The strength of the interactions is modulated by a global 
temperature parameter T

• Large temperature “flattens” the energy landscape and 
makes the uniform distribution most probable

• Small temperature makes the distribution “peaky”
• One can compute the density of pure vs mixed state 

configurations as a function of T (as the number of atoms -> 
∞). There is often a phase transition: as T exceeds a critical 

temperature, there is a sudden regime change.
• This has computational analogs in the mixing time of 

Markov chains.

p(x) =
1

Z
exp (−ǫ(x)/T )
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Samples from an Ising model

See GibbsDemoIsing in PMTK/bookCode
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Image denoising

argmax_x P(x|y) is best guess of denoised image

p(x,y) = p(x)p(y|x) =
1

Z

∏

<ij>

φij(xi, xj)
∏

i

p(yi|xi)

See GibbsDemoIsing in PMTK/bookCode
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Hopfield network

• A Hopfield network is a stochastic, recurrent neural 
network.

• It is equivalent to a fully connected Ising model. 

• Weights are learned.
• Often used for associative memory/ pattern 

completion.
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Boltzmann machine

• A Boltzmann machine is a Hopfield network (Ising
model) with hidden nodes.

• A restricted Boltzmann machine (RBM) is a 
bipartite BM. This supports efficient block Gibbs 
sampling (see ch 12).
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Local Markov assumption

• So far, we have defined the global Markov 
assumptions using simple graph separation.

• We now consider some variants.

• The boundary of a node α, bd(α), is all nodes which 
are directly connected to it.

• The closure is cl(α) = bd(α)U α. 
• Def 4.3.9. The local Markov properties of H are

• i.e. a is indep of rest given
its Markov blanket bd(a). 

Il(H) = {α ⊥ S \ cl(α)|bd(α)}
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Pairwise Markov assumption

• Def 4.3.7. The pairwise Markov independencies 
associated with H are

• i.e., a is independent of b given rest if not directly 
connected.

Ip(H) = {α ⊥ β|S \ {α, β} : α− β �∈ H}
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Markov properties

• G: I(G) ⊆ I(P)  

• L: Il(G) ⊆ I(P)
• P: Ip(G) ⊆ I(P) 

• If P is positive, all are equivalent.

Based on Jordan ch 4, thm numbers refer to Koller&Friedman
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Problems caused by determinism

• If the distribution is not positive, pairwise indep
does not imply local or global indep.

• Ex 4.3.15. Let P be any distribution over (X1,…,Xn). 
Make 3 identical copies of each variable, Xi, Xi’, Xi’’. 
Let H be the empty MRF on this expanded state 
space. This satisfies the pairwise Markov properties 
eg Xi and Xi’ are independent, because the 
remaining nodes contain Xi’’. Also, X_i and X_j are 
independent, because the remaining nodes contain 
X_i’. However, H does not satisfy local or global 
indep.
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From distributions to graphs

• How do we derive a graph from a distribution?

• For positive distributions, there are two 
approaches, based on pairwise and local prop.

• Thm 4.3.17. Let P be a +ve dist. Let H be an MRF 
in which we add an edge X-Y for all X,Y which 
cannot be made independent when conditioned on 
any other set:

Then H is the unique minimal I-map for P.
P � |=(X ⊥ Y |X \ {X, Y })
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From distributions to graphs

• Thm 4.3.18. Let P be a +ve dist. For each node X, 
let MB_P(X) be a minimal set of nodes U rendering 
X indep of the rest:

Add an edge X-Y for all Y in MB_P(X). Then H is a 
unique minimal I-map for P.

X ⊥ X \ {X} \ U |U ∈ I(P )
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