Stat 521A Lecture 1
 Introduction; directed graphical models

Outline

- Administrivia
- Overview
- Local markov property, factorization (3.2)
- Global markov property (3.3)
- Deriving graphs from distributions (3.4)

Administrivia

- Class web page www.cs.ubc.ca/~murphyk/Teaching/Stat521A-spring08
- Join groups.google.com/group/stat521a-spring09
- Office hours: Fri 10-11 am
- Final project due Fri Apr $24^{\text {th }}$
- Weekly homeworks
- Grading
- Final project: 60\%
- Weekly Assignments: 40\%

Auditing

- If you want to 'sit in' on the class, please register for it as 'pass/fail'; you will automatically pass as long as you show up for (most of) the class (no other requirements!)
- If you take it for real credit, you will likely learn more...

Homeworks

Weekly homeworks, out on Tue, due back on Tue

- Collaboration policy:
- You can collaborate on homeworks if you write the name of your collaborators on what you hand in; however, you must understand everything you write, and be able to do it on your own
- Sickness policy:
- If you cannot do an assignment, you must come see me in person; a doctor's note (or equivalent) will be required.

Workload

- This class will be quite time consuming.
- Attending lectures: 3h.
- Weekly homeworks: about 3h.
- Weekly reading: about 10h.
- Total: 16h/week.

Pre-requisites

- You should know
- Basic applied math (calculus, linear algebra)
- Basic probability/ statistics e.g. what is a covariance matrix, linear/logistic regression, PCA, etc
- Basic data structures and algorithms (e.g., trees, lists, sorting, dynamic programming, etc)
- Prior exposure to machine learning (eg CS540) and/or multivariate statistics is strongly recommended

Textbooks

- "Probabilistic graphical models: principles and techniques", Daphne Koller and Nir Friedman (MIT Press 2009, in press).
- We will endeavour to cover the first 900 (of 1100) pages!
- Copies available at Copiesmart copy center in the village (next to McDonalds) from Thursday
- I may hand out some chapters from Michael Jordan's draft book, "Probabilistic graphical models"
- I am writing my own book "Machine learning: a probabilistic approach"; I may hand out some chapters from this during the semester.

Matlab

- Matlab is a mathematical scripting language widely used for machine learning (and engineering and numerical computation in general).
- Everyone should have access to Matlab via their CS or Stats account.
- You can buy a student version for $\$ 170$ from the UBC bookstore. Please make sure it has the Stats toolbox.
- Matt Dunham has written an excellent Matlab tutorial which is on the class web site - please study it carefully!

PMTK

- Probabilistic Modeling Toolkit is a Matlab package I am currently developing to go along with my book.
- It uses the latest object oriented features of Matlab 2008a and will not run on older versions.
- It is designed to replace my earlier 'Bayes net toolbox'.
- PMTK will form the basis of some of the homeworks, and may also be useful for projects. (Currently support for GMs is very limited.)
- http://www.cs.ubc.ca/~murphyk/pmtk/

Learning objectives

- By the end of this class, you should be able to
- Understand basic principles and techniques of probabilistic graphical models
- Create suitable models for any given problem
- Derive the algorithm (equations, data structures etc) needed to apply the model to data
- Implement the algorithm in reasonably efficient Matlab
- Demonstrate your skills by doing a reasonably challenging project

Ask questions early and often!

I will use Google laffore asting dumb questions. I will use Google Defore aking dumb questions. I will use Google before alking dumb ruestions. I will use Google before asking dumb questions. I will use Coogle before asking dumb questions. I will use Google before asking dumb questions: www.mrlourns.n before alking dumb questions. I will use Google before akking dumb questions. I will use Google before asking dumb questions. I will use Google before alking dumb questi-ns. I will use Googlthwfinre asking dumb questions. I will use Google before asking dumb ay I will use Google before akking dumb questions. I will use Gooot, e asking dumb questions. I will uss Google before asting dumb acI will use Google before alfirg dumb questions. I will use Googry po re alking dumb questions. I will use Google before asting domb fक्s?

Outline

- Administrivia
\rightarrow - Overview
- Local markov property, factorization (3.2)
- Global markov property (3.3)
- Deriving graphs from distributions (3.4)

Supervised learning

- Predict output given inputs, ie compute $p(\mathrm{~h} \mid \mathrm{v})$
- Regression: h in R
- Classification: h in $\{1, \ldots, \mathrm{C}\}$

Structured output learning

- Model joint density of $p(h, v)$ (or maybe $p(h \mid v)$)
- Then infer $\mathrm{p}(\mathrm{h} \mid \mathrm{v})$ - state estimation
- MAP estimation (posterior mode)

$$
\mathbf{h}^{*}=\arg \max _{h_{1}}, \ldots, \arg \max _{h_{n}} p(\mathbf{h} \mid \mathbf{v}, \boldsymbol{\theta})
$$

- Posterior marginals

$$
h_{1}^{*}=\sum_{h_{2}} \cdots, \sum_{h_{n}} p(\mathbf{h} \mid \mathbf{v}, \boldsymbol{\theta})
$$

- Also need to estimate parameters and structure

Density estimation

- Model joint density of all variables
- No distinction between inputs and outputs: different subsets of variables can be observed at different times (eg for missing data imputation)
- Can run model in any ‘direction’

Water sprinkler joint distribution

$$
p(C, S, R, W)
$$

Inference

- Prior that sprinkler is on

$$
p(S=1)=\sum_{c=0}^{1} \sum_{r=0}^{1} \sum_{w=0}^{1} p(C=c, S=1, R=r, W=w)=0.3
$$

- Posterior that sprinkler is on given that grass is wet

$$
p(S=1 \mid W=1)=\frac{p(S=1, W=1)}{p(W=1)}=0.43
$$

- Posterior that sprinkler is on given that grass is wet and it is raining

$$
p(S=1 \mid W=1, R=1)=\frac{p(S=1, W=1, R=1)}{p(W=1, R=1)}=0.19
$$

Explaining away

Bag of words model

- bag-of-words representation of text documents
- Xi=1 iff word i occurs in document
- Define a joint distribution over bit vectors, $\mathrm{p}(\mathrm{x} 1, \ldots, \mathrm{xn})$

```
Words = {john, mary, phone, moncy, send, meeting, unk
"Johm sent money to Mary after the meeting about money"
                            \Stop word removal
"john senl money mary alter meeling aboul money"
                                    Tokenization
1 7 4 4 2 | % word counting % 4
    [1,1,0,2,0,1,3]
    [1, 1, 0, 1, 0, 1,1]
```


Inference

- Given word Xi occurs, which other words are likely to co-occur?
- What is the probability of any particular bit vector?
- Sample (generate) documents from joint $p(x)$

Bayesian classifiers

- Define joint $p(y, x)=p(x \mid y) p(y)$ on document class label and bit vectors
- Can infer class label using Bayes rule

- If y is hidden, we can use this to cluster documents.
- In both cases, we need to define $p(x \mid y=c)$

Naïve Bayes assumption

- The simplest approach is to assume each feature is conditionally independent given the class/cluster Y

$$
X_{i} \perp X_{j} \mid Y=c
$$

- In this case, we can write

$$
p(\mathbf{x} \mid y=c)=\prod_{j=1}^{d} p\left(x_{j} \mid y=c\right)
$$

- The number of parameters is reduced from $\mathrm{O}\left(\mathrm{C} \mathrm{K}^{d}\right)$ to $\mathrm{O}(\mathrm{C} \mathrm{K})$, assuming C classes and K-ary features

Conditional independence

- In general, making Cl assumptions is one of the most useful tools in representing joint probability distributions in terms of low-dimensional quantities, which are easier to estimate from data
- Graphical models are a way to represent CI assumptions using graphs
- The graphs provide an intuitive representation, and enable the derivation of efficient algorithms

Graphical models

- There are many kinds of graphical models
- Directed Acyclic graphs - "Bayesian networks"
- Undirected graphs - "Markov networks"
- Directed cyclic graphs - "dependency networks"
- Partially directed acyclic graphs (PDAGs) - "chain graphs"
- Factor graphs
- Mixed ancestral graphs
- Etc
- Today we will focus on DAG models

Outline

- Administrivia
- Overview
\rightarrow - Local markov property, factorization (3.2)
- Global markov property (3.3)
- Deriving graphs from distributions (3.4)

CI properties of DAGs

- Defn 3.2.1. A BN structure G is a DAG whose nodes represent rvs X_{1}, \ldots, X_{n}. Let $\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ be the parents of X_{i}, and $\operatorname{Nd}\left(X_{i}\right)$ be the non-descendants of Xi . Then G encodes the following local Markov assumptions:

$$
I_{\ell}(G)=\left\{X_{i} \perp N d\left(X_{i}\right) \mid P a\left(X_{i}\right)\right\}
$$

Another Example

Red (X8) \perp pink | bue

I-maps

- Def 3.2.2. Let $I(P)$ be the set of independence assertions of the form $X \perp Y \mid Z$ that hold in P

$$
P \models X \perp Y \mid Z
$$

- Def 3.2.3. We say G is an I-map for set I if $I(G) \subseteq I$ (hence the graph does not make any false independence assumptions)

I-maps: examples

- Examples 3.2.4, 3.2.5

$$
\begin{aligned}
& \begin{array}{cc|c}
x & Y & P(X, Y) \\
\hline z^{0} & y^{0} & 0,08 \\
z^{0} & y^{1} & 0.32 \\
z^{1} & y^{0} & 0.11 \\
z^{1} & y^{1} & 0.43
\end{array} \\
& \text { - } 1 \\
& x^{\circ}\left(\begin{array}{ll}
0.08 & 0.32 \\
0.12 & 0.43
\end{array}\right)=\binom{0.4}{0.6}\left(\begin{array}{ll}
0.2 & 0.8
\end{array}\right) \\
& P(x, y)=P(X) P(Y) \\
& \rho \vDash \chi \perp Y \\
& \text { Imaps }=X Y, X->Y, X<-Y \\
& p \neq x \perp Y \\
& \text { Imaps }=\mathrm{X}->\mathrm{Y}, \mathrm{X}<-\mathrm{Y}
\end{aligned}
$$

I-map to factorization

- Def 3.2.5. A distribution P factorizes over a DAG G if it can be written in the form

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod^{n} p\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

- Thm 3.2.7. If G is an ${ }^{\mathrm{i}-{ }^{-}} \mathbf{n}$ hap for P , then P factorizes according to G.
- Proof: by the chain rule, we can always write

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1} p\left(X_{i} \mid X_{1: i-1}\right)
$$

- By the local markov assumption, we can drop all the ancestors except the parents. QED.

Student network

$$
\begin{aligned}
& p(I, D, G, S, L)= \\
& p(I) p(D \nmid I) p(G \mid I, D) p(S \mid I, \nsubseteq, G \\
&= p(I) p(D \mid) p(G \mid I, D) p(S \mid I) p(L \mid S)
\end{aligned}
$$

Naïve Bayes classifier

$$
p(y, \mathbf{x})=p(y) \prod_{j=1}^{d} p\left(x_{j} \mid y\right)
$$

Bayes net = DAG + CPD

- A DAG defines a family of distributions, namely all those that factorize in the specified way.
- Def 3.2.6. A Bayes net is a DAG G together with a set of local Conditional Probability Distributions $p\left(X _i \mid P a\left(X _i\right)\right)$.

$$
\begin{array}{|c|c|}
\hline d & d \\
\hline a s & 0,
\end{array} \quad \begin{array}{l|r}
1 & 1 \\
\hline 07 & a \pi
\end{array}
$$

CPTs:
Each row is a different multinomial distribution, One per parent combination

$$
\begin{aligned}
P\left(4^{1}, u^{0}, g^{2}, x^{2}, d^{d}\right) & =P\left(0^{1}\right) P\left(d^{d}\right) P\left(g^{2} \mid 4^{1}, d^{0}\right) P\left(s^{1} \mid \|^{1}\right) P\left(g^{0} \mid g^{2}\right) \\
& =0.3 \cdot 0.0 \cdot 0.0 \mathrm{0} \cdot 0 . \mathrm{B} \cdot 0.4=0.004008 .
\end{aligned}
$$

	1	i
9	0.1	0.1
9	$0{ }^{\text {a }}$	[
7	a,	0.01

Water sprinkler BN

$\mathrm{P}(\mathrm{C}=\mathrm{F})$	$\mathrm{P}(\mathrm{C}=\mathrm{T})$
0.5	0.5

C	$\mathrm{P}(\mathrm{S}=\mathrm{F})$	$\mathrm{P}(\mathrm{S}=\mathrm{T})$
F	0.5	0.5
T	0.9	0.1

C	$\mathrm{P}(\mathrm{R}=\mathrm{F})$	$\mathrm{P}(\mathrm{R}=\mathrm{T})$
F	0.8	0.2
T	0.2	0.8

S	R	$\mathrm{P}(\mathbf{W}=\mathrm{F})$	$\mathrm{P}(\mathbf{W}=\mathrm{T})$
F	F	1.0	0.0
T	F	0.1	0.9
F	T	0.1	0.9
T	T	0.01	0.99

$$
p(C, S, R, W)=p(C) p(S \mid C) p(R \mid C) p(W \mid S, R)
$$

Joint distribution for sprinkler network

$$
p(C, S, R, W)=p(C) p(S \mid C) p(R \mid C) p(W \mid S, R)
$$

c s r w prob
00000.200
00010.000
00100.005
00110.045
01000.020
01010.180
01100.001
01110.050
10000.090
10010.000
10100.036
10110.324
11000.001
11010.009
11100.000
11110.040

CPDs

- CPDs can be any conditional distribution p(X_i|Pa(X_i))
- If Xi has no parents, this is an unconditional distribution
- For discrete variables, it is common to use tables (conditional multinomials)
- However, CPTs have O(KIpal) parameters; we will consider more parsimonious representations (such as logistic regression) - see ch 5
- For continuous variables, it is common to use linear regression to define CPDs (see ch 7)

$$
p\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)=\mathbf{u}, \boldsymbol{\theta}_{i}\right)=\mathcal{N}\left(X_{i} \mid \mathbf{u}^{T} \boldsymbol{\theta}_{i}, \sigma_{i}^{2}\right)
$$

Representing parameters as nodes

$$
\begin{aligned}
& \begin{array}{c}
\pi \\
\vdots \\
\vdots \\
x_{1} \\
x_{1} \\
x_{2}
\end{array} \\
& \begin{array}{lll}
\lambda_{1} & x_{2} & x_{d} \\
\phi_{1} & \phi_{2} & \hat{\phi}
\end{array} \\
& p(y, \mathbf{x}, \boldsymbol{\theta})=p(y \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) \prod_{j=1}^{d} p\left(x_{j} \mid y, \boldsymbol{\phi}_{j}\right) p\left(\boldsymbol{\phi}_{j}\right)
\end{aligned}
$$

We will return to this representation when we discuss parameter estimation DAGs are widely used for Hierarchical Bayesian models

Genetic inheritance

- $G(x)=$ genotype (allele) of person x at given locus, say $\{A, B, O\} \times\{A, B, O\}$
- $B(x)=$ phenotype (blood group) in $\{A, B, O\}$
- $P(B(c) \mid G(c))=$ penetrance model
- $P(G(c) \mid G(p), G(m))=$ transmission model
- $P(G(c))=$ priors for founder nodes

Factorization to I-map

- Thm 3.2.9. If P factorizes over G, then G is an $I-$ map for P.
- Proof (by example)
- We need to show all the local Markov properties hold in P eg. RTP

$$
p(S \mid I, D, G, L)=p(S \mid I)
$$

- By factorization and elementary probability,

$$
\begin{aligned}
p(S \mid I, D, G, L) & =\frac{p(S, I, D, G, L)}{p(I, D, G, L)} \\
& =\frac{p(I) p(D) p(G \mid I, D) p(L \mid G) p(S \mid I)}{p(I) p(D) p(G \mid I, D) p(L \mid G)}=p\left(S \mid I_{39}\right.
\end{aligned}
$$

Outline

- Administrivia
- Overview
- Local markov property, factorization (3.2)
\rightarrow - Global markov property (3.3)
- Deriving graphs from distributions (3.4)

Global Markov properties

- The DAG defines local markov properties

$$
I_{\ell}(G)=\left\{X_{i} \perp N d\left(X_{i}\right) \mid P a\left(X_{i}\right)\right\}
$$

- We would like to be able to determine global markov properties, i.e., statements of the form

$$
I(G)=\{X \perp Y \mid Z: f(X, Y, Z, G)\}
$$

for some function f.

- There are several equivalent ways to define f:
- Bayes ball
- d-separation
- Ancestral separation (ch 4)

Chains

- Consider the chain

$$
\begin{gathered}
X \rightarrow Y \rightarrow Z \\
p(x, y, z)=p(x) p(y \mid x) p(z \mid y)
\end{gathered}
$$

- If we condition and y, x and z are independent

$$
\begin{aligned}
p(x, z \mid y) & =\frac{p(x) p(y \mid x) p(z \mid y)}{p(y)} \\
& =\frac{p(x, y) p(z \mid y)}{p(y)} \\
\nleftarrow 0 & =p(x \mid y) p(z \mid y)
\end{aligned}
$$

Common cause

- Consider the "tent"

- Conditioning on Y makes X and Z independent

V-structure (common effect)

- Consider the v-structure

$$
p(x, y, z)=p(x) p(z) p(y \mid x, z)
$$

- X and Z are unconditionally independent
$p(x, z)=\sum_{y} p(x, y, z)=\sum_{y} p(x) p(z) p(y \mid x, z)=p(x) p(z)$ but are conditionally dependent

$$
p(x, z \mid y)=\frac{p(x) p(z) p(y \mid x, z)}{p(y)} \neq f(x) g(z)
$$

Explaining away

- Consider the v-structure

$$
x \not x z 1 y
$$

- Let $X, Z \in\{0,1\}$ be id coin tosses.
- Let $Y=X+Z$.
- If we observe Y, X and Z are coupled.

$$
\begin{array}{lll}
x & y & z \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}
$$

Explaining away

- Let $Y=1$ iff burglar alarm goes off,
- $X=1$ iff burglar breaks in
- $Z=1$ iff earthquake occurred

- X and Z compete to explain Y, and hence become dependent
- Intuitively, $p(X=1 \mid Y=1)>p(X=1 \mid Y=1, Z=1)$

Bayes Ball Algorithm

- $X_{A} \perp X_{B} \mid X_{C}$ if we cannot get a ball from any node in A to any node in B when we shade the variables in C. Balls can get blocked as follows.

Boundary conditions (source $\mathrm{X}=$ destn Z)

V-structure
First X-> Y then $Y<-Z$

Tent
First $X<-Y$ then Y-> Z

Example

Example

$$
x_{2} \perp x_{3} \mid x_{1}, x_{6} ?
$$

Markov blankets for DAGs

- The Markov blanket of a node is the set that renders it independent of the rest of the graph. $M B(X)=$ minimal set U s.t. $X \perp \mathcal{X} \backslash\{X\} \backslash U \mid U$
- This is the parents, children and co-parents.

$$
p\left(X_{i} \mid X_{-i}\right) \propto p\left(X_{i} \mid P a\left(X_{i}\right)\right) \prod_{Y_{j} \in \operatorname{ch}\left(X_{i}\right)} p\left(Y_{j} \mid P a\left(Y_{j}\right)\right.
$$

Another example

Red node (X8) indep of rest (black) given MB (blue parents, green children, pink co-parents)

Active trails

- Whenever influence can flow from to Y via Z, we say that the trail X <-> Y <-> Z is active.
- Causal trail: $X \rightarrow Z->Y$. Active iff Z not obs.
- Evidential trail: $X<-Z<-Y$. Active iff Z not obs
- Common cause: $X<-Z->Y$. Active iff Z not obs
- Common effect; X-> $Z<-Y$. Active iff either Z or one of its descendants is observed.
- Def 3.3.1. Let G be a BN structure, and X 1 <-> ... <-> Xn be a trail in G. Let E be a subset of nodes. The trail is active given E if
- Whenever we have a v-structure $X_{i-1}->X_{i}<-X_{i+1}$, then X_{i} or one of its desc is in E
- No other node along the trail is in E

Example

- D-> $G<-I->S$ not active for $E=\{ \}$
- $D->G<-I->S$ is active for $E=\{L\}$
- D-> $G<-I$->S not active for $E=\{L, I\}$
- Non-monotonic

d-separation

- Def 3.3.2, We say X and Y are d-separated given Z, denoted d-sep_ $G(X ; Y \mid Z)$, if there is no active trail between any node in X to any node in Y , given Z. The set of such independencies is denoted

$$
I(G)=\left\{X \perp Y \mid Z: \operatorname{dsep}_{G}(X ; Y \mid Z)\right\}
$$

- Thm 3.3.3. (Soundness of dsep). If P factorizes according to G, then $I(G) \subseteq I(P)$.
- False thm (completeness of dsep). For any P that factorizes according to G, if $X \perp Y \mid Z$ in $l(P)$, then $\operatorname{desp}_{G}(X ; Y \mid Z)$ (i.e., P is faithful to G)

Faithfulness

- Def 3.3.4. A distribution P is faithful to G if, whenever $X \perp Y$ $\mid Z$ in $I(P)$, we have dsep_ $G(X ; Y \mid Z)$ i.e., there are no "nongraphical" independencies buried in the parameters
- A simple unfaithful distribution, with Imap $A->B$:

	b^{0}	b^{1}
a^{0}	0.4	0.6
a^{1}	0.4	0.6

Such distributions are "rare"

- Thm 3.3.7. For almost all distributions P that factorize over G (ie except for a set of measure zero in the space of CPD parameterizations), we have that $I(P)=I(G)$

Markov equivalence

- A DAG defines a set of distributions. Different DAGs may encode the same set and hence are indistinguishable given observational data.
- Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2). The set of all DAGs can be partitioned into I-equivalence classes.
- Def 3.4.11. Each can be represented by a class PDAG: only

$$
\begin{aligned}
& x \not \perp z \\
& x \perp 21 y
\end{aligned}
$$

$x \perp z$
z XZに

Identifying I-equivalence

- Def 3.3.11. The skeleton of a DAG is an undirected graph obtained by dropping the arrows.
- Thm 3.3.12. If G1 and G2 have the same skeleton and the same v-structures, they are l-equivalent.
- However, there are structures that are I-equiv but do not have same v-structures (eg fully connected DAG).
- Def 3.3.13. A v-structure $X->Z<-Y$ is an immorality if there is no edge between X and Y (unmarried parents who have a child)
- Thm 3.3.14. G1 and G2 have the same skeleton and set of immoralities iff they are I-equiv.

Markov properties of DAGs

- DF: F factorizes over G
- DG: $I(G) \subseteq I(P)$
- $D L: l_{I}(G) \subseteq I(P)$

Outline

- Administrivia
- Overview
- Local markov property, factorization (3.2)
- Global markov property (3.3)
\rightarrow - Deriving graphs from distributions (3.4)

Deriving graphs from distributions

- So far, we have discussed how to derive distributions from graphs.
- But how do we get the DAG?
- Assume we have access to the true distribution P, and can answer questions of the form

$$
P \models X \perp Y \mid Z
$$

- For finite data samples, we can approximate this oracle with a Cl test - the frequentist approach to graph structure learning (see ch 18)
- What DAG can be used to represent P?

Minimal I-map

- The complete DAG is an I-map for any distribution (since it encodes no CI relations)
- Def 3.4.1. A graph K is a minimal I -map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from K renders it not an I-map.
- To derive a minimal I-map, we pick an arbitrary node ordering, and then find some minimal subset U to be X_{i} 's parents, where

$$
X_{i} \perp\left\{X_{1}, \ldots, X_{i-1}\right\} \backslash U \mid U
$$

- (K2 algorithm replace this CI test with a Bayesian scoring metric: sec 18.4.2).

Effect of node ordering

- "Bad" node orderings can result in dense, unintuitive graphs.
- Eg L,S,G,I,D. Add L. Add S: must add L as parent, since $P \not \models L \perp S$ Add G: must add L,S as parents.

 D, A, B, B, L, $2, S, \Omega, D, D \mid L, D, s, A, D$

Perfect maps

- Minimal I-maps can have superfluous edges.
- Def 3.4.2. Graph K is a perfect map for a set of independencies I if $I(K)=I$. K is a perfect map for P if $\mathrm{I}(\mathrm{K})=\mathrm{I}(\mathrm{P})$.
- Not all distributions can be perfectly represented by a DAG.
- Eg let $Z=x o r(X, Y)$ and use some independent prior on X, Y. Minimal I-map is $X->Z<-Y$. However, X $\perp Z$ in $I(P)$, but not in $l(G)$.
- Eg. $A \perp C \mid\{B, D\}$ and $B \perp D \mid\{A, C\}$

Finding perfect maps

- If P has a perfect map, we can find it in polynomial time, using an oracle for the Cl tests.
- We can only identify the graph up to I-equivalence, so we return the PDAG that represents the corresponding equivalence class.
- The method* has 3 steps (see sec 3.4.3)
- Identify undirected skeleton
- Identify immoralities
- Compute eclass (compelled edges)
- This algorithm has been used to claim one can infer causal models from observational data, but this claim is controversial

Algorithm due to Verma \& Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995

