Stat 406 Spring 2008 Homework 4

1 Partial derivative of the RSS

Define
RSS(w) = |[Xw — y|[3 1)
1. Show that
iRSS(W) = apwp —c 2)
Dun = apwWg — C
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wherew_; = w without componenk, x; _j, iS x; without componenk, andr, =y — wka:,,k is the
residual due to using all the features except feature

2. Show that if52

RSS(w) =0, then
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Hence when we sequentially add features, the optimal wéigti¢aturek is computed by computing orthogo-
nally projectingx. ;, onto the current residual.

2 Derivation of A" for lasso
The following equation gives the partial subderivativelw tasso loss function:

O, J(w, A) = (arwr — cx) + A0uw, ||W||1 (6)
{apwy, —cr, — A} ifwp <0

= (—Ck -\, —cr + )\) if w, =0 (7
{agwy — e, + A} if w, >0

If w is a minimum of this loss function, we must haWe= 9.J(w). In particular, if0 is an optimum, we must have
0 € 90J(0). Show that this implies that the largest value\aieeded to make all the coefficients be zero is given by

AT = 112Xy oo 8
3 Reducing elastic net to lasso
Define the elastic net loss function as
Ji(w) = [ly — Xwl® + Xof[w|[* + Ay [|w]]s 9)
and the lasso loss on modified data as
Jo(w) = |7 — XW[|” + e [[Wl] (10)



Term LS Subset Ridge Lasso
intercept  2.452 2452 2452 2.452
Icavol 0.716 0.780 0.399 0.571
lweight  0.293 0.352 0.242 0.218

age -0.143 0.000 -0.033 0.000
Ibph 0.212 0.000 0.160 0.076
svi 0.310 0.000 0.224 0.150
Icp -0.289 0.000 0.028 0.000

gleason -0.021 0.000 0.046 0.000
pggd5  0.277 0.000 0.126 0.047
TestMSE 0.586 0.574 0547 0.488

Table 1: Results of different methods on the prostate cancer date@hwias 8 features and 67 training cases. Methods are: LS =
least squares, Subset = best subset regression, Ridge, Rasgs represent the coefficients; we see that subset seémresd lasso
give sparse solutions. Bottom row is the mean squared enrtiteotest set (30 cases). Producegbpst at eConpar i son (see
Exercise??).

ridge, mseTest = 0.547 all subsets, mseTest = 0.574 lasso, mseTest = 0.488
T

Figure 1. Cross validation error versus model complexity on the ptestancer data. Dotted lines denote the value chosen using
the one standard error heuristic. (a) Ridge regressiorduesnl bypr ost at eRi dge (Exercise??). (b) Best subset regression.
Produced byr ost at eSubset s. (c) Lasso. Produced hyr ost at eLasso. Modeled after Figure 3.6 &f.
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wherec = (1 + X\2)” 2 and

- X [y
X=c (\/led) P YT (de1) (1)
Show
argmin Jq (w) = c(arg min Jo(w)) (12)
ie.
Ji(ew) = Jo(w) (13)

Hence one can solve an elastic net problem using a lassa solveodified data (seel asti cNet function).

4 Comparingridge and lasso on prostate cancer data (M atlab)

The goal of this exercise is to reproduce the numbers in Tehled the graphs in Figure 1. Most of the work has been
done for you. All you have to do is write functiops ost at eRi dge andpr ost at eL S, which will be called by

pr ost at eConpari son. pr ost at eRi dge will be very similar topr ost at eLasso, except you need to replace
the lasso path function with a ridge path function; thus yoly aeed to change two lines of codw. ost at eL S will

be simpler, since it has no free parameters, so there is mbtoemmpute a regularization path. Turn in your code,
numbers and graphs.



