
1

Stat 521A
Lecture 1

Introduction; directed graphical models

2

Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property (3.3)
• Deriving graphs from distributions (3.4)

3

Administrivia

• Class web page
www.cs.ubc.ca/~murphyk/Teaching/Stat521A-spring08

• Join groups.google.com/group/stat521a-spring09

• Office hours: Fri 10-11 am
• Final project due Fri Apr 24th

• Weekly homeworks

• Grading
– Final project: 60%
– Weekly Assignments: 40%

4

Auditing

• If you want to ‘sit in’ on the class, please register for
it as ‘pass/fail’; you will automatically pass as long
as you show up for (most of) the class (no other
requirements!)

• If you take it for real credit, you will likely learn
more…

5

Homeworks

Weekly homeworks, out on Tue, due back on Tue

• Collaboration policy:
– You can collaborate on homeworks if you write the name

of your collaborators on what you hand in; however, you
must understand everything you write, and be able to do
it on your own

• Sickness policy:
– If you cannot do an assignment, you must come see me

in person; a doctor's note (or equivalent) will be required.

6

Workload

• This class will be quite time consuming.

• Attending lectures: 3h.
• Weekly homeworks: about 3h.

• Weekly reading: about 10h.
• Total: 16h/week.

7

Pre-requisites

• You should know
– Basic applied math (calculus, linear algebra)
– Basic probability/ statistics e.g. what is a covariance

matrix, linear/logistic regression, PCA, etc
– Basic data structures and algorithms (e.g., trees, lists,

sorting, dynamic programming, etc)
– Prior exposure to machine learning (eg CS540) and/or

multivariate statistics is strongly recommended

8

Textbooks

• “Probabilistic graphical models: principles and
techniques”, Daphne Koller and Nir Friedman (MIT
Press 2009, in press).

• We will endeavour to cover the first 900 (of 1100)
pages!

• Copies available at Copiesmart copy center in the
village (next to McDonalds) from Thursday

• I may hand out some chapters from Michael
Jordan’s draft book, “Probabilistic graphical
models”

• I am writing my own book “Machine learning: a
probabilistic approach”; I may hand out some
chapters from this during the semester.

9

Matlab

• Matlab is a mathematical scripting language widely
used for machine learning (and engineering and
numerical computation in general).

• Everyone should have access to Matlab via their
CS or Stats account.

• You can buy a student version for $170 from the
UBC bookstore. Please make sure it has the Stats
toolbox.

• Matt Dunham has written an excellent Matlab
tutorial which is on the class web site – please
study it carefully!

10

PMTK

• Probabilistic Modeling Toolkit is a Matlab package I
am currently developing to go along with my book.

• It uses the latest object oriented features of Matlab
2008a and will not run on older versions.

• It is designed to replace my earlier ‘Bayes net
toolbox’.

• PMTK will form the basis of some of the
homeworks, and may also be useful for projects.
(Currently support for GMs is very limited.)

• http://www.cs.ubc.ca/~murphyk/pmtk/

11

Learning objectives

• By the end of this class, you should be able to
– Understand basic principles and techniques of

probabilistic graphical models
– Create suitable models for any given problem
– Derive the algorithm (equations, data structures etc)

needed to apply the model to data
– Implement the algorithm in reasonably efficient Matlab
– Demonstrate your skills by doing a reasonably

challenging project

12

Ask questions early and often!

13

Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property (3.3)
• Deriving graphs from distributions (3.4)

14

Supervised learning

• Predict output given inputs, ie compute p(h|v)

• Regression: h in R
• Classification: h in {1,…,C}

15

Structured output learning

• Model joint density of p(h,v) (or maybe p(h|v))

• Then infer p(h|v) - state estimation
• MAP estimation (posterior mode)

• Posterior marginals

• Also need to estimate parameters and structure

h
∗ = argmax

h1
, . . . , argmax

hn
p(h|v, θ)

h∗1 =
∑

h2

. . . ,
∑

hn

p(h|v,θ)

Pixels Symptoms Phenotype Features

Labels Diseases Genotype Low-dim rep

16

Density estimation

• Model joint density of all variables

• No distinction between inputs and outputs: different
subsets of variables can be observed at different
times (eg for missing data imputation)

• Can run model in any ‘direction’

17

Water sprinkler joint distribution

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W)

Cloudy

Sprinkler Rainy

WetGrass

18

Inference

• Prior that sprinkler is on

• Posterior that sprinkler is on given that grass is wet

• Posterior that sprinkler is on given that grass is wet
and it is raining

p(S = 1) =

1∑

c=0

1∑

r=0

1∑

w=0

p(C = c, S = 1, R = r,W = w) = 0.3

p(S = 1|W = 1) =
p(S = 1,W = 1)

p(W = 1)
= 0.43

p(S = 1|W = 1, R = 1) =
p(S = 1,W = 1, R = 1)

p(W = 1, R = 1)
= 0.19

Explaining away

19

Bag of words model

• bag-of-words representation of text documents
• Xi=1 iff word i occurs in document
• Define a joint distribution over bit vectors, p(x1,…,xn)

20

Inference

• Given word Xi occurs, which other words are likely
to co-occur?

• What is the probability of any particular bit vector?

• Sample (generate) documents from joint p(x)

21

Bayesian classifiers

• Define joint p(y,x) = p(x|y) p(y) on document class
label and bit vectors

• Can infer class label using Bayes rule

• If y is hidden, we can use this to cluster documents.
• In both cases, we need to define p(x|y=c)

p(y = c|x) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′)

Class prior
Class posterior

Class-conditional density

Normalization constant

22

Naïve Bayes assumption

• The simplest approach is to assume each feature is
conditionally independent given the class/cluster Y

• In this case, we can write

• The number of parameters is reduced from
O(C Kd) to O(C K), assuming C classes and K-ary
features

Xi ⊥ Xj |Y = c

p(x|y = c) =

d∏

j=1

p(xj |y = c)

23

Conditional independence

• In general, making CI assumptions is one of the
most useful tools in representing joint probability
distributions in terms of low-dimensional quantities,
which are easier to estimate from data

• Graphical models are a way to represent CI
assumptions using graphs

• The graphs provide an intuitive representation, and
enable the derivation of efficient algorithms

24

Graphical models

• There are many kinds of graphical models

• Directed Acyclic graphs – “Bayesian networks”
• Undirected graphs – “Markov networks”

• Directed cyclic graphs – “dependency networks”
• Partially directed acyclic graphs (PDAGs) – “chain

graphs”

• Factor graphs
• Mixed ancestral graphs

• Etc
• Today we will focus on DAG models

25

Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property (3.3)
• Deriving graphs from distributions (3.4)

26

CI properties of DAGs

• Defn 3.2.1. A BN structure G is a DAG whose
nodes represent rvs X1,…,Xn. Let Pa(Xi) be the
parents of Xi, and Nd(Xi) be the non-descendants
of Xi. Then G encodes the following local Markov
assumptions:

Iℓ(G) = {Xi ⊥ Nd(Xi)|Pa(Xi)}

Student network

G ⊥ S|D, I

I ⊥ D

. . .

27

Another Example

Red (X8) ⊥ pink | bue

28

I-maps

• Def 3.2.2. Let I(P) be the set of independence
assertions of the form X ⊥ Y | Z that hold in P

• Def 3.2.3. We say G is an I-map for set I if I(G) ⊆ I

(hence the graph does not make any false
independence assumptions)

P |=X ⊥ Y |Z

29

I-maps: examples

• Examples 3.2.4, 3.2.5

Imaps = X Y, X -> Y, X <- Y
Imaps = X -> Y, X <- Y

(
0.08 0.32
0.12 0.43

)
=

(
0.4
0.6

)(
0.2 0.8

)

30

I-map to factorization

• Def 3.2.5. A distribution P factorizes over a DAG G
if it can be written in the form

• Thm 3.2.7. If G is an I-map for P, then P factorizes
according to G.

• Proof: by the chain rule, we can always write

• By the local markov assumption, we can drop all
the ancestors except the parents. QED.

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|Pa(Xi))

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|X1:i−1)

31

Student network

p(I,D,G, S, L) =

p(I)p(D|I)p(G|I,D)p(S|I,D,G)p(L|I,D,G, S)

= p(I)p(D|)p(G|I,D)p(S|I)p(L|S)

32

Naïve Bayes classifier

p(y,x) = p(y)

d∏

j=1

p(xj|y)

33

Bayes net = DAG + CPD

• A DAG defines a family of distributions, namely all
those that factorize in the specified way.

• Def 3.2.6. A Bayes net is a DAG G together with a
set of local Conditional Probability Distributions
p(X_i|Pa(X_i)).

CPTs:
Each row is a different
multinomial distribution,
One per parent combination

34

Water sprinkler BN

p(C, S,R,W) = p(C)p(S|C)p(R|C)p(W |S,R)

35

Joint distribution for sprinkler network

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W) = p(C)p(S|C)p(R|C)p(W |S,R)

36

CPDs

• CPDs can be any conditional distribution
p(X_i|Pa(X_i))

• If Xi has no parents, this is an unconditional
distribution

• For discrete variables, it is common to use tables
(conditional multinomials)

• However, CPTs have O(K|pa|) parameters; we will
consider more parsimonious representations (such
as logistic regression) – see ch 5

• For continuous variables, it is common to use linear
regression to define CPDs (see ch 7)
p(Xi|Pa(Xi) = u, θi) = N (Xi|u

Tθi, σ
2
i)

37

Representing parameters as nodes

p(y,x, θ) = p(y|π)p(π)
d∏

j=1

p(xj |y,φj)p(φj)

We will return to this representation when we discuss parameter estimation
DAGs are widely used for Hierarchical Bayesian models

38

Genetic inheritance

• G(x) = genotype (allele) of person x at given locus,
say {A,B,O} x {A,B,O}

• B(x) = phenotype (blood group) in {A,B,O}

• P(B(c)|G(c)) = penetrance model
• P(G(c)|G(p),G(m)) = transmission model
• P(G(c)) = priors for founder nodes

39

Factorization to I-map

• Thm 3.2.9. If P factorizes over G, then G is an I-
map for P.

• Proof (by example)

• We need to show all the
local Markov properties
hold in P eg. RTP

• By factorization and elementary probability,

p(S|I,D,G, L) = p(S|I)

p(S|I,D,G,L) =
p(S, I,D,G, L)

p(I,D,G,L)

=
p(I)p(D)p(G|I,D)p(L|G)p(S|I)

p(I)p(D)p(G|I,D)p(L|G)
= p(S|I)

40

Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property (3.3)
• Deriving graphs from distributions (3.4)

41

Global Markov properties

• The DAG defines local markov properties

• We would like to be able to determine global
markov properties, i.e., statements of the form

for some function f.
• There are several equivalent ways to define f:
• Bayes ball
• d-separation
• Ancestral separation (ch 4)

Iℓ(G) = {Xi ⊥ Nd(Xi)|Pa(Xi)}

I(G) = {X ⊥ Y |Z : f(X, Y, Z,G)}

42

Chains

• Consider the chain

• If we condition and y, x and z are independent

p(x, y, z) = p(x)p(y|x)p(z|y)

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)

=
p(x, y)p(z|y)

p(y)

= p(x|y)p(z|y)

43

Common cause

• Consider the “tent”

• Conditioning on Y makes X and Z independent

p(x, y, z) = p(y)p(x|y)p(z|y)

p(x, z|y) =
p(x, y, z)

p(y)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y)

44

V-structure (common effect)

• Consider the v-structure

• X and Z are unconditionally independent

but are conditionally dependent

p(x, y, z) = p(x)p(z)p(y|x, z)

p(x, z|y) =
p(x)p(z)p(y|x, z)

p(y)
�= f(x)g(z)

p(x, z) =
∑

y

p(x, y, z) =
∑

y

p(x)p(z)p(y|x, z) = p(x)p(z)

45

Explaining away

• Consider the v-structure

• Let X, Z ∈ {0,1} be iid coin tosses.

• Let Y = X + Z.
• If we observe Y, X and Z are coupled.

46

Explaining away

• Let Y = 1 iff burglar alarm goes off,

• X=1 iff burglar breaks in
• Z=1 iff earthquake occurred

• X and Z compete to explain Y, and hence become
dependent

• Intuitively, p(X=1|Y=1) > p(X=1|Y=1,Z=1)

47

Bayes Ball Algorithm

• XA ⊥ XB | XC if we cannot get a ball from any node

in A to any node in B when we shade the variables
in C. Balls can get blocked as follows.

48

Boundary conditions (source X = destn Z)

V-structure
First X->Y then Y <- Z

Tent
First X <- Y then Y -> Z

49

Example

50

Example

51

Markov blankets for DAGs

• The Markov blanket of a node is the set that
renders it independent of the rest of the graph.

• This is the parents, children and co-parents.

p(Xi|X−i) =
p(Xi,X−i)∑
x p(Xi,X−i)

=
p(Xi, U1:n, Y1:m, Z1:m, R)∑
x p(x, U1:n, Y1:m, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)

∑
x p(Xi = x|U1:n)[

∏
j p(Yj |Xi = x,Zj)]P (U1:n, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x,Zj)]

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)

Useful for Gibbs sampling

MB(X) = minimal set Us.t.X ⊥ X \ {X} \ U |U

52

Another example

Red node (X8) indep of rest (black) given MB (blue parents, green children,
pink co-parents)

53

Active trails

• Whenever influence can flow from to Y via Z, we say that
the trail X <-> Y <-> Z is active.

• Causal trail: X -> Z -> Y. Active iff Z not obs.
• Evidential trail: X <- Z <- Y. Active iff Z not obs
• Common cause: X <- Z -> Y. Active iff Z not obs
• Common effect; X -> Z <- Y. Active iff either Z or one of its

descendants is observed.
• Def 3.3.1. Let G be a BN structure, and X1 <-> … <-> Xn be

a trail in G. Let E be a subset of nodes. The trail is active
given E if

• Whenever we have a v-structure Xi-1 -> Xi <- Xi+1, then Xi or
one of its desc is in E

• No other node along the trail is in E

54

Example

• D-> G <- I ->S not active for E={}

• D-> G <- I ->S is active for E={L}
• D-> G <- I ->S not active for E={L,I}

• Non-monotonic

55

d-separation

• Def 3.3.2, We say X and Y are d-separated given
Z, denoted d-sep_G(X;Y|Z), if there is no active
trail between any node in X to any node in Y, given
Z. The set of such independencies is denoted

• Thm 3.3.3. (Soundness of dsep). If P factorizes
according to G, then I(G) ⊆ I(P).

• False thm (completeness of dsep). For any P that
factorizes according to G, if X ⊥ Y | Z in I(P), then

despG(X;Y|Z) (i.e., P is faithful to G)

I(G) = {X ⊥ Y |Z : dsepG(X;Y |Z)}

56

Faithfulness
• Def 3.3.4. A distribution P is faithful to G if, whenever X ⊥ Y

| Z in I(P), we have dsep_G(X;Y|Z) i.e., there are no “non-
graphical” independencies buried in the parameters

• A simple unfaithful distribution, with Imap A->B:

•

Such distributions are “rare”
• Thm 3.3.7. For almost all distributions P that factorize over

G (ie except for a set of measure zero in the space of CPD
parameterizations), we have that I(P)=I(G)

57

Markov equivalence

• A DAG defines a set of distributions. Different DAGs may
encode the same set and hence are indistinguishable given
observational data.

• Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2).
The set of all DAGs can be partitioned into I-equivalence
classes.

• Def 3.4.11. Each can be represented by a class PDAG: only
has a directed edge if every member shares that edge.

58

Identifying I-equivalence

• Def 3.3.11. The skeleton of a DAG is an undirected
graph obtained by dropping the arrows.

• Thm 3.3.12. If G1 and G2 have the same skeleton
and the same v-structures, they are I-equivalent.

• However, there are structures that are I-equiv but
do not have same v-structures (eg fully connected
DAG).

• Def 3.3.13. A v-structure X->Z<-Y is an immorality if
there is no edge between X and Y (unmarried
parents who have a child)

• Thm 3.3.14. G1 and G2 have the same skeleton
and set of immoralities iff they are I-equiv.

59

Examples

60

Markov properties of DAGs

• DF: F factorizes over G
• DG: I(G) ⊆ I(P)
• DL: Il(G) ⊆ I(P)

Based on Jordan ch 4

61

Outline

• Administrivia

• Overview
• Local markov property, factorization (3.2)

• Global markov property (3.3)
• Deriving graphs from distributions (3.4)

62

Deriving graphs from distributions

• So far, we have discussed how to derive
distributions from graphs.

• But how do we get the DAG?

• Assume we have access to the true distribution P,
and can answer questions of the form

• For finite data samples, we can approximate this
oracle with a CI test – the frequentist approach to
graph structure learning (see ch 18)

• What DAG can be used to represent P?

P |=X ⊥ Y |Z

63

Minimal I-map

• The complete DAG is an I-map for any distribution
(since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of
independencies I if it is an I-map for I, and if the
removal of even a single edge from K renders it not
an I-map.

• To derive a minimal I-map, we pick an arbitrary
node ordering, and then find some minimal subset
U to be Xi’s parents, where

• (K2 algorithm replace this CI test with a Bayesian
scoring metric: sec 18.4.2).

Xi ⊥ {X1, . . . , Xi−1} \ U |U

64

Effect of node ordering

• “Bad” node orderings can result in dense,
unintuitive graphs.

• Eg L,S,G,I,D. Add L. Add S: must add L as parent,
since . Add G: must add L,S as parents.P � |=L ⊥ S

65

Perfect maps

• Minimal I-maps can have superfluous edges.

• Def 3.4.2. Graph K is a perfect map for a set of
independencies I if I(K)=I. K is a perfect map for P if
I(K)=I(P).

• Not all distributions can be perfectly represented by
a DAG.

• Eg let Z = xor(X,Y) and use some independent prior
on X, Y. Minimal I-map is X -> Z <- Y. However, X
⊥ Z in I(P), but not in I(G).

• Eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}

66

Finding perfect maps

• If P has a perfect map, we can find it in polynomial
time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence,
so we return the PDAG that represents the
corresponding equivalence class.

• The method has 3 steps (see sec 3.4.3)
– Identify undirected skeleton
– Identify immoralities
– Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer
causal models from observational data, but this
claim is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995

*

