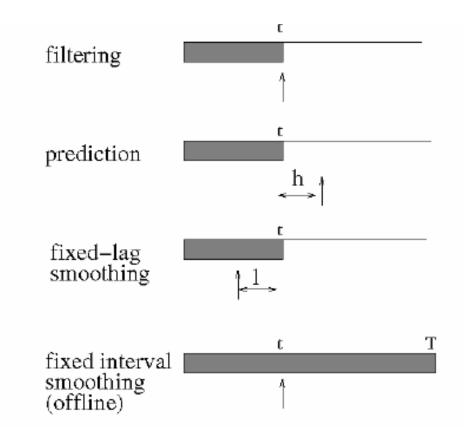
Stat 521A Lecture 19

1

Outline

- Inference goals (15.1)
- Exact inference in DBNs (15.2)
- Factored belief sates (15.3.2)
- Particle filtering (15.3.3)
- Switching LDS (15.4.2)

Inference goals

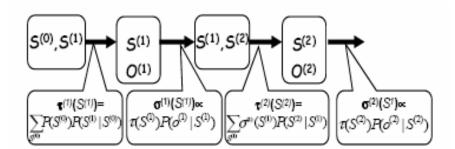


Exact filtering in HMMs

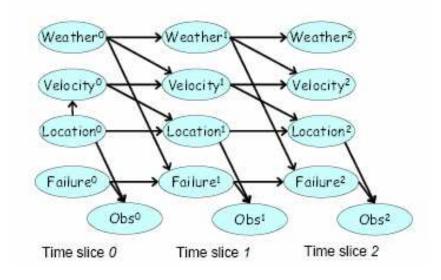
 We can apply the predict-update equations to any dynamical model

$$\begin{split} \sigma^{(\cdot t+1)}(X^{(t+1)}) &\stackrel{\Delta}{=} & P(X^{(t+1)} \mid o^{(1:t)}) \\ &= & \sum_{X^{(t)}} P(X^{(t+1)} \mid X^{(t)}, o^{(1:t)}) P(X^{(t)} \mid o^{(1:t)}) \\ &= & \sum_{X^{(t)}} P(X^{(t+1)} \mid X^{(t)}) \sigma^{(t)}(X^{(t)}). \end{split}$$

$$\begin{split} \sigma^{(t+1)}(X^{(t+1)}) &= P(X^{(t+1)} \mid o^{(1:t)}, o^{(t+1)}) \\ &= \frac{P(o^{(t+1)} \mid X^{(t+1)} \mid o^{(1:t)}) P(X^{(t+1)} \mid o^{(1:t)})}{P(o^{(t+1)} \mid o^{(1:t)})} \\ &= \frac{P(o^{(t+1)} \mid X^{(t+1)}) \sigma^{(\cdot t+1)}(X^{(t+1)})}{P(o^{(t+1)} \mid o^{(1:t)})}. \end{split}$$



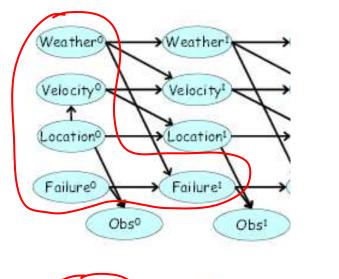
Entanglement

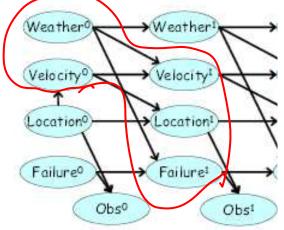


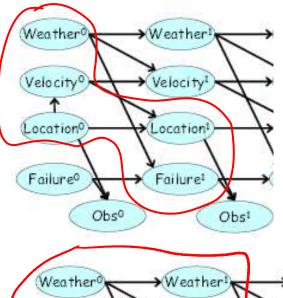
In the unrolled network, all the persistent nodes become correlated. Hence the belief state does not admit any factorization.

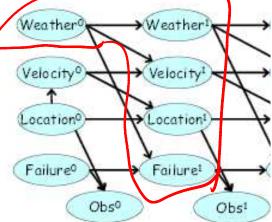
Frontier algorithm

We need cliques that can store the interface variables









Factored frontier algorithm

 Represent incoming belief state as a product of marginals

 $\hat{\sigma}^{(t)}(\mathcal{X}^{(t)}) = \prod (\beta_r^{(t)}[X_r^{(t)}])^{\mu_r}.$

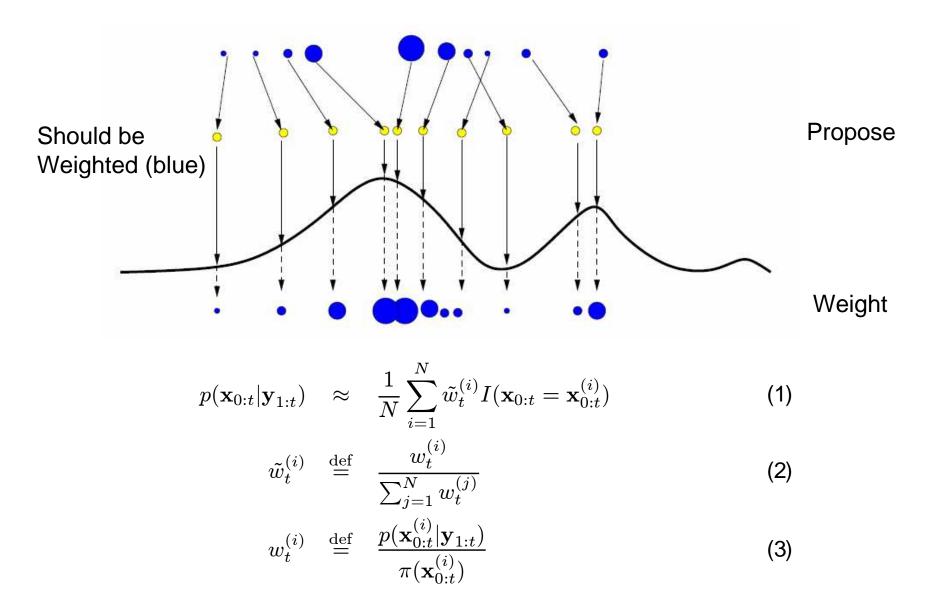
- Perform calibration in the 2-slice jtree
- Compute posterior marginals (M projection onto factored distribution)
- Can also use conditionally factored belief states

$$\left(\beta_g^{(t)}[Z^{(t)}]\right)^{-(k-1)} \prod_{i=1}^k \beta_i^{(t)}[Z^{(t)}, Y_i^{(t)}],$$

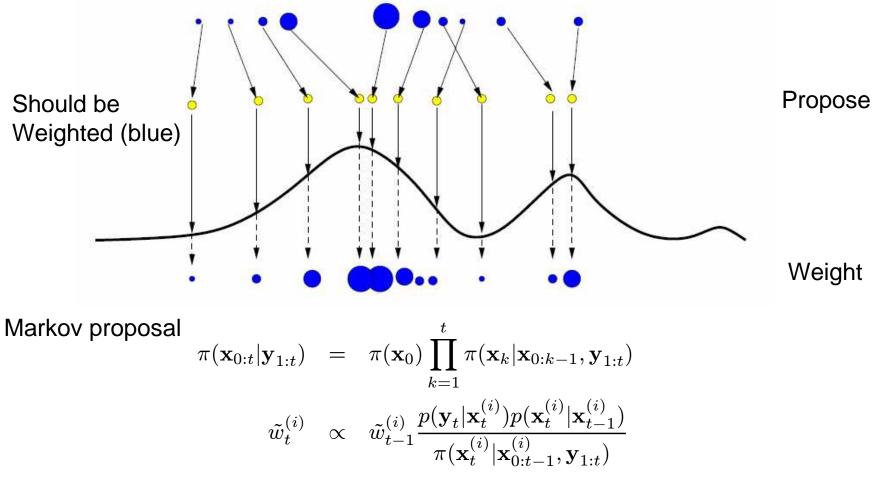
 This is like EP without the backwards pass, aka ADF

$$S_{t-1} S_{t} S_{t-1}$$

Importance sampling



Sequential Importance Sampling

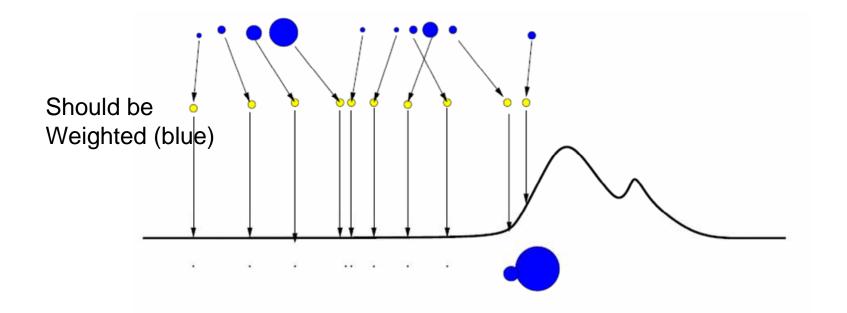


Propose from dynamical prior

$$\pi(\mathbf{x}_{t}^{(i)}|\mathbf{x}_{0:t-1}^{(i)},\mathbf{y}_{1:t}) = p(\mathbf{x}_{t}^{(i)}|\mathbf{x}_{t-1}^{(i)})$$
$$\tilde{w}_{t}^{(i)} \propto \tilde{w}_{t-1}^{(i)}p(\mathbf{y}_{t}|\mathbf{x}_{t}^{(i)})$$

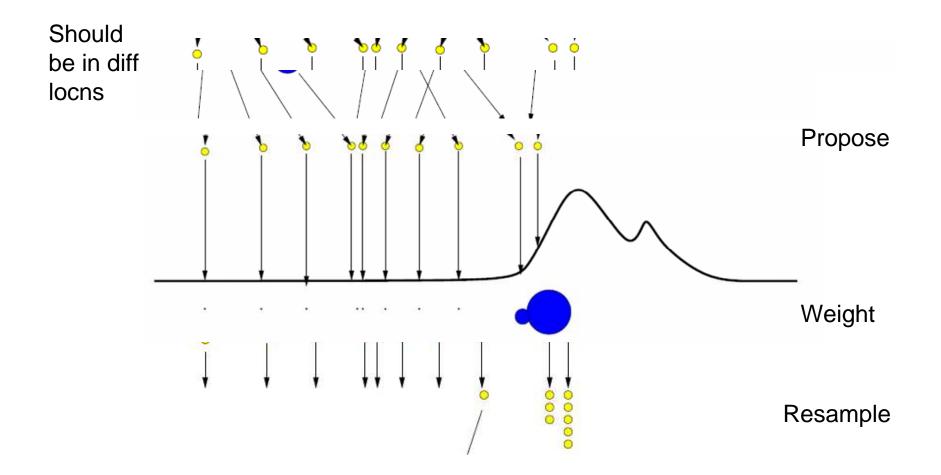
10

Problem with SIS



Unlikely evidence "kills off" most particles (Particle impoverishment) resulting in high variance estimate

SIR/ PF/ SOF/ SMC



PF

- 1. Sequential importance sampling step
 - For $i = 1, \ldots, N$, sample

$$\left(\widehat{\mathbf{x}}_{t}^{(i)}
ight) \sim q(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{(i)},\mathbf{y}_{1:t})$$

and set

$$\left(\widehat{\mathbf{x}}_{1:t}^{(i)}\right) \triangleq \left(\widehat{\mathbf{x}}_{t}^{(i)}, \mathbf{x}_{1:t-1}^{(i)}\right)$$

• For *i* = 1, ..., *N*, evaluate the importance weights up to a normalising constant:

$$w_t^{(i)} = \frac{p\left(y_t | \mathbf{x}_t^{(i)}\right) p\left(\left|\widehat{\mathbf{x}}_t^{(i)}\right| | \widehat{\mathbf{x}}_{t-1}^{(i)}\right)}{q\left(\left|\widehat{\mathbf{x}}_t^{(i)}\right| | \widehat{\mathbf{x}}_{t-1}^{(i)}, \mathbf{y}_{1:t}\right)}$$

• For i = 1, ..., N, normalise the importance weights:

$$\widetilde{w}_{t}^{(i)} = w_{t}^{(i)} \left[\sum_{j=1}^{N} w_{t}^{(j)} \right]^{-1}$$

- 2. Selection step
 - Resample the discrete weighted measure $\{(\widehat{\mathbf{x}}_{1:t}^{(i)}, \widetilde{w}_t^{(i)})\}_{i=1}^N$ to get an unweighted measure $\{(\mathbf{x}_{1:t}^{(i)}, \frac{1}{N})\}_{i=1}^N$

Example from Nando de Freitas

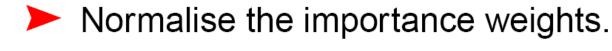
$$x_{t} = \frac{1}{2}x_{t-1} + 25\frac{x_{t-1}}{1+x_{t-1}^{2}} + 8\cos(1.2t) + v_{t}$$
$$y_{t} = \frac{x_{t}^{2}}{20} + w_{t}$$

where $x_0 \sim \mathcal{N}(0, \sigma_1^2)$, v_t and w_t are mutually independent white Gaussian noises, $v_t \sim \mathcal{N}(0, \sigma_v^2)$ and $w_t \sim \mathcal{N}(0, \sigma_w^2)$

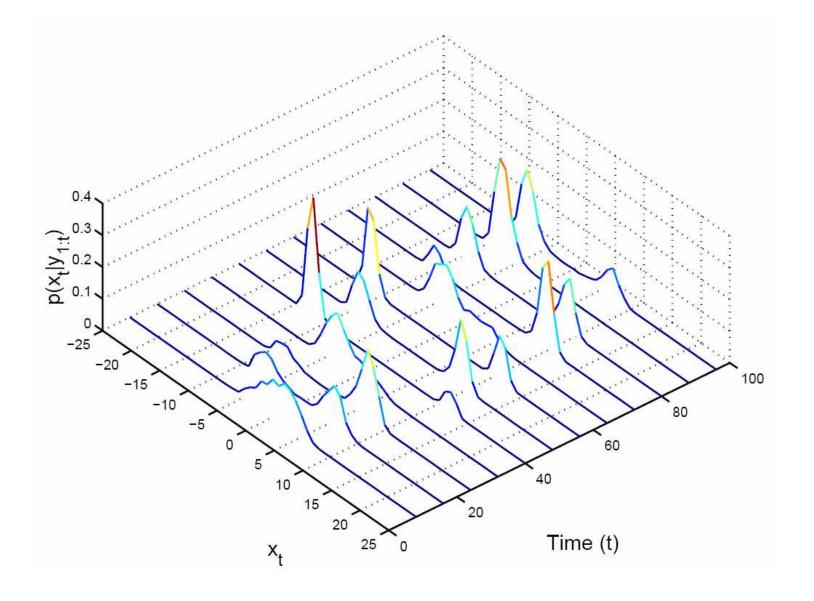
For
$$i = 1, ..., N$$
, sample $\mathbf{x}_0^{(i)} \sim \mathcal{N}(0, \sigma_1^2)$
For $i = 1, ..., N$, sample
 $x_t^{(i)} = \frac{1}{2}x_{t-1}^{(i)} + 25\frac{x_{t-1}^{(i)}}{1 + x_{t-1}^{2(i)}} + 8\cos(1.2t) + \mathcal{N}(0, \sigma_v^2)$

For
$$i = 1, ..., N$$
, evaluate the importance weights

$$\widetilde{w}_{t}^{(i)} = \frac{1}{\sqrt{2\pi\sigma_{w}^{2}}} e^{-\frac{1}{2\sigma_{w}^{2}} \left(y - \frac{x_{t}^{2(i)}}{20}\right)^{2}}$$



Resample fittest samples (black-box).



PF for DBNs

for $m = 1, \ldots, M$ 1 PF Sample $\bar{x}^{(0)}[m]$ from \mathcal{B}_0 $\mathbf{2}$ $w^{(0)}[m] \leftarrow 1/M$ $\mathbf{3}$ 4 for $t = 1, 2, \dots$ for m = 1, ..., M5Sample $\bar{x}^{(0:t-1)}$ from the distribution $\hat{P}_{\mathcal{D}^{(t-1)}}$. $\frac{6}{7}$ // Select sample for propagation $(\bar{x}^{(0:t)}[m], w^{(t)}[m]) \leftarrow LW-2\mathsf{TBN}(\mathcal{B}_{\rightarrow}, \bar{x}^{(0:t-1)}, o^{(t)})$ 8 9// Generate time t sample and weight from selected sample $ilde{x}^{(t-1)}$ $\mathcal{D}^{(t)} \leftarrow \{(\bar{x}^{(0:t)}[m], w^{(t)}[m]) : m = 1, \dots, M\}$ 10 $\hat{\sigma}^{(t)}(x) \leftarrow \hat{P}_{\mathcal{D}^{(t)}}$ 11

LW-2TBN

Let X'_1, \ldots, X'_n be a topological ordering of \mathcal{X}' in $\mathcal{B}_{\rightarrow}$ 1 $w \leftarrow 1$ $\mathbf{2}$ for i = 1, ..., n3 $u_i \leftarrow (\xi, x') \langle \operatorname{Pa}_{X'} \rangle$ 4// Assignment to $\operatorname{Pa}_{X'_i}$ in $x_1,\ldots,x_n,x'_1,\ldots,x'_{i-1}$ 5if $X'_i \notin O^{(t)}$ then 6 Sample x'_i from $P(X'_i \mid u_i)$ 7 8 else $x'_i \leftarrow o^{(t)} \langle X'_i
angle = //$ Assignment to X'_i in $o^{(t)}$ 9 $w \leftarrow w \cdot P(x'_i \mid u_i)$ // Multiply weight by probability of desired value 10return $(x'_1, \ldots, x'_n), w$ 11

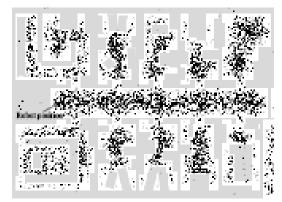
Condensation algorithm

Isard & Blake (ICCV98)

Monte Carlo Localization

Fox, Burgard, Dellaert, Thrun, AAAI'99

poor approximation here.



Optimal proposal distribution

• Optimal proposal is the posterior

 $\pi(\mathbf{x}_t | \mathbf{x}_{0:t-1}, \mathbf{y}_{1:t}) = p(\mathbf{x}_t | \mathbf{y}_t, \mathbf{x}_{t-1})$

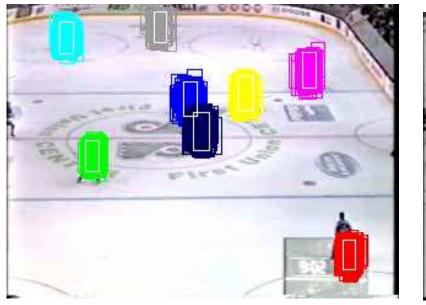
 Incremental weights are one-step-ahead predictive density

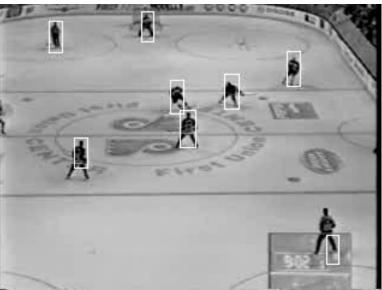
$$\begin{split} \tilde{w}_{t}^{(i)} &\propto \quad \tilde{w}_{t-1}^{(i)} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{(i)}) p(\mathbf{x}_{t}^{(i)} | \mathbf{x}_{t-1}^{(i)})}{p(\mathbf{x}_{t}^{(i)} | \mathbf{y}_{t}, \mathbf{x}_{t-1}^{(i)})} \\ &= \quad \tilde{w}_{t-1}^{(i)} p(\mathbf{y}_{t} | \mathbf{x}_{t-1}^{(i)}) \\ p(\mathbf{y}_{t} | \mathbf{x}_{t-1}^{(i)}) &= \quad \int p(\mathbf{y}_{t} | \mathbf{x}_{t}) p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{(i)}) d\mathbf{x}_{t} \end{split}$$

• Can approximate this using EKF, UKF, etc.

Boosted particle filter

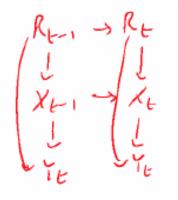
- Run a classifier, trained using boosting, to detect people, and use this as a proposal
- Okuma, Taleghani, de Freitas, Little, Lowe, ECCV04





RBPF

• Rao-Blackwellisation: integrate out X, sample R



• Distributional particles

$$\alpha_{t-1|t-1}^{i}(\mathbf{x}_{t-1}) \stackrel{\text{def}}{=} p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)})$$

RBPF high level

Generic RBPF

- 1. Sequential importance sampling step
 - For $i = 1, \ldots, N$, sample

$$\left(\hat{\boldsymbol{r}}_t^{(i)} \right) \sim q(\boldsymbol{r}_t; \boldsymbol{r}_{1:t-1}^{(i)}, \boldsymbol{y}_{1:t})$$

and set

$$\left(\hat{r}_{1:t}^{(i)} \right) \triangleq \left(\hat{r}_{t}^{(i)}, r_{1:t-1}^{(i)} \right)$$

• For i = 1, ..., N, evaluate the importance weights up to a normalising constant:

$$w_t^{(i)} = \frac{p\left(\left.y_t\right|\mathbf{y_{1:t-1}}, \widehat{r}_{1:t}^{(i)}\right) p\left(\left.\widehat{r}_t^{(i)}\right| \widehat{r}_{1:t-1}^{(i)}, \mathbf{y_{1:t-1}}\right)}{q\left(\widehat{r}_t; \widehat{r}_{1:t-1}^{(i)}, y_{1:t}\right)}$$

• For *i* = 1, ..., *N*, normalise the importance weights:

$$\widetilde{w}_{t}^{(i)} = w_{t}^{(i)} \left[\sum_{j=1}^{N} w_{t}^{(j)} \right]^{-1}$$

- 2. Selection step
 - Resample the discrete weighted measure $\{(\hat{r}_{1:t}^{(i)}, \tilde{w}_{t}^{(i)})\}_{i=1}^{N}$ to get an unweighted measure $\{(r_{1:t}^{(i)}, \frac{1}{N})\}_{i=1}^{N}$
- 3. Exact step
 - Update $p(\mathbf{X}_t | \mathbf{y}_{1:t}, r_{1:t}^{(i)})$ given $p(\mathbf{X}_{t-1} | \mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}), r_t^{(i)}$, and y_t .

RBPF updates

Then, for each possible value of r_t , we perform a predict-update cycle:

$$\alpha_{t|t-1}^{i}(\mathbf{x}_{t}, r_{t}) \stackrel{\text{def}}{=} p(\mathbf{x}_{t}, r_{t}|\mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}, r_{t}) = \int p(\mathbf{x}_{t}|r_{t}, \mathbf{x}_{t-1})p(r_{t}|r_{1:t-1}^{(i)})p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}, r_{t})d\mathbf{x}_{t-1}$$

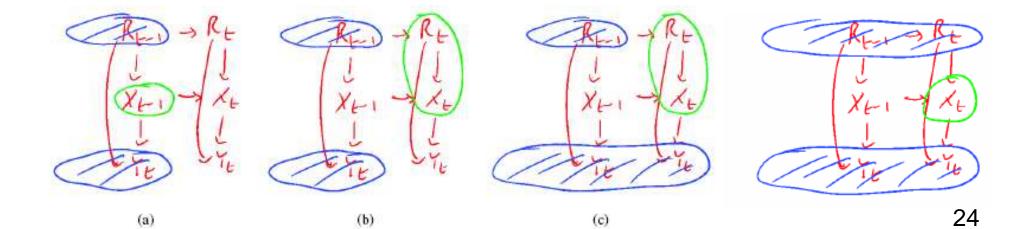
$$\alpha_{t|t}^{i}(\mathbf{x}_{t}, r_{t}) \stackrel{\text{def}}{=} p(\mathbf{x}_{t}, r_{t} | \mathbf{y}_{1:t-1}, \mathbf{y}_{t}, r_{1:t-1}^{(i)}, r_{t}) = \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}, r_{t}) p(\mathbf{x}_{t} | \mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}, r_{t})}{p(\mathbf{y}_{t} | \mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}, r_{t})}$$
(21.2)

where

$$p(\mathbf{y}_t | \mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}, r_t) = \int p(\mathbf{y}_t | \mathbf{x}_t, r_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1}, r_{1:t-1}^{(i)}, r_t) d\mathbf{x}_t$$
(21.30)

Finally, once we have chosen $r_t^{(i)}$, we pick the corresponding updated distribution:

$$\alpha_{t|t}^{i}(\mathbf{x}_{t}) = \alpha_{t|t}^{i}(\mathbf{x}_{t}, r_{t}^{(i)})$$
(21.3)



RBPF for Switching LDS

Algorithm 7: One step of the Mixture Kalman filter algorithm

1 for
$$i = 1 : N$$
 do
2 $\begin{bmatrix} r_{t,i} \sim p(r|r_{t-1,i}) \\ (\mu_{t,i}, \Sigma_{t,i}, w_{t,i}) = \text{KFupdate}(\mu_{t-1,i}, \Sigma_{t-1,i}, \mathbf{y}_t, r_{t,i}) \end{bmatrix}$
4 for $i = 1 : N$ do
5 $\begin{bmatrix} \tilde{w}_{t,i} = w_{t,i} \left[\sum_j w_{t,j} \right]^{-1} \\ \tilde{w}_{t,i} = \text{resample}(\tilde{w}_{t,1:N}) \\ 7 \text{ return}(r_{t,\pi}, \mu_{t,\pi}, \Sigma_{t,\pi})$

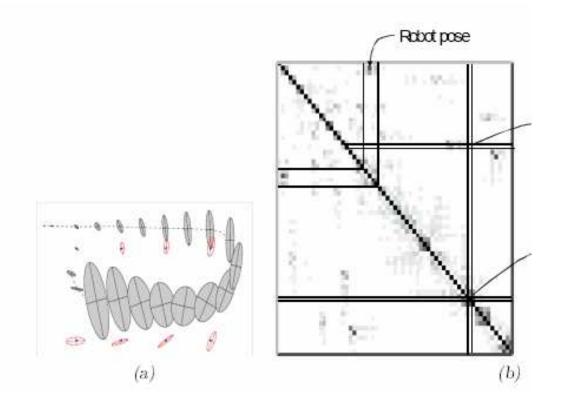
RBPF for SLAM

- Simultaneous Localization and Mapping
- Occupancy grid version (Murphy, NIPS'00)



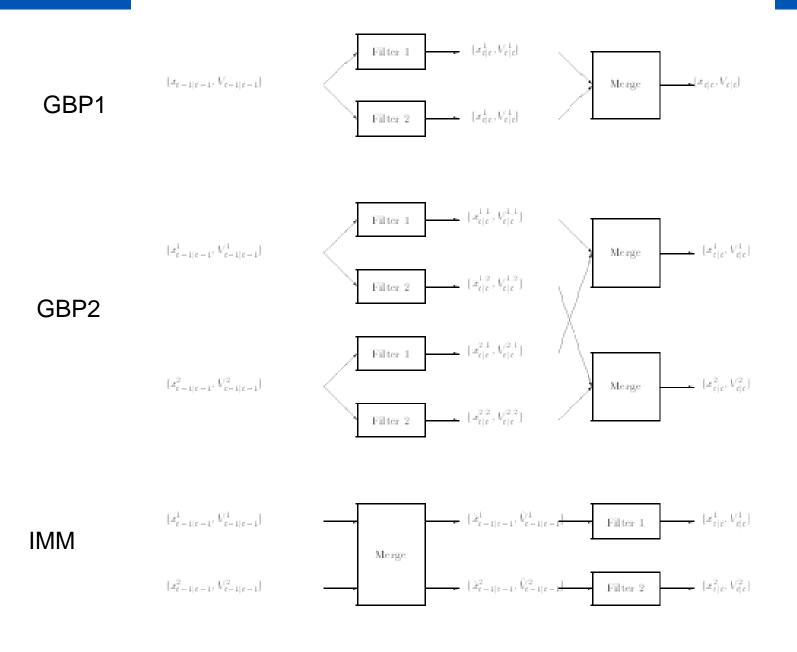
FastSLAM

 Kalman filter version: replace covmat of size (2K+2)² with P*K*2² covmats, P=#particles, K=#num landmarks



Montemerlo, Thrun, Koller, Wegbreit, AAAI'02

Switching LDS



EP approximations

