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Outline

• Belief propagation: entropy approximations (11.3.7)

• Expectation propagation (11.4)
• Mean field (11.5.1)

• Variational EM/ Bayes (Bishop 10.1-10.2)
• Structured variational (11.5.2)
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Bethe cluster graphs

• Suppose we create one cluster for each original 
factor, and one cluster for each node.

• Then for a pairwise MRF, propagating Ci – Cij – Cj
is equivalent to sending msgs from node i to node j 
via edge ij.

• In general, BP on the Bethe CG = BP on the factor 
graph.
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BP on factor graphs

µfi→xj (xj) =
∑

ci\xj

f(ci)
∏

k∈nb(fi)\xj

µxk→fi(xk)

µxi→fj (xi) =
∏

k∈nb(xi)\fj

µfk→xi(xi)

Bishop p406
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Bethe approximation to entropy 

• Thm 11.3.10. If Q is a calibrated set of beliefs for a 
Bethe approximation CG then the factored energy 
is given by

where d_i = #factors that contain Xi.
• If Xi appears in di factors, by RIP, it appears in (di-

1) sepsets. Hence we count the entropy of each Xi 
once in total.

F̃ (P̃ , Q)
def
=

∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

s

Hµs(Ss)

=
∑

φ

Eβφ lnφ+
∑

φ

Hβφ(Cφ)−
∑

i

(di − 1)Hβi(Xi)
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Weighted approximation to entropy

• Consider a cluster graph, each of whose clusters 
(regions) has a counting number µr. Define the 
weighted approximate entropy as

• For a Bethe-structured CG, we set

• If we set µr=1, we recover the Bethe approximation.
• Let us consider more general weightings.

H
µ
Q(X) =

∑

r

µrHβr (Cr)

µi = 1−
∑

r∈nbi

µr
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Convex approximation to entropy

• Def 11.3.13. We say that µr are convex counting 
numbers if there exist non-negative numbers νr, νi, 
νr,i st

• Then

• Thm 11.3.14. The above eqn is concave for any set 
of beliefs Q which satisfy marginal consistency 
constraints.
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Convex BP
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TRW

• Tree reweighting algorithm (TRW) uses the 
following convex counting numbers, given a 
distribution over trees T st each edge in the 
pairwise network is present in at least 1 tree
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Convex or not?

• When standard BP converges, the Bethe 
approximation to the entropy is often more accurate 
than the convex approximation.

• However, it is desirable to have a convex inference 
engine in the inner loop of learning.

• If you train with a convex approximation, there are 
some arguments you should use the same convex 
approx at test time for decoding.
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Region graphs (11.3.7.3)

• One can use more general CGs than the Bethe 
construction, which lets you model higher order 
interactions which are intermediate between the 
original factors and singletons.

• Resulting algorithm is complex.



12



13

Approximate messages

• Suppose we use a cluster tree (or graph), but 
approximate the messages eg. to prevent them 
becoming “too fat”

• If the clusters have internal structure, we can 
efficiently combine factored incoming messages 
with factored clusters to get factored outgoing 
messages

• We can also use this to combine non conjugate 
distributions: eg we approximate a non-conjugate 
likelihood by a simple form (eg MVN) and combine 
with a simple cluster potential (eg MVN) to get a 
simple posterior for the next step
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Assumed density filtering (ADF)

• Consider sequential Bayesian updating in which we 
assume the prior p(θt-1|y1:t-1) lives in some tractable 
family Q (eg MVN).

• At each step, we do 1 step of Bayesian updating to 
get the posterior p(θt|y1:t) and then do an M-
projection to get the best approximation within Q 
(=moment matching for linear exp fam) 

Eg yt|\thetat = logistic(yt xt
T θt), θt=θt-1

Eg. yt|thetat = Gauss, thetat | thetat-1 = mix Gauss
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ADF cont’d

• We combine msg from past (prior) with local 
evidence (likelihood), project, then compute new 
msg

bt−1,t ∝ φt−1,tµt−1

b̃t−1,t = proj(bt−1,t, Q)

µt =
∑

t

b̃t−1,t
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Expectation propagation

• For batch problems, ADF is suboptimal, and 
depends on order of data.

• EP idea: add backwards pass

• Since msgs no longer exact, need to iterate

b∗t,t+1 =
b̃t,t+1

µt+1
µ∗t+1

b̃∗t,t+1 = proj(b∗t,t+1, Q)

µ∗t =
∑

t+1

b̃∗t,t+1
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Division = subtraction of natural params

• Assume all beliefs and msgs are linear exponential 
families. Then

• This can result in negative values for the natural 
params (eg Gaussians with –ve variance).

• But undirected GMs with tabular potentials are in 
the linear exp family and can always be used to 
represent valid beliefs/msgs
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Projection

• How compute natural parameters of a msg?
• Compute the expected statistics of the separator, 

according to the current approximate beliefs

• Computing the expectation can be made tractable if 
βi has factored structure.

• In general, the M projection can be hard.
• But if we have discrete variables, and Q is fully 

factorized, it amounts to computing a  product of 
marginals.
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Variational analysis

• We optimize the same (approximate) objective as 
before (factored free energy), but relax the local 
consistency conditions so we only match statistics 
(eg marginals) instead of full distributions
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EP msg passing

• Thm 11.4.5. Let Q be a set of beliefs st µij is in the 
exp family Qij. Let M-project-distri,j marginalize onto 
Si,j and then project onto Qij. Then Q is a stationary 
point of EP-optimize iff there exist auxiliary beliefs δ
such that
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Example

Cluster graph Fully factored Q_{ij} 
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Structured messages

• The Q distribution (onto which we project) can be 
any structure that makes computing marginals
efficient, eg a chain or clique tree.
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Summary so far

• Let us summarize the BP and EP methods, and 
then introduce a new class of variational methods
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BP on Cluster graphs

• In CGBP, we made 2 approximations
• 1. Optimize a bound on D(Q||P)

• 2. Use pseudo marginals βI, µij and thus 
approximated the entropy H(Q) and hence used the 
approximate bound

• We then optimize the approximate bound subject to 
local consistency constraints over some cluster 
graph

F̃ (P̃ ,Q)
def
=
∑

i

ECi∼βi lnψi +
∑

i

Hβi(Ci) −
∑

<ij>

Hµi,j (Si,j)

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)
Thm 11.1.2
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CGBP objective

If the cluster graph is a cluster tree, this is exact
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EP

• In EP, we make the same 2 approximations as in 
CGBP, but we also relax the local consistency 
constraint so that now cliques only have to agree 
on their expected sufficient statistics, not on their 
distributions 

Even if the CG is a tree, this is no longer exact (in general)
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Variational methods

• The problems with BP and EP are
– They do not monotonically increase a lower bound on

ln Z
– They may not converge (except convex BP)

• Let us now require Q to be a coherent probability 
distribution (of tractable form). Hence we can now 
compute the exact entropy and optimize the exact 
objective

• This always increases the lower bound and will 
always converge

D(Q||P ) = lnZ − F (P̃ , Q)

F (P̃ , Q)
def
= HQ(x) +

∑

i

ECi∼Q lnψi(Ci)
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Mean field approximation

• Let us assume the approximate posterior is fully 
factorized

• Then the objective (negative free energy) is

• Eg 4x4 grid O(ne K2) for energy, O(ne K) for H

F (P̃ , Q)
def
= HQ(x) +

∑

c

EXc∼Q lnφc(Xc)

=
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)

Q(x) =
∏

i

Qi(xi)



30

Convexity

• Objective is concave in each arg (entropy is concave in 
each Q_i, expected energy is linear in Q_i)

• The set of completely factorized distributions is not convex

• Hence we are optimizing the objective over a non-convex 
space, and will be subject to local maxima

• Let us derive equations that characterize the fixed points. 
These could correspond to saddle points or local minima, 
but such points are unstable and unlikely to be the result of 
our iterative update scheme.

Q3(x) = λ
∏

i

Q1(xi) + (1− λ)
∏

i

Q2i (xi)
Not factorized

F (P̃ , Q) =
∑

i

H(Qi) +
∑

c

∑

xc

(
∏

i∈c

Qi(xc,i)) lnφc(xc)
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Notation

• Define

〈f(xh)〉
def
=

∑

xh

[
∏

i∈h

Qi(xi)

]

f(xh)

〈f(xh)〉j,k
def
=

∑

xh\xj




∏

i∈h,i �=j

Qi(xi)



 f(xh|xj = k)

〈f(xh)〉 =
∑

k

Qj(xj = k)〈f(xh)〉j,k

ln p(xv) ≥
∑

c

〈lnφc(xc)〉+
∑

i

H(Qi)

=
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’s
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Mean field equations

ln p(xv) ≥
∑

k

Qj(k)
∑

c

〈lnφc(xc)〉j,k +H(Qj) +
∑

i �=j

H(Qi)

def
= L(Qj)

Sj,k
def
=

∑

c:j∈c

〈lnφc(xc)〉j,k

L(Qj) =
∑

k

Qj(k)(Sj,k − lnQj(k)) + C

L(Qj , λ)
def
= L(Qj) + λ(

∑

k′

Qj(k
′)− 1)

∂

∂Qj(k)
L(Qj , λ) = Sj,k − lnQj(k) − 1 + λ = 0

Qj(k) = exp(Sj,k) exp(λ− 1)

=
1

Zj
exp(

∑

c

〈lnφc(xc)〉j,k)
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Example: grid
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EM

• Suppose we want to find a MAP estimate

• If we have latent variables Z we can use EM

• E step: compute expected complete data log joint

• M step: set

max
θ
log p(θ) +

∑

n

log p(xn|θ)

f(θ, θold) = log p(θ) +
N∑

n=1

∑

z

p(z|xn, θold) log p(z, xn|θ)

θnew = argmax f(θ, θold)
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Variational EM

• Consider the negative free energy

• Earlier we showed this is a lower bound on the log-
likelihood

• Where the bound is tight if
• E step: find Qn(z) that maximize

• M step: find \theta that maximize

F (x,Q, θ) =
∑

z

Q(z) log p(x, z|θ) +H(Q)

Q∗(z) = p(z|x, θ)

F (x,Q, θ) = lnZ(x, θ)−D(Q||p(z|x, θ))

log p(x|θ) = lnZ = max
Q
F (x,Q, θ) = F (x,Q∗, θ) ≥ F (x,Q, θ)

log p(θ) +
∑

n

F (xn, Qn, θ)

F (xn, Qn, θold)



37

Variational EM

• An exact E step is equivalent to setting

• The corresponding M step maximizes 

• Since H(Qn) is independent of θ, this reduces to the 
standard EM algorithm.

• Generalized EM merely increases (not maximizes) 
θ in the M step.

• Similarly we can simply improve Qn in the E step

∑

n

F (xn, Qn, θ) =
∑

n

[
∑

z

p(z|xn, θold) log p(z, xn|θ)] +H(Qn)

= f(θ, θold) +
∑

n

H(Qn)

Qn(z) = p(z|xn, θold)

Neal and Hinton, “A new view of the EM algorithm”, 1998
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Variational Bayes

• We can replace the point estimate of θ with a 
distribution and try to minimize

• The distinction between E and M vanishes: we are 
just doing sequential updates of Q(Zn) and Q(θ)

• This gives us the benefits of  being Bayesian for the 
same computational speed as EM

D(Q(z1:N , θ|x1:N )||p(z1:N , θ|x1:N ))
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VB for univariate Gaussian

Gamma

Gaussian

Bishop p471
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VB for univariate Gaussian

Green = exact posterior (NormalGamma), blue = factorized approximation

At convergence
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VB for mixtures of Gaussians

Multinomial (soft responsibilities), as in EM,
except we used expected parameters rather than plug-in

Model
Inference
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Automatic model selection

• Recall π ~ Dir(α). If α << 1, we prefers skewed π
and hence sparse z. 

• MAP estimate from regular EM is

• Posterior mean estimate from VB is

π̂k =

∑
n rnk + αk − 1∑
k(rnk + αk − 1)

=
Nk + α− 1

N +Kα−K

π̂k =

∑
n rnk + αk∑
k(rnk + αk)

=
Nk + α

N +Kα
→

α

N +Kα
→0
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Selecting K with one run of VB
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Variational message passing

• Consider a DAG model

• The mean field equations are

• The only terms that depend on x_j are in x_j’s
Markov blanket

• If all CPDs have conjugate-exponential form, the 
VB updates can be converted into a msg passing 
algorithm

• VIBES software (John Winn)
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Structured variational approx

• Rather than assuming Q is fully factorized, we can 
use any structure for which computing the 
expectations of ln φc and the entropy is tractable

φ = model, ψ = approx


