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Outline

• Inference goals (15.1)

• Exact inference in DBNs (15.2)
• Factored belief sates (15.3.2)

• Particle filtering (15.3.3)
• Switching LDS (15.4.2)
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Inference goals
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Exact filtering in HMMs

• We can apply the predict-update equations to any 
dynamical model
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Entanglement

In the unrolled network, all the persistent nodes become correlated.
Hence the belief state does not admit any factorization.
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Frontier algorithm

• We need cliques that can store the interface 
variables
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Factored frontier algorithm

• Represent incoming belief state as a product of 
marginals

• Perform calibration in the 2-slice jtree
• Compute posterior marginals (M projection onto 

factored distribution)
• Can also use conditionally factored belief states

• This is like EP without the backwards pass, aka 
ADF
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Importance sampling 
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Sequential Importance Sampling 
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Problem with SIS

Unlikely evidence “kills off” most particles
(Particle impoverishment) resulting in high variance estimate

Should be
Weighted (blue)
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SIR/ PF/ SOF/ SMC

Propose

Weight

Resample

Should
be in diff
locns
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PF

1. Sequential importance sampling step

• For i = 1, . . . , N , sample
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Particle Filtering ExampleParticle Filtering ExampleExample from Nando de Freitas
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Particle Filtering ExampleParticle Filtering Example
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Particle Filtering ExampleParticle Filtering Example
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PF for DBNs

LW-2TBN

PF
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Condensation algorithm

Isard & Blake (ICCV98)
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Monte Carlo Localization

Fox, Burgard, Dellaert, Thrun, AAAI’99 
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Optimal proposal distribution

• Optimal proposal is the posterior

• Incremental weights are one-step-ahead predictive 
density

• Can approximate this using EKF, UKF, etc.
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Boosted particle filter

• Run a classifier, trained using boosting, to detect people, 
and use this as a proposal

• Okuma, Taleghani, de Freitas, Little, Lowe, ECCV04
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RBPF

• Rao-Blackwellisation: integrate out X, sample R

• Distributional particles
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RBPF high level



24

RBPF updates
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RBPF for Switching LDS
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RBPF for SLAM

• Simultaneous Localization and Mapping

• Occupancy grid version (Murphy, NIPS’00)
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FastSLAM

• Kalman filter version: replace covmat of size 
(2K+2)2 with P*K*22 covmats, P=#particles, 
K=#num landmarks

Montemerlo, Thrun, Koller, Wegbreit,  AAAI’02
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Switching LDS

GBP1

GBP2

IMM
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EP approximations


